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ABSTRACT In the midst of a global health crisis, it is of utmost importance for healthcare technologies
to possess the capability to regulate and monitor the physiological variables of patients remotely and
automatically. The effective control of mean arterial pressure (MAP) in a closed-loop manner is particularly
critical for individuals who are critically ill or in the process of recovering from surgical procedures.
Within the framework of the present research, an adaptive closed-loop structure has been formulated with
the objective of controlling a patient’s MAP through governed administration of the medication sodium
nitroprusside (SNP), to attain the desired MAP levels under varying conditions. The proposed closed-loop
technique incorporates an intelligent controller known as the active disturbance rejection control (ADRC)
with the intention of tracking the desired MAP value, alongside the utilization of continuous action policy
gradient (CAPG) for the optimization of the controller’s coefficients. Under the DRL strategy, an actor
is responsible for generating policy requests, while a critic assesses the efficacy of the actor’s policy
directives. This approach uses gradient descent to train the weight values of both actor and critic networks,
and it is dependent on the reward return linked to the MAP fault. Upon comparing the outcomes of the
recommended structure with conventional models, numerical simulation results demonstrate the superiority
of the proposed system in coping with varying working conditions, key-value fluctuations, and uncertainties,
while effectively maintaining the desired mean arterial pressure and drug administration rate.

INDEX TERMS Drug infusion pump, mean arterial pressure (MAP), adaptive closed-loop strategy, active
disturbance rejection control (ADRC), deep reinforcement learning (DRL).

I. INTRODUCTION
Recently, there has been notable progress in closed-loop
physiological variable regulation. This century demands that
medical equipment be automatically controlled. Researchers
now understand how important it is to automate medi-
cal equipment in order to save time and labor in the
pandemic age. Given the impracticality of individualized
patient care by physicians, patients in urgent situations must
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have access to an autonomously managed medicine delivery
system [1].

The mean arterial pressure (MAP) is an indicator of
the average blood pressure (BP) during a cardiac cycle,
determined by the amalgamation of cardiac output, cen-
tral venous pressure, and systemic vascular resistance [2].
One of the most crucial hemodynamic factors is that it
must be managed properly and within stable bounds in a
variety of acute, life-threatening situations, including car-
diac arrest, the delivery of anesthetic, and the recuperation
period following surgery. Complications from post-operative
hypertension include subendocardial ischemia, hemorrhage,
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disruption of vascular suture lines, and cerebrovascular
issues.

A fast-acting drug called sodium nitroprusside (SNP) has
long been used to treat individuals with post-operatively high
BP. However, because of the medication’s rapid onset of
effect, a patient needs a caregiver to adjust the SNP drug’s
infusion based on the patient’s needs. To keep physiological
variables within clinical limits, it is important to continu-
ously monitor the administration of SNP drugs during and
after surgery [3]. However, because minor variations can
have detrimental effects on a patient receiving medical care,
it is imperative to employ automated means to manage the
administration of SNP medications to modulate MAP. Thus,
for any patient receiving post-surgical medication infusion,
such as SNP, maintaining MAP within an ideal range is a
difficult challenge. In this case, maintaining MAP at the
correct level may be accomplished conventionally and simply
by the medical professional using manual control [4], [5], [6].

However, this practice is not recommended due to certain
severe drawbacks such as time consumption, inaccurate dose
management, and MAP level fluctuation. As the BP must
be monitored frequently to adjust the drug infusion rate,
proper feedback is necessary to keep the MAP within the
intended ranges. This is because external disturbances can
alter the MAP level, as can frequent changes in the patient’s
condition, variations in the other patient’s response character-
istics, and intra-patient variability. Therefore, automated drug
administration management is an intriguing way to keep an
eye on the patient and will drastically cut down on human
labor under pressure [7], [8], [9]. The literature states that
clinical experiment findings show that automated control is
far safer, more effective, and superior to manual control. This
topic has received increased attention to improve closed-loop
medicine distribution and regulation during critical scenarios
like as surgery, accidental instances, etc. [10], [11]. Figure 1
shows a schematic illustration of the closed-loop strategy for
controlling MAP by administering SNP medication infusion.

