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ABSTRACT Bipartite graphs can describe various systems in real world. In this study, we define a new
problem class for optimizing the cost or profit associated with state changes in systems represented by
bipartite graphs and propose a heuristic approach based on a fast greedy algorithm. We present the problem
setting of the network circuit and device removal problem as a real-world problem and demonstrate the
superiority of the proposed method for large-scale applications. This study contributes to the understanding
and solving of various optimization problems in industrial fields, providing a comprehensive approach to
cost (profit) optimization problems associated with state changes in systems represented by bipartite graphs.

INDEX TERMS Bipartite graph, combinatorial problem, scheduling optimization, sequence problem.

I. INTRODUCTION
In graph theory, a bipartite graph is a type of graph in which
nodes can be divided into two nonadjacent groups. Each
node in the graph is connected exclusively to nodes from
the other group. Bipartite graphs are useful for representing
system relationships in various real-world optimization
problems. For instance, in facility location problems, the
relationships between facility locations, such as hospitals,
schools, and parks, and demand points, such as residential
areas, commercial districts, and transportation centers, can
be expressed using a bipartite graph [1], [2]. Specifically,
facility-location candidates are defined as nodes in one group,
while demand points are nodes in the other group. When
the demand of a demand point is satisfied by placing a
facility at a certain candidate location, a link is established
between the candidate location and the demand point node
[3], [4], [5]. Therefore, a bipartite graph represents the
relationship between the placement candidate positions and
demand points.

Furthermore, the relationship between the circuits and
devices in network systems can also be represented using a
bipartite graph. A bipartite graph can be created considering
circuits and devices as nodes and connecting nodes when a
circuit uses a device. Consequently, the problem of removing
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outdated network circuits and devices during the transition
to a new network can be expressed as a system optimization
problem within the bipartite graph. The network circuit and
device removal problem is an optimization problem in which
the circuits are sequentially removed to minimize running
costs of during all circuits and devices have been eliminated.
This problem can be interpreted as an optimization problem
involving the cost (or profit) associated with the state change
from the operating state to the removed state in a system
with a bipartite graph representing the relationship between
circuits and devices. This problem is also a part of the optical
network modernization issue [6].

Other cost (profit) optimization problems associated with
state change in systems represented by bipartite graphs
include the network circuit and device removal problem.
For example, there is a problem of sequentially arranging
facilities at the facility placement positions obtained as a
solution to the facility-location problem, which has been
described earlier [7]. The time at which the demand at each
demand point begins to meet varies depending on the facility
arrangement order. Although the time from the placement of
the first facility until all facilities are located is consistent,
the total amount of the product of satisfied demand and
time varies depending on the order of facility placement.
As the total amount of the product satisfying demand and
time correlates with profit, the problem of determining
the arrangement order of facilities is also an example of
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optimizing cost (profit) associated with the state change in
systems represented by bipartite graphs.

The suspension of production equipment owing to factory
shutdown and periodic maintenance and the operation
of production equipment upon business resumption also
constitute optimization problems [8], [9]. This is because
a bipartite graph can represent the relationship between
products and manufacturing equipment and the use of
manufacturing equipment in the production of products.
When a group of manufacturing equipment shuts down, and
if the necessary equipment for manufacturing the product is
halted, the product cannot be manufactured. Consequently,
when manufacturing equipment is stopped one by one, the
time when each product cannot be manufactured varies
depending on the order of stopping, and the total amount
of the product’s profit and time differs. Additionally, when
the manufacturing equipment is operated one by one upon
resumption of operations, the time when the respective
products can be manufactured differs depending on the
operation order, and the total amount of the product’s profit
and time also varies. Therefore, these optimization problems
can be considered as cost (profit) optimization problems
associated with state changes in systems represented by
bipartite graphs. Numerous optimization problems exist in
industrial fields [10].

In this study, we propose a novel problem class called
Bipartite Graph Scheduling (BGS), which is an optimization
problem concerning cost (profit) resulting from state changes
in systems represented by a bipartite graph. In Section II,
we present the definition of BGS and propose heuristics based
on a greedy algorithm to effectively solve BGS. Furthermore,
Section III describes the specific problem settings that can
be addressed using the proposed method, and Section IV
presents the results obtained. Finally, the conclusion is
provided in Section V.

II. METHOD
A. DEFINITION OF BGS
This section defines the system described by BGS. The
system includes two kinds of objects; one whose order of
state change can be directly controlled, and another whose
state change indirectly depends on the state change of other
objects. Each object in the system corresponds to the node of
the graph, and the dependency relation of the state change
between the objects corresponds to an edge in the graph.
Consequently, the graph is a bipartite graph as edges exist
only between objects that can be directly controlled and
objects that change state indirectly. Hereafter, the set of
objects that can be directly controlled is referred to as
A-group, and the set of objects whose state changes only
indirectly is referred as B-group. Each object included in the
A-group is called an A object, and each object included in the
B-group is called a B object. In addition, the state change of
each object is referred to as ‘‘firing,’’ analogous to transitions.
In this system, all objects fire only once during the period

from the initial state to the final state. In other words, in the
initial state, all objects have not fired, and in the final state, all
objects have fired. This period is called a state change period,
and since only one A object fires per unit time, the length of
the state change period is determined by multiplying the unit
time by the total number of A objects.

In this system, each object has a cost or profit per unit
time, which changes only by firing the object itself. The cost
or profit of each unit time of each object is aggregated to
define the total cost or profit of the system for each unit time
during the state change period. B object always depends on
one or more A objects, and this dependency can be either an
AND or OR relationship. In the case of an AND relationship,
B objects exhibit the property that they fire only when all
A objects with dependencies fire. Furthermore, in the case of
OR relationship, the B object fires when any of the dependent
A objects fires.

In summary, the following is the definition of the system
described by BGS:
• The system consists of two kinds of objects, A and B
objects, and their firing dependencies.

• If an object is represented by a graph node and a
dependency is represented by a graph edge, the result
is a bipartite graph.

• An object fires only once during a state change period.
• An object changes its cost or benefit per unit time due to
firing.

• Only one of the A objects fires per unit time.
• The cost or profit of a system is the sum of the costs or
profits of each object at each unit time.

• Dependencies are either AND or OR relationships.
BGS is defined as an optimization problem class that

minimizes the objective function in the case of cost and
maximizes the objective function in the case of profit. In a
BGS system, the firing of a B object depends on the firing of
an A object. Therefore, when the firing order of the A object
is determined, the firing time of the B object is uniquely
determined. Consequently, the cost or profit of the system is
uniquely determined. Therefore, the control variable of the
BGS is the firing order of the A object, which we decide to
call the schedule. Considering each object and its firing in
the BGS as a job and job execution, the BGS can be seen as a
variant of the single-machine scheduling problem. Appendix
describes the relationship with the single-machine scheduling
problem.

The system handled by the BGS and its state change
are described in Fig. 1 referring to the network circuit and
device removal problem. In the network circuit and device
removal problem, a circuit corresponds to an A object and
a device corresponds to a B object. First, all circuits and
devices are operational, and at the end of the state change
period, all circuits and devices are turned off. A circuit or
device outage corresponds to an object firing. Fig. 1(a) shows
a bipartite graph representing the system of the network
circuit and device removal problem. On the left side of
Fig. 1(a), there are A objects, constituting the A-group,
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FIGURE 1. Schematic diagram of BGS.

that can directly control firing, and on the right side, there are
B objects (B-group) whose fire is indirectly determined. The
edges between objects A and B represent dependencies. All
dependencies in Fig. 1 are AND relationships. Each object
fires only once during a state change period, changing its cost
per unit time.

In the system shown in Fig. 1(a), the B object incurs a cost
of 1 per unit time before firing and 0 after firing. Conversely,
the A object has a cost of 0 per unit time both before and after
firing. Fig. 1(b) is a graph showing the cost per unit timewhen
the A object is fired in the order of 1, 2, 3, 4, and 5. The state
change period begins at time t = 0 and the cost per unit time
of the system at time t is s(t). If t = 0, then s(0) = 4 because
all B objects remain unfired. Since all dependencies are AND
relationships, the first time a B object fires is when A object
3 has been fired, occurring at t = 3, the B object 1 fires.