FIGURE 1. Outline of the closed-loop strategy to regulate MAP by drug
infusion SNP.

Nowadays, it is simple to regulate physiological variables
in real-time, such as MAP, since compact actuators and sen-
sors are readily available to set up the closed-loop control’s
measurement and feedback units. The automated modulation
of the MAP by SNP medication administration has been the
focus of several research projects, and this might represent
a bright future for the healthcare industry. Adjustable con-
trol [12], fuzzy logic control [1], [5], [13], model predictive
control (MPC) [14], interval type-2 fuzzy logic control [5],
fractional order control [15], robust multi-model adaptive
control [16], and reinforcement learning (RL) control [17]
are some of the control approaches that have been discussed.
Modern methods can be more efficient, even if traditional
fuzzy features or PID controllers have the benefit of being
easily tunable. To find the ideal settings, these methods,
however, are more intricate and demand a lot more processing
power.

Recently, researchers have introduced an alternative
approach called active disturbance rejection control (ADRC).
The ADRC falls in between new intelligence techniques and
traditional PID systems. It retains the durability and stability
to compete with modern methods even though it inherits the
simplicity of PID technique. Additionally, such un-modeled
strategy endows the system with enhanced resilience against
disturbances. By using ADRC, the system is guided toward
a reinforced version that includes all unpredictability,
nonlinearities, and external disruptions as enhanced
states [18], [19].

Control engineers are now paying more attention to the
ADRC technique because of these benefits, and they are
investigating how it might be used to address a range of
problems in this field. For instance, Wu and Zheng [19]
recommends improving the artificial blood pumping used by
individuals with end-stage congestive heart failure by apply-
ing an ADRC method. A treatment called ADRC has also
been proposed to help reduce hand tremors in Parkinson’s
sufferers [20]. Furthermore, in [21], an approach known as
ADRC was introduced to control the flow of a rotary blood
pump when there are significant fluctuations in pathological
state and activity. Designing a durable optimum controller
is a fundamental need for autonomous control of systems.
This makes it even more crucial in the healthcare business,
where physiological parameter fluctuations may occur. To get
a superior closed-loop response, an efficient control sys-
tem needs ideal control parameters. Numerous writers have
created optimization algorithms based on heuristics and
metaheuristics because of advances in computing. When
using such tactics, the best outcomes may be obtained for a
brief amount of time, but the learning capacity from observed
signals and the generalization capacity is restricted.

One type of intelligence algorithm is called deep rein-
forcement learning (DRL). RL and deep learning (DL)
are combined in DRL. Continuous action policy gradient
(CAPG) has gained popularity recently as a subset of artificial
intelligence (AI) and machine learning (ML) for resolv-
ing high-dimensional problems. Through interaction and
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exploration between RL and the environment, CAPG
achieves the optimal objective during the training phase.
DL is then used to suit the control strategy [22], [23]. The
primary use of CAPG is in Markov decision process (MDP)
problem-solving. The agent can provide the best strategy for
choosing actions in the environment, with the ultimate objec-
tive being the maximization of reward value. CAPG requires
less computing since it does not require sophisticated models,
unlike traditional approaches that call for fixed structures and
parameters. When the environment changes (MAP model),
CAPG performs better than other approaches in making
quick adjustments. Reward learning offers no chattering and
a greater accuracy rate than other smart techniques [24].
The fundamental accomplishment of the current study is

the creation of a regulated closed-loop medication infusion
system that keeps a patient’s MAP stable during treatment.
This system may serve as a solid basis for the development of
an affordable automatic drug administration control system.
The most important thing for a critically ill, post-surgery
patient undergoing heart surgery is to keep all significant
physiological parameters within the specified ranges. This
means that a controlled amount of medication should be
infused into the patient to prevent any negative side effects.
To achieve this, CAPG-based ADRC, an intelligent adaptive
technique, has been used to regulate the medication infusion.
The main contributions of the current study are summarized
below.

1) An intelligent control strategy has been implemented to
regulateMAP through the administration of a controlled infu-
sion of SNP drugs, as a means of addressing the previously
mentioned concerns.