Therefore, at t < 3, s(t) = 4, and s(3) = 3. Next, the A object
4 is fired at t = 4, the B object 2 and 3 are simultaneously
fired, resulting in s(4) = 1. At t = 5, all A and B objects
have been fired, and s(5) = 0. The cost of the system can be
obtained by integrating s(t) shown in Fig. 1(b) over the state
change period. When the schedule is 1, 2, 3, 4, and 5, the
cost becomes 16. The goal of the BGS is to find the schedule
that minimizes the cost of the system. The optimal schedule
for the system in Fig. 1(a) is 4, 2, 5, 1, and 3, as shown in
Fig. 1(c), and the minimum cost is 11.
Here, we consider the relationship between the optimal

schedules of the two systems in which only the costs of
each object before and after firing differ by a certain amount.
In system #1, the cost before firing A object ai is C(ai) and
the cost after firing is 0; the cost before firing B object bj is
D(bj), and the cost after firing is 0. However, in system #2
the cost before firing A object ai is C(ai) + U (ai), and the
cost after firing is U (ai); the cost before firing B object bj is
D(bj)+V (bj), and the cost after firing B object bj isV (bj). The
cost of system #2 is continuously required as an offset value
even after firing. Let x be the schedule. Since both systems
are the same except for the cost before and after the firing, the
firing time of the corresponding object is the same for both
systems if x is the same. The state change period begins at
time tt = 0. If the number of A objects in the system is |A|,
the end of the state change period is t = |A|. Let tai (x) be the
firing time of A object ai at x. The firing time of the B object
bj is defined as tbj (x). If the cost of system #1 is S1(x) and
the cost of system #2 is S2(x), S1(x) and S2(x) are expressed
by the following equations respectively,

S1(x) =
∑
i

tai (x)C(ai)+
∑
j

tbj (x)D(bj), (1)

S2(x) =
∑
i

tai (x)C(ai)+ |A|
∑
i

U (ai)

+

∑
j

tbj (x)D(bj)+ |A|
∑
j

V (bj). (2)

Therefore, the relationship between the two systems is given
by:

S2(x) = S1(x)+ |A|
∑
i

U (ai)+ |A|
∑
j

V (bj), (3)

The second and third terms on the right side of (3) are
constants independent of x; hence, S2(x) is minimized at
x where S1(x) is minimized, and S1(x) is minimized at x
where S2(x) is minimized. Therefore, determining x that
minimizes the cost of system #1 also results in finding the
x that minimizes the cost of system #2. In other words, in the
optimization of systems like system #2, where the cost after
firing an object is not necessarily zero, we can transform
the system into one similar to system #1, where the cost
after firing an object is zero, and thereafter find the optimal
schedule.

Next, consider the optimal BGS schedule that maximizes
the system profit. Suppose that there is a system #3, which is
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represented by the same bipartite graph as system #1.
In system #3, the profit before firing A object ai is −C(ai)−
U (ai), the profit after firing is U (ai), the profit before firing
the B object bj is −D(bj) − V (bj), and the profit after firing
is −V (bj). If S3(x) is the profit of system #3 in x, then the
following equation is obtained,

S3(x) = −
∑
i

tai (x)C(ai)− |A|
∑
i

U (ai)

−

∑
j

tbj (x)D(bj)− |A|
∑
j

V (bj).

(4)

Rewriting the above equation using (1),

S3(x) = −S1(x)− |A|
∑
i

U (ai)− |A|
∑
j

V (bj), (5)

As the second and third terms of the right side of (5) are
constants and independent of x, S3(x) becomes maximum
at x where S1(x) becomes minimum, and S1(x) becomes
minimum at x where S3(x) becomes maximum. Therefore,
if x is determined to minimize the cost of the system #1, x is
determined to maximize the profit of the system #3. Specif-
ically, while the optimization of systems like system #3,
focuses on the profit of objects rather than their cost, we can
transform the system into one like system #1, which focuses
on the cost of objects, and then find the optimal schedule.