2) An intelligence adaptive framework was employed in
the development of an ADRC controller to effectively man-
age MAP through modulated SNP medication infusion in the
present investigation. To estimate the complex and elusive
dynamics of the ADRC, the ADRC controller makes use of
an extended state observer (ESO). By incorporating the I/O
of the MAP model, the design of the ADRC controller was
accomplished without necessitating the identification of the
model pertaining to the MAP system.

3) The learning capacity of CAPG is employed for the pur-
pose of regulating MAP through engagement with the agent
via the dynamic model. The Actor and Critic components
of the learning control mechanism are trained in a manner
devoid of any model constraints by means of incorporating a
reward function as the objective for optimization.

4) The performance of the ADRC approach that has
been proposed is compared to the ADRC counterpart that
is based on particle swarm optimization (PSO), as well as
on ADRC and traditional PID controllers. Robustness, noise
rejection, and the referencemodel are compared at the control
results and feedback points.

The current work is organized as follows: In Part II, the
MAPmodel is expressed. Part III discusses the recommended
controller’s design for use with the MAP system. The stim-
ulation findings and a comparison analysis are presented in

Part IV. Parts V and VI are the discussion and conclusions,
respectively.

II. FORMULATING OF MEAN ARTERIAL PRESSURE
To control the patient’s desired MAP through the SNP med-
ication infusion, this part gives the MAP model. The control
goals limitations for the model under study are also discussed
in the following. The overall structure of the studied model is
indicated in Fig. 2. The implemented model shows how the
MAP fluctuation for drug administration and SNP medicine
infusion volumes relate to one another, as seen in Fig. 2
[1], [5]. The dynamic system is as follows:

Gp =
Yp(s)
Ip(s)

=
[Sp

(
1+ Lp3s

)
e−(θp)s]

[
(
1+ Lp3s

) (
1+ Lp2s

)
− δp](1+ Lp1s)

(1)

FIGURE 2. Schematic of the MAP system.

In the dynamic model, the BP changes caused by the
infusion of the SNP drug are represented by Yp(s), whereas
the rate at which the drug is infused is denoted by Ip. The
drug infusion time constants, Lp1, Lp2, and Lp3, determine the
speed at which the drug is absorbed into the patient’s system.
The parameter δp signifies a fraction of the recirculated SNP
drug, while θp refers to the time-delay between the drug infu-
sion and its impact on BP. Lastly, Sp illustrates the patient’s
sensitivity to the drug and its influence on their BP. Finally,
the actual MAP output is formulated as [5] and [14]:

MAPp (t) = Yp (t)+ Ibp(0) (2)

where, Ibp(0) is the initial BP. The dynamic model of each
block and nominal values are presented in Table 1.

TABLE 1. The configurations of the dynamic system.
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As was mentioned, the main goal of this experiment is
to manage MAP by carefully administering the medication
SNP. In the context of this investigation, the starting input
value, which starts at 150 mmHg and subsequently drops to
100 mmHg must be efficiently controlled by the right dosage
of SNP medication to produce a MAP that falls within the
permissible range of 100 mmHg. Because of this divergence
from the initial elevatedMAP value of 150mmHg, the restric-
tions related to the SNP medication rate of administration
must be carefully considered.

To achieve the optimal outcome, it is imperative to note the
constraints imposed by the administration of SNP drugs. The
limitations below are enumerated [3], [5], [14]:

i) At no point should oscillations occur in the final closed-
loop strategy.

ii) The patient’s MAP should never go below the critical
level or 70 mmHg.

iii) The administration of a substantial quantity of SNP
medication may pose a potential risk to the patient
undergoing treatment or recuperation. Therefore, it is
essential that the patient’s medication dosage be
between 0 and 180 milliliters each hour.

iv) The suggested closed-loop system’s settling time ought
to be lower than 10 minutes and definitively below
15 minutes.

v) After settling, the intended MAP should fall between
[70, 120] mmHg values.

vi) The ultimate steady-stateMAP rate must remain within
a range of ± 5 mmHg from the intended MAP level of
100 mmHg.