From the relationship among the three systems represented
by (3) and (5), the following description is limited to a
system such as system #1 in which the cost after firing of
an object is zero and the cost is minimized, unless otherwise
stated. Table 1 summarizes the variables used in the following
sections. In Table 1, GA(OA) = {a|a ∈ OA} and GB(OB) =
{b|b ∈ OB}.

TABLE 1. Variable symbols and explanation.

If the dependency is an AND relationship, the firing time
is given by

t(b) = max
a∈Ab

t(a). (6)

Here, t(b) represents the firing time of the object b. Therefore,
in the case of an AND relationship, the firing time of the
B object coincides with the maximum value of the firing
time of the A object in the dependency relationship. However,
if the dependency is an OR relationship, the firing time can
be expressed by the following equation,

t(b) = min
a∈Ab

t(a). (7)

In the OR relationship, the firing time of the B object matches
the minimum firing time of the dependent A object.

B. HEURISTIC FOR BGS
The solution method for the BGS developed in this study
is the heuristics based on the greedy algorithm. The
development method uses different algorithms owing to the
dependencies between objects in the system. While BGS
covers systems with mixed AND and OR dependencies
between objects when viewed as a whole system, the
development method only deals with AND relationships or
OR relationships. Section II-B1 describes algorithms for
AND relationships and Section II-B2 describes algorithms
for OR relationships.

1) ALGORITHM OF AND RELATIONSHIP
The basic idea behind the development method is to sequen-
tially select the objects of B-group that have a significant
decrease in the system cost per unit time when fired and
can be fired by a small number of firings of A-group. The
algorithm that concretely implements this idea is shown in
Algorithm 1. The theoretical time complexity of Algorithm 1
is O(|B|2|A|).
In step 14 of Algorithm 1, the function calcIndexOrderA,

calculates Z and addOA for the B-group object b that has not
yet fired. Here, addOA is a permutation of objects in A-group
that need to be fired to fire b. Z is an index that takes a
large value for objects in B-group that can be fired with a
significant decrease in the cost of the system per unit time and
a small number of firings from A-group. Algorithm 2 shows
the method for calculating Z . In this function, the following
equation is specifically calculated:

T (b) =
∣∣Ab ∩ GA∣∣ , (8)

K (b) = D(b)+
∑

a∈(Ab∩GA)

C(a), (9)

Z (b) =

BigZ , if T (b) = 0,
K (b)
T (b)

, otherwise.
(10)

Here, the BigZ is set to a value sufficiently larger than any
K (b)/T (b) when T (b) ̸= 0. Moreover, GA is a set of fired
A-group objects. Ḡ is a complement of the set G. || indicates
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Algorithm 1 BGS Heuristics for AND Relations
Input: SA, SB, E
Output: OA
1: Init empty dict dictOA (key GB, value OA)
2: Init empty dict dictQ (key GB, value Q)
3: Init empty stacks S1, S2
4: OB ⇐ ∅, dictOA[GB(OB)]⇐ ∅, dictQ[GB(OB)]⇐ 0.
5: S1.push(OB)
6: for i = 1 to |B| do
7: Set maxZ as small value.
8: while S1 ̸= ∅ do
9: OB ⇐ S1.pop()
10: for each b in B do
11: if b in OB then

continue
12: end if
13: // Calculate Z and order of A objects
14: Z , addOA ⇐ calcIndexOrderA(OB, b)
15: if Z < maxZ then

continue
16: end if
17: if Z > maxZ then
18: S2.clear()
19: maxZ ⇐ Z
20: end if
21: curOB ⇐ OB
22: // Calculate Q from OB, b, addOA
23: Q⇐ calcCostOfAND(OB, b, addOA)
24: curOB.append(b)
25: curGB ⇐ GB(curOB)
26: if curGB in dictQ then
27: if Q ≥ dictQ[curGB] then