III. ADAPTIVE DESIGN OF DRL-BASED ADRC
A. CONCEPT OF THE ADRC CONTROLLER
The Advanced ADRC introduces a novel and intrinsically
reliable controller-building component for controlling sys-
tems, which necessitates minimal knowledge about the plant.
The control mechanism constantly assesses and adjusts for
the entire chaos, including both external and internal dynam-
ics, in real-time by use of an ESO. The estimated info is then
eliminated in the control rule, which causes the system to
behave like an ongoing integrator.

This method gets rid of the present design’s predominant
model need. In other words, the controller gets the data
required to regulate the plant from the ESO rather than rely-
ing on the plant’s model. The framework of ADRC control
design is illustrated in Fig. 3, and its description is provided
below. The ADRC controller, as seen in Fig. 3, consists of
three components, each of which is explained in more detail
below [20], [25]:

1) TRACKING DIFFERENTIAL (TD)
In MAP, the intended result is contingent upon the

SNF medication infusion, which is continuously modified.
Like a proportional integrator, TD can set up the perfect
error transition process between the reference signal and y.
This allows for easy tracking of the anticipated production.

FIGURE 3. The structure of the ADRC controller.

Additionally, the supplied signal can be filtered by TD to
extract an effective differential signal, either first order or
higher order.

TD =

{
v1 = v1 + hv2
v2 = v2 + h ∗ r ∗ fa

(3)

where the tracking signal is denoted by v1 and the deferential
signal by v2. The simulation step and the transitional trend’s
time are indicated by the symbols h and r , respectively, and
fa is a specific function.

2) NONLINEAR STATE FEEDBACK (NLSEF)
Based on the nonlinear combination of total disturbance and
predicted output error, the nonlinear feedback control rule
is created. The nonlinear feedback control rule is composed
similarly to differential and proportional gain. On the other
hand, the control law’s convergence speed is quicker than
the PID controller. Effective compensation for the unknown
model and disturbance may be achieved by this nonlinear
combination. Furthermore, a big gain is used to boost speed
when the mistake is minor, while a small gain is utilized to
decrease overshoot when the error is significant. Formulating
the nonlinear function is as follows:

NLSEF =


e1 = v1 − z1
e2 = v2 − z2
u0 = ξ1e1 + ξ2e2
u = u0 − z3/b

(4)

where the controller’s parameters represented by ξ1 and ξ2.

3) EXTENDED STATE OBSERVER (ESO)
The ESO is used for monitoring system status and calculating
system disturbance [26], [27], [28], [29].

ESO =


e = z1 − y
z1 = z1 + h (z2 − β01e)
z2 = z2 + h (z3 − β02e+ b0u)
z3 = z3 + h (−β03e)

(5)

In Equation (5), the nonlinear parameters of the controller
are denoted as β01, β02, β03, and b0. The controller yields
the signal output, represented as y, while u signifies the input
signal of the control objective. Both y and u serve as inputs
for ESO, where z1, z2, and z3 are the resulting outputs of ESO.
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B. ESTIMATING AND TUNING ONLINE PARAMETERS BY
DRL
A DRL algorithm is used in the study’s suggested parameter
estimation technique to actively estimate and modify the
parameters in the compensator and ADRC controllers. An RL
agent has been built in the Simulink platform with the goal of
developing an adaption topology for actively predicting the
adjusting coefficients of the designated controllers. The RL
algorithm first engaged with the environment (MAP model)
to ascertain the appropriate tuning rules. While the drug infu-
sion is running, the controllers’ gain values are continually
changed using the training policy. This study uses CAPG as
its RL algorithm.

The deep Q-learning network (DQN) and the DPG concept
are combined in the CAPG method to provide an off-policy
algorithm that can operate in continuous action space. Its
goal is to provide the best possible action strategy so that
the agent may achieve its goals and maximize rewards. The
CAPG algorithm’s capacity to function across continuous
action spaces presents a significant challenge to more tradi-
tional RL techniques, such as Q-learning. The policy gradient
and the value function are both integrated into the hybrid
CAPG algorithm. The actor-critic framework serves as the
foundation for the CAPG architecture. The policy function
is referred to by the actor in the algorithm, while the value
Q-function is referred to by the critic. Based on the rewards
and the state that follows from the environment, the critic
network assesses the actor’s activities. The critic’s job is to
modify the actor network’s weights to have the actor’s future
actions provide the greatest possible cumulative benefit.

The primary aim of the CAPG algorithm is to train a
parameterized deterministic policy µθ (s) so that, across all
states accessible to the policy, the optimal policy maximizes
the expected reward [27], [28], [29]. The architecture of the
actor-critic network is illustrated in Fig. 4.

J (θ) = Es∼ρµ [R (s, µθ (s))] (6)

where the distribution of all states that the policy can reach is
denoted by ρµ. It has been demonstrated that the best course
of action is always the one that maximizes returns or genuine
Q-value. The initial presentation of this concept took place
within the framework of dynamic programming, wherein the
process of policy evaluation entails the determination of the
true Q-value associated with each state-action combination
prior to the selection of the action (s) possessing the highest
Q-value, which subsequently leads to the modification of said
policy.

a∗t = argmaxaQθ (st , a) (7)

The action(s) having the highest Q-value are denoted by a∗t .
The activity is anticipated to produce the highest possible
predicted benefit. The gradient of the goal function (a) and the
gradient of the Q-value are equivalent in continuous space.
A policy change µθ (s) in the direction of ∇θQµ(s, a) results
in an action with a greater Q-value and associated return if
there is an estimateQµ(s, a) of all the values of any action (a).

FIGURE 4. The present study’s actor-critical network topology.

A gradient in relation to the Q-value’s action (a) is made.

∇θJ (θ) = Es∼ρµ[∇θQµ (s, a) |a=µθ (s)] (8)

Using the chain rule,

∂Q(s,a)

∂θ
=

∂Q(s,a)

∂α
×

∂α

∂θ

∇θJ (θ) = Es∼ρµ

[
∇θµθ (s)×∇aQµ (s, a) |a=µθ (s)

]
(9)

As long as the function approximator Q∅(s, a) is compati-
ble, it is feasible to construct a fair estimate of the Q-value of
any action, compute its gradient, and minimize the quadratic
error with the true Q-values:

∇θJ (θ) = Es∼ρµ

[
∇θµθ (s)×∇aQ∅ (s, a) |a=µθ (s)

]
J (∅) = Es∼ρµ (10)

The CAPG was formulated with the intention of incor-
porating non-linear function approximators into the DPG
framework. By merging the concepts of DQN and DPG,
an algorithm was developed that is capable of operating
within continuous spaces and accomplishing the desired
objective. In the following, a memory for retaining previous
transitions and acquiring knowledge off-policy, known as an
experience reply memory and target networks to stabilize
learning, was added to the original DPG. CAPG uses a
soft update technique, i.e., after every update of the taught
network, the target networks coefficients for both networks
(actor/critic) are changed [30], [31]:

θQ
′

← τθQ + (1− τ )θQ
′

θµ′
← τθµ

+ (1− τ )θµ′ (11)

The hyperparameter, denoted as τ , varies within the inter-
val [0, 1). The acquisition of Q-values exhibits enhanced
stability due to the implementation of an update rule that
guarantees the target networks consistently trail behind the
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trained networks. The fundamental notion of policy gradient
for the actor is derived from the deep policy gradient (DPG)
approach. Target networks, alongside ordinary Q-learning,
are harnessed to facilitate the learning process of the critic.

J (θ)

= Es∼ρµ

[(
r
(
s, a, ś

)
+ γQtarget

(
ś, µ

θ́

(
ś
))
− Q∅(s, a)

)2]
(12)

Thus, based on all conceivable actions that might be taken
in the next state, Q

∅́

(
ś, µ

θ́

(
ś
))

is the value of the action that
is expected to deliver the highest total future reward. The
discount factor, γ , is found in Eq. (12). The addition of noise
enhances exploration.

at = µ
(
st | θµ

)
+N (13)

An Ornstein–Uhlenbeck process that produces temporally
correlated noise with zero mean is the source of the additive
noise. The target network may be used to calculate the target
value.

yRLi = ri + γQtarget
(
si+1, µtarget

(
si+1 | θµtarget

)
| θQtarget

)
(14)

The critic is updated as a consequence of minimizing the
following loss function. To update the actor, a gradient sam-
pling policy may also be used. The framework of the CAPG
strategy is indicated in Fig. 5.