continue
28: end if
29: // Remove elements from S2 based on curOB
30: removeOrderBsFromStack(S2, curOB)
31: end if
32: dictQ[curGB]⇐ Q
33: // Concatenate addOA to dictOA[GB(OB)]
34: curOA ⇐ dictOA[GB(OB)], addOA
35: dictOA[curGB]⇐ curOA
36: S2.push(curOB)
37: end for
38: end while
39: if S2.size() > STACK_LIMIT then
40: reduceStackRandomly(S2)
41: end if
42: // Swap stacks
43: S1 ⇐ S2; S2.clear()
44: end for
45: OB ⇐ S1.pop()
46: OA ⇐ dictOA[GB(OB)]
47: return OA

Algorithm 2 calcIndexOrderA:
Require: OB, b
Ensure: Index Z , Order of A objects to fire in addition

addOA
1: Init addOA ⇐ ∅, K ← D(b)
2: Init set of A objects FA ⇐ ∅
3: Init set of A object costs VA ⇐ ∅
4: for each a in Ab do
5: if a in dictOA[GB(OB)] then

continue
6: end if
7: FA.append(a)
8: FA.append(C(a))
9: K ⇐ K + C(a)

10: end for
11: T ⇐ len(FA)
12: if T = 0 then
13: Z ⇐ BigZ
14: return Z , addOA
15: end if
16: Z ⇐ K/T
17: // Create list to store pairs of FA and VA
18: pairs = []
19: for i = 1 to T do
20: pairs.append((FA[i],VA[i]))
21: end for
22: Sort pairs in descending order based on VA[i]
23: // Update addOA with sorted pairs
24: for i = 1 to T do
25: addOA.append(pairs[i− 1][0])
26: end for
27: return Z , addOA

the number of elements in the set. Namely, T (b) indicates the
number of unfired objects among the objects of the A-group
on which the object b depends on. K (b) represents a decrease
in the cost of the system per unit time when object b is fired.

In step 34 of Algorithm 1, the object with the maximum
Z value from the B-group is added to the end of the firing
order. In step 36, it is stored in the stack S2. When there
are multiple firing orders with maximum Z values, all of
them are stored in S2. This is essential for selecting the firing
order based on the indicator Z in the next firing. However,
if the number of firing orders in S2 exceeds a predetermined
number, the function reduceStackRandomly in step 40 of
Algorithm 1 is used to randomly remove the stored firing
orders in S2, thereby reducing it to the predetermined number.
In the function calcCostOfAND in step 23 of Algorithm 1,
the cost of firing b is calculated. The algorithm for this
cost calculation is shown in Algorithm 3. In a function
removeOrderBsFromStack in step 30 of Algorithm 1, if there
is a firing order in S2 with the same elements as the firing
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Algorithm 3 calcCostOfAND
Require: OB, b, Order of A objects to fire in addition addOA
Ensure: Q
1: Init Q⇐ dictQ[GB(OB)]
2: T ⇐ len(addOA)
3: for i = 1 to T do
4: a⇐ addOA[i]
5: Q⇐ Q+ i× C(a)
6: end for
7: for each b in B do
8: if b in OB then

continue
9: end if

10: Q⇐ Q+ T × D(b)
11: end for
12: for each a in A do
13: if a in dictOA[GB(OB)] then

continue
14: end if
15: if a in addOA then

continue
16: end if
17: Q⇐ Q+ T × C(a)
18: end for
19: return Q

order curOB with themaximum Z value, and its cost is greater
than the costQ of curOB, that firing order is removed from S2.
All objects are fired when the block from step 6 to step 44 of
Algorithm 1 is completed. As the firing order of all the objects
in the B-group is stored in stack S1, the firing order of the
A-group corresponding to it is taken out in step 46 resulting
in the output of the algorithm.

2) ALGORITHM OF OR RELATIONSHIP
The basic idea for handling dependency of OR relationship
is to sequentially select the objects in the A-group that, when
fired, will result in the largest decrease in the system cost per
unit time. The algorithm that implements this idea concretely
is shown in Algorithm 4. The theoretical time complexity of
Algorithm 4 is O(|A|2|B|).
In step 14 of Algorithm 4, the function calcIndexAddB

computes Z and addB for the unfired object in A-group.
Z is an indicator that takes a larger value when the decrease
in the cost of the system per unit time upon firing is greater.
Algorithm 5 shows the method for calculating Z . In this
function, the following equation is specifically calculated:

Z (a) = C(a)+
∑

b∈(Ba∩GB)

D(b). (11)

Here,GB is a set of objects in B-group that have already been
fired. Also, the addB is a set of objects in B-group that will
be fired when object a is fired.

In step 24 of Algorithm 4, the object with the maximum
Z value from A-group is added to the end of the schedule,

Algorithm 4 BGS Heuristics for OR Relations
Require: SA, SB, E
Ensure: OA
1: Init empty dict dictOB (key GA, value OB)
2: Init empty dict dictQ (key GA, value Q)
3: Init empty stacks S1, S2
4: OA ⇐ ∅, dictOB[GA(OA)]⇐ ∅, dictQ[GA(OA)]⇐ 0
5: S1.push(OA)
6: for i = 1 to |A| do
7: Set maxZ as small value
8: while S1 ̸= ∅ do
9: OA ⇐ S1.pop()

10: // Calculate Q from OA
11: Q⇐ calcCostOfOR(OA)
12: for each a in A do
13: if a in OA then

continue.
14: end if
15: // Calculate Z and set of B objects
16: Z , addB⇐ calcIndexAddB(OA, a)
17: if Z < maxZ then

continue
18: end if
19: if Z > maxZ then
20: S2.clear()
21: maxZ ⇐ Z
22: end if
23: curOA ⇐ OA
24: curOA.append(a)
25: curGA ⇐ GA(curOA)
26: if curGA in dictQ then
27: if Q ≥ dictQ[curGA] then

continue
28: end if
29: // Remove elements from S2 based on curOA
30: removeOrderAsFromStack(S2, curOA)
31: end if
32: dictQ[curGA]⇐ Q
33: // Concatenate addB to dictOB[GA(OA)]
34: curOB ⇐ dictOB[GA(OA)], addB
35: dictOB[curGA]⇐ curOB
36: S2.push(curOA)
37: end for
38: end while
39: if S2.size() > STACK_LIMIT then
40: reduceStackRandomly(S2)
41: end if
42: // Swap stacks
43: S1 ⇐ S2; S2.clear()
44: end for
45: OA ⇐ S1.pop()
46: return OA

and in step 36, it is stored in stack S2. If there are multiple
objects with the maximum Z value, all of them are stored
in S2. Similar to the case with the AND relationship,
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this ensures that the schedule is selected based on indicator Z
in the next firing. If the number of schedules in S2 is too large,
it will take a long time to process. Therefore, if the number
of firing orders in S2 exceeds a predetermined number, the
function reduceStackRandomly in Step 40 of Algorithm 4
randomly removes the stored firing orders from S2, reducing
it to the predetermined number. This is similar to the case of
the AND relationship. In step 11 of Algorithm 4, the function
calcCostOfOR is responsible for calculating the cost of firing
the next object a. As the cost of firing of the next object a
and the accompanying firing of object b are included, the cost
calculation looks like Algorithm 6. When the for block from
step 6 to step 44 of Algorithm 4 is completed, all objects
are fired. The firing order of all the objects in the A-group
is stored in stack S1 and the schedule is retrieved in step 45,
which is considered as the output of the algorithm.