L =
(
1
N

) ∑
i

(yRLi − Q(si, ai|θQ))
2

(15)

∇θµJ ≈
1
N

∑
i

∇aQ
(
s, a | θQ

)
|s=si,a=µ(si)∇θµµ(s|θµ)|si∇a

(16)

Since the primary NLSEF coefficients (ξ1 and ξ2) are
crucial for estimating the disturbance and plant condition,
and these coefficients have a significant impact on the effec-
tiveness of ADRC’s control measures. The parameters are
thought of as control objective parameters that need to be

FIGURE 5. The framework of CAPG.

appropriatelymodified. To do this, the NLSEF parameters are
adaptively constructed by:

ξ1 = ξ01 + dξ1 (17)

ξ2 = ξ02 + dξ2 (18)

where ξ01 and ξ02 are the primary values of the NLSEF
coefficients and dξ1 and dξ2 are the regulatory signals that are
created by the CAPG agent. This is accomplished by using
the CAPG with actor-critic architecture. A reward must be
established for the NNs of the CAPG tuner to guarantee that
the SNP drug infusion system meets the required require-
ments from the perspective of biomedical engineering. Since
managing the MAP is the dynamic system’s control aim, this
term is used in the reward signal specification, which is as
follows:

Rt = 1/ (YMAP)
2 (19)

For each instant reward of Rt , the Critic component evalu-
ates the effectiveness of the Actor’s control policy in response
to immediate rewards, while the Actor component introduces
corrective actions to compensate for tracking errors observed
by the system. With regard to the particular BG system, the
actor NN generates two control signals {dξ1, dξ2} to modify
the NLSEF parameters after receiving YMAP and

∫
YMAP · dt

as the system states, st =
{
YMAP,

(
dYMAP
dt

)}
. During the iter-

ation of the CAPG agent with the MAP system, the critic NN
receives st =

{
YMAP,

(
dYMAP
dt

)}
and the regulatory signals

{dξ1, dξ2}. A reward, Rt , is then issued. The MAP value will
be decreased by training the CAPG agent NNs’ parameter
weights in this arrangement of the actor and critic networks.
The structure of the tuning ADRC coefficients based on the
environment (MAP model) is represented in Fig. 6.

IV. NUMERICAL SIMULATION RESULTS
In this section, to evaluate the effectiveness of the proposed
control architecture in managing the medication infusion
SNP rate to regulate MAP, a dynamics model of MAP was
selected (Section II) and implemented in a simulated envi-
ronment as a controlled system. In the Simulink domain,
two experiments were conducted to assess the efficacy of the
suggested control framework, as delineated below:

1) The efficacy of the proposed closed-loop approach in a
predetermined state (Reference signal),

2) The examination of the strategy’s robustness in con-
fronting changes in parameters is conducted in two distinct
sections:
• Changes in the sensitivity parameter (Sp).
• Changes in the input signal.
Furthermore, to indicate the effectiveness of the designed

strategy compared to the conventional controllers and
meta-heuristic algorithms like ADRC-based PSO, ADRC,
SMC, and PI. For the fair comparative analysis, the initial
coefficients of the controllers are chosen the same. Addition-
ally, to facilitate the training of the neural networks, various
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FIGURE 6. The process of tuning controllers’ coefficients by CAPG.

numerical settings for hyperparameters were utilized with
the intention of determining the most optimal values. The
configurations of the controllers and hyperparameter of the
neural network are furnished in Table 2.

TABLE 2. The configurations of controllers and CAPG hyper parameters.