Algorithm 5 calcIndexAddB
Require: OA, a
Ensure: Index Z , Set of B objects to fire in addition addB
1: Init addB⇐ ∅, Z ← C(a)
2: for each b in Ba do
3: if b in dictOB[GA(OA)] then

continue
4: end if
5: addB.append(b)
6: Z ⇐ Z + D(b)
7: end for
8: return Z , addB

Algorithm 6 calcCostOfOR
Require: OA
Ensure: Q
1: Q⇐ dictQ[GA(OA)]
2: for each b in B do
3: if b in dictOB[GA(OA)] then

continue
4: end if
5: Q⇐ Q+ D(b)
6: end for
7: for each a in A do
8: if a in OA then

continue
9: end if

10: Q⇐ Q+ C(a)
11: end for
12: return Q

III. PROBLEM SETTING
In this study, we use the network circuit and device removal
problem as a specific instance of the BGS problem class,
and compare the approaches from previous research with the
proposed heuristics. The network circuit and device removal

problem is described in [6]. This problem minimizes the
running cost of devices when removing aged devices in a
large-scale network. Specifically, to remove aged devices,
all circuits using that device need to be migrated to a new
network. During the circuit migration process, there is a
running cost for maintaining the device. Once the circuit
migration is completed, the device can be removed, which
reduces the running cost to zero. The objective is to control
the schedule of circuit migration tominimize the total running
cost until all devices are removed.

We used the same instances of the network line removal
problem as in [6]. The heuristics described in Section II-A are
applied to these instances. In the network circuit and device
removal problem, the circuit is an object of the A-group and
the device is an object of the B-group, and the dependency
relationships are AND relationships. Additionally, the costs
before firing of all objects in the A-group are set to 0, while
the costs before firing of each object in the B-group are set
to 1. Since the costs before firing of each object in BGS can be
different, the network circuit and device removal problem can
be considered as a BGS with conditions on the costs before
firing.

Sugimura et al. [6] previously developed and evaluated
an integer programing and higher order binary optimization
formulation, both solvable by Gurobi, one of the commercial
MIP solvers. They also developed a binary quadratic problem
formulation using a digital annealer (DA) [11]. As a result,
they achieved up to 35% improvement in solution quality
using the DA. Additionally, they achieved more than 20 times
faster execution speed. DA ran for 1800 s. The evaluation of
the execution speed is based on the time it takes for Gurobi’s
solution method and DA to obtain equivalent solutions.

Furthermore, owing to the formulation difference
between [6] and our study, the following relationship arises
between the costs of the two methods, even for the same
circuit migration order:

S(OA) = S ′(OA)+ |B|. (12)

Here, OA is an arbitrary permutation of objects in the
A-group, which is called a schedule in BGS. S ′(OA) is the cost
in [6] and S(OA) is the cost in this study. |B| is the number of
objects in the A-group, i.e., the number of devices. For the
evaluation in Section IV, we first converted the costs of [6] to
the costs used in our study using the (12), and then compared
the converted costs.

IV. RESULTS AND DISCUSSION
Table 2 shows the problem instances used in our study along
with their optimization results. Three data were obtained from
SNDLib datasets [12] and the number of circuits limited to
those shown in Table 2 were used as problem instances. The
present method (PM) in our study was implemented using an
Intel Xeon E-2276GCPU@3.80GHzwith six physical cores.
The execution time for all problem instances in Table 2 is
less than 3 s, which can be considered very fast compared
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TABLE 2. Results of network circuit and device removal problem by
several methods.

to the execution time of [6]. Table 2 includes the cost of
DA and PM.