A. FIRST EXPERIMENT
In the first test, the reference signal input (beginning value=
150 mmHg, time delay = 60 s, and ending value =
100 mmHg) is used to assess the effectiveness of the
closed-loop method. Figure 7 shows the strategy’s results in
comparison to the traditional approaches for controllingMAP
rate, drug infusion SNP rate, and error (error= YRef - YMAP).
The suggested closed-loop system (ADRC-based CAPG) has
better output than other conventional controllers and opti-
mization algorithms, as can be shown in Fig. 7.
Furthermore, it is evident that the suggested approach,

which has no overshot (overshot = 0), reaches the

FIGURE 7. Outcomes of the controllers, a) MAP, b) drug infusion SNP rate,
c) Error.

MAP’s acceptable zone after around 268 seconds (settling
time = 268). It is evident from Fig. 7(b) that, over the course
of 700 seconds, the medication infusion SNP rate is steadier
than with the other approaches. It should be noted that while
the other approaches are able to regulate the MAP rate with
longer settling times, the SNP rate is not stablewhile theMAP
is being controlled. Lastly, Fig. 7(c) shows the controllers’
mistakes during the MAP regulation. The suggested method,
as shown in Fig. 7(c), has a smaller error in the early stages,
reaches zero error faster, and is stable during the controlled
period.

B. SECOND EXPERIMENT
Because every patient is unique, the MAP’s dynamic system
may vary, and some parameters like sensitivity and reference
signal are set in accordance with that fact. Furthermore, as the
recommended approach is made to function remotely, the
robustness test is required to demonstrate how well the sys-
tem handles fluctuations in parameters. To achieve this, the
sensitivity parameter (Sp) is changed in six parts: 0.2, 0.21,
0.22, 0.23, 0.24, 0.25, and Fig. 8 shows the corresponding
system results.

Figure 8 illustrates the reciprocal relationship between the
sensitivity gain and MAP. This indicates that the MAP’s
settling time increases as sensitivity decreases. Also, the ref-
erence input signal is modified in five parts: 130, 140, 160,
170, 180 in the context of robustness. The effectiveness of the
method in the face of fluctuating reference input shows that
the recommended structure tends to the desired rate instantly
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FIGURE 8. The results of the ADRC-based CAPG in dealing with changing
of Sp, a) MAP, b) Drug infusion rate, c) Error.

and without variation. The system’s outputs demonstrate how
stable and resilient the system is to changes in its many
parameters. Figure 9 shows the result of the technique against
variations in the reference input signal. After proving the effi-
ciency of the system in dealing with coefficients variations,
now, the performance of the purposed architecture based
on

∫
∞

0 t ·MAP2dt compared to the other methodologies is
presented in Fig. 10 and Table 3.

V. DISCUSSION
Amidst the ongoing worldwide health crisis, there exists a
heightened necessity for cutting-edge healthcare technolo-
gies capable of remotely monitoring and managing patients’
physiological parameters. The precise modulation of MAP
in a closed-loop fashion holds particular significance for
individuals in critical condition or those recuperating from
surgical procedures. Within this investigation, a responsive
closed-loop mechanism was suggested to oversee the reg-
ulation of a patient’s MAP by means of the controlled
dispensation of SNP, thus attaining the specified MAP levels
across varying circumstances.

An ADRC, which functions as an intelligent mecha-
nism to achieve the target MAP value, is included in the
closed-loop design of the proposed system. Additionally,
CAPG is employed in the optimization of the controller’s
coefficients. The foundation of this methodology is the use
of a DRL technique, which involves continuously adjusting

FIGURE 9. The results of ADRC-based CAPG in dealing with changing of
reference, a) Input signals, b) MAP, c) Drug infusion rate, d) Error.

a policy gradient to improve system performance. During
training, gradient descent is used to update the actor and critic
networks’ weight parameters based on the reward signals
connected to theMAP error. The key component is the reward
function, linked to the MAP fault. The aim is minimizing the
MAP error, and the reward signal guides the optimization of
the controller parameters to achieve the desired MAP levels.

To mitigate the limitation of overreliance on program-
ming frameworks and mathematical models for verifying
the accuracy and robustness of adaptive techniques, it is
crucial to conduct thorough experimental validation initially,
followed by implementation in real clinical environments.
Furthermore, performing rigorous assessment and sensitiv-
ity analysis can assist in identifying potential weaknesses
and optimizing the operational performance of the system
across various scenarios. Given the theoretical nature of
the present investigation, robustness analysis serves as a
validation method to demonstrate how the system operates
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TABLE 3. The performance index results of the methodologies against parameters variations.

FIGURE 10. Performance Index of the various methods against
changing Sp, a) MAP, b) Drug Infusion rate, c) Error.

in enhancing output and self-updating functionality across
diverse conditions.

The findings of the numerical simulations indicate that the
adaptive closed-loop system exhibits superior performance

TABLE 4. Comparison results of the previous research.

compared to traditional models in handling dynamic varia-
tions in working environments, fluctuations in key values,
and uncertainties, while ensuring the maintenance of the
desired MAP and rate of drug administration. A comparison
is presented in Table 4, showing the key differences between
the proposed system and previous studies in the domain of
closed-loop MAP regulation.

VI. CONCLUSION
In this scholarly article, the functioning of an active distur-
bance rejection control (ADRC) is thoroughly investigated
to effectively regulate the mean arterial pressure (MAP) by
employing sodium nitroprusside (SNP) drug infusion in a
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closed-loop fashion. The distinguishing characteristic of this
method lies in its utilization of a pre-compensator, known
as the extended state observer (ESO), to counterbalance the
impact of external uncertainties and disturbances. By care-
fully providing the prescribed dosage of the SNP medication,
the suggested framework can ensure that the MAP stays
at its predetermined rate of 100 mmHg throughout surgi-
cal operations, post-surgery recovery, or anesthetic delivery.
The control parameters necessary for designing an efficient
control system are derived using the highly effective and
relatively novel method known as continuous action policy
gradient (CAPG). Two experiments are used to assess how
well the suggested technique performs: i) utilizing a refer-
ence input signal, and ii) conducting robustness analysis by
varying key parameters such as Sp and the reference input
signal. The merits of the presented closed-loop system can
be listed as follows: (1) Unlike traditional controllers like
PID, which require the system model to be designed, the
ADRC controller does not. Additionally, ADRC employs
an ESO to manage external uncertainties and disruptions;
(2) Unlike heuristic-based controllers like GA and PSO,
which are only optimal for a specific operative state, CAPG-
developed controllers are adaptive throughout a broad variety
of closed-loop procedures; (3) Since they need q-values
for every possible state and action pair, typical RL algo-
rithms are ill-suited to handle systems with uncertainties or
continuous state space. However, continuous problems may
be efficiently addressed by merging RL with deep neural
networks (DNN). Finally, the efficacy of the closed-loop
structure is compared with that of traditional controllers and
meta-heuristic approaches, including ADRC-based particle
swarm optimization (PSO), ADRC, sliding mode control
(SMC), and proportional-integral (PI) controller. The pro-
posed ADRC-based CAPG method is found to surpass its
conventional counterparts. Consequently, this research offers
an appropriate alternative for medical professionals to save
time and manpower, while simultaneously providing timely
and relevant assistance to critically ill patients. It is impor-
tant to consider the testing platform’s constraints for flexible
closed-loop techniques. The selection of computational mod-
els for mean arterial BP has been conducted with great care
to ensure alignment with the characteristics of measured
physiological data. It is crucial to recognize that these models
might not accurately represent the dynamics of a real patient.

Recognizing the limitations of these models is crucial.
These models enable a more realistic portrayal of the varia-
tions in amplitude and drug rate concentration over time that
are seen in actual patients by incorporating a dynamic input
signal into the closed-loop mechanism. These models are
useful for evaluating the accuracy and robustness of adaptive
algorithms, but maybe they are not very useful for proving
how beneficial therapeutic interventions are. However, the
initial stage of verifying and certifying the precision and
robustness of adaptivemethods heavily relies on the program-
ming framework and related mathematical models. It will
take more work to build on this foundational study. More

advanced models may eventually be able to include real
patient data (physiological and sensitivity data) and make
more accurate predictions about how the patient will react
to treatment. The incorporation of a significant amount of
virtual patient models can accelerate the procedure of authen-
ticating and ascertaining adaptable closed-loop structures and
treatments.
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