The ‘‘Edge’’ column in Table 2 shows the number of
dependency relationships, and the ‘‘DA’’ column shows the
cost of the DA in [6]. Sugimura et al. [6] did not handle large
problem instances with a high number of circuits for India
and Pióro datasets, so these instances are indicated with a
hyphen in Table 2. The ‘‘PM’’ column represents the cost of
the method proposed in this paper. In addition to the results
of [6], we also show the optimization results for the same
problem instances using LocalSolver (LS) [13]with a runtime
of 30 s each in the ‘‘LS’’ column. LS is a mathematical
optimization solver that excels in solving a wide range of
scheduling problems, including single-machine scheduling
problems. As the network circuit and device removal problem
considered here represent the removal order of A objects as a
permutation, it can be solved using LS. The ‘‘LB’’ column
represents a lower bound value obtained through Integer
Programming (IP) as formulated by Sugimura et al. [6] and
solved using Gurobi. This lower bound guarantees that the
true optimal solution will be greater than or equal to the LB
value. However, for large-scale problems, the IP formulation
becomes computationally intractable, and the lower bound
remains unknown. For problems where lower bounds are
available, the gap between the LB value and the PM is
observed to be at most 30%. This suggests that the PM
performs reasonably well, even in the absence of a lower
bound for comparison. To compare the effectiveness of each
method, the cost ratio of DA and LS to the cost of PM is
shown in Fig. 2, with the cost of our method set to 1, for the
14 problem instances in Table 2. The horizontal axis in Fig. 2
represents the number of dependency relationships, serving
as an indicator of problem size. Among the 12 problem
instances, there were five instances where the cost of PMwas
lower than that of the DA and two instances with the same
cost. In comparison with LS, there were four instances where
the cost of our method was lower and three instances with the
same cost among the 14 problem instances.

FIGURE 2. Plots of relative costs of DA and LS compared to proposed
method.

The results in Fig. 2 show that the effectiveness of the
proposed method tends to increase as the problem size
increases. Compared to DA, the effectiveness of the proposed
method becomes more significant when the number of edges
is 800 or more; compared to LS, it becomes more significant
when the number of edges is 1400 or more. As the problem
size increases, the problem-solving performance decreases,
so we think that it might become more challenging to
find good solutions with methods like DA and LS without
extending the solution time. However, as the proposed
method is based on a greedy algorithm, it can obtain good
solutions in a shorter time than other methods, even for larger
problem size. However, there is no guarantee that this solution
is exact. Conversely, for smaller problem sizes, methods such
as DA and LS, which conduct more thorough searches, are
expected to have an advantage. Based on these results, the
proposed method can be considered as a method that reaches
good solutions in a shorter time compared to other methods.
However, it is important to note that a system for solving
real-world BGS problems requires selecting the appropriate
method for solving problems depending on the problem size.

V. SUMMARY
We proposed a novel problem class called BGS for con-
trolling the scheduling of systems represented by bipartite
graphs with the goal of minimizing costs and maximizing
profits in combinatorial optimization problems. We also
proposed heuristics for BGS using a greedy algorithm. Using
the network circuit and device removal problem, which is
included in the BGS problem class, we demonstrated that our
heuristics can obtain solutions that are equivalent or better
than those in previous studies in a shorter time.

APPENDIX
RELATIONSHIP BETWEEN BGS AND ONE MACHINE
SCHEDULING PROBLEM
BGS is a type of single-machine scheduling problem [14],
[15]. There are numerous variations of the single-machine
scheduling problems [16], [17]. A single-machine schedul-
ing problem, which is closely related to BGS, is the
single-machine weighted completion time sum minimization
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problem. The formulation of the single-machine weighted
completion time sum minimum problem is as follows:

min.
N∑
j=1

Wjsj +
N∑
j=1

WjPj, (13)

s.t. sj + Pj −M (1− xjk ) ≤ sk ,∀j ̸= k, (14)

xjk + xkj = 1, ∀j < k, (15)

sj ≤ 0, ∀j = 1, 2, . . . ,N , (16)

xjk ∈ {0, 1}, ∀j ̸= k. (17)

Here, Wi, sj, and Pi represent the weight, start time, and
processing time of the job j, respectively. N represents the
total number of jobs. Constraints (13) to (17) indicate that
the machine can only process one job at a time. BGS can
be a single-machine total weighted completion time sum
minimization problem with each object as a job and the
following additional conditions:
• The processing time of jobs corresponding to the objects
in the A-group is 1

• The processing time of jobs corresponding to the objects
in the B-group is 0.

• For AND relationships, the start time constraint for
object b in the B-group is sb = maxa∈Ab (sa + Pa).

• For OR relationships, the start time constraint for
object b in the B-group is sb = mina∈Ab (sa + Pa).

Owing to the nonexistent variation of the single-machine
scheduling problem with such conditions, BGS can be
considered a new problem class.
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