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ABSTRACT As a key sensor, radar plays an important role in obtaining war information. However, radar
will be affected by the deteriorating electromagnetic environment on the battlefield. Therefore, it is necessary
to carry out electromagnetic interference effect experiments to improve the anti-interference ability. In the
electromagnetic interference experiment of the radar TR component, the signal output from the signal
generator passes through the power amplifier, the transmitting antenna and the receiving antenna, and then
is applied to the TR component. In the experiment, to obtain a certain size of interference signal acting on
the TR component, it is often necessary to manually adjust the output signal strength of the signal generator
repeatedly through human experience. The experimental process is complicated, and the experimental error is
large. Therefore, it will make the experimentmore convenient and accurate to achieve the desired interference
signal size on the TR component by accurately predicting the output signal strength value of the signal
generator, which has important practical significance. This paper proposes an IGWO-SVR based signal
generator output signal strength prediction model, which includes Improved Grey Wolf Optimizer (IGWO)
and Support Vector Regression (SVR) algorithms. IGWO is a new swarm optimization algorithm proposed
in this paper. By improving the convergence factor a and the final position of ω wolf, IGWO solves the
problems that the traditional GWO algorithm easily falls into local optimum and the convergence speed is
slow. IGWO is used to optimize two hyperparameters of SVR (penalty coefficient C and kernel parameter γ ).
SVR is used to predict the output signal strength value of the signal generator. To prove the validity of the
IGWO-SVR, comparison experiments are made between the IGWO-SVR and 20 other models. The real
data obtained from the experiments of electromagnetic interference effect by irradiation method are selected
as the experimental data. Mean Absolute Error (MAE), Mean Squared Error (MSE), and Fitting Degree R
Squared (R2) are used to evaluate the overall performance of the models. Through comparative experiments,
the MAE of the IGWO-SVR model is 1.1481, MSE is 2.6679, R2 is 0.9430, and its performance in various
evaluation indexes is better than other models.

INDEX TERMS Signal strength, IGWO, SVR, prediction, electromagnetic interference.

I. INTRODUCTION
In the modern high-tech war, whether to obtain information
effectively has become the key to getting the first combat
opportunity. Radar plays an important role as a key infor-
mation acquisition sensor. However, with the escalation of
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electronic warfare, the radar must deal with the deterioration
of the electromagnetic environment on the battlefield. There-
fore, we must conduct experimental research on the electro-
magnetic interference effect to improve the anti-interference
ability of radar [1]. The electromagnetic interference effect
experiment of the TR component includes two parts: the
electromagnetic interference experiment and the effect analy-
sis experiment. The electromagnetic interference experiment
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applies electromagnetic interference to the TR component,
and the effect analysis experiment analyzes the effect of the
TR component after being interfered with. This paper studies
the electromagnetic interference effect experiment of the TR
component, as shown in Figure 1.

FIGURE 1. Electromagnetic interference effect experiment of TR
component.

The signal generated by the signal generator passes
through the power amplifier, the transmitting antenna, and
the receiving antenna and is applied to the TR component.
The field strength meter measures the interference signal
acting on the TR component. The wave control module sets
the transmitting/receiving state of the TR component. The
size of the interference signal applied to the TR component
is an important index in the experiment of the electro-
magnetic interference effect, which affects the TR compo-
nent’s working state and transmitting/receiving performance.
However, the power amplifier, transmitting antenna, and
receiving antenna are all nonlinear devices, so it is difficult
to directly calculate the signal strength value of the signal
generator by the interference signal preloaded on the TR com-
ponent. In the experimental process, it is usually necessary
to manually adjust the output signal of the signal generator
repeatedly with the help of personal experience to achieve the
interference intensity required by the TR component, which
is cumbersome and easily produces large errors. Therefore,
it will be more convenient and accurate to achieve the desired
interference signal size on the TR component by accurately
predicting the output signal strength value of the signal gen-
erator. This measure has significant practical significance.

Machine learning uses computers to learn the laws and
patterns existing in data and deeply mines the potential infor-
mation existing in data. Machine learning can deal with
classification and regression problems [2]. Traditional math-
ematical methods cannot model complex relationships, while
machine learning suits complex problems. With the develop-
ment of electronic warfare, machine learning has been widely
used in the military field.

As a kind of machine learning, SVR has some advan-
tages in prediction. It can effectively deal with nonlinear
problems and map data to high-dimensional space using a
kernel function to achieve higher prediction accuracy. It has

better processing ability for small samples and nonlinear-
ity [3]. In practical application, the prediction accuracy can
be improved by combining it with other algorithms. So, we
introduce GWO to combine with SVR.

GWO is a global optimization swarm intelligence search
algorithm proposed by Australian scholar Mirialili et al.,
which simulates the predator-prey pattern of grey wolves in
nature. It uses the hunting process of wolves to optimize
the search for the optimal solution [4]. GWO has low com-
plexity, simple principle, few adjustable parameters, and easy
implementation, and shows strong global search ability [5].
Because of its good convergence speed and solution accu-
racy, GWO has been verified to have better optimization
performance than many current intelligent optimization algo-
rithms and has been widely used by many scholars in recent
years [6].
This paper proposes a new combined model IGWO-SVR

to predict the output signal strength of the signal generator.
IGWO is a new swarm optimization algorithm proposed in
this paper. By improving the convergence factor a and final
position of ω Wolf, IGWO solves the problems that the
traditional GWO algorithm easily falls into the local optimum
and has a slow convergence speed. IGWO is used to optimize
the penalty coefficient C and kernel parameter γ of the SVR.
SVR is used to predict the output signal strength value of the
signal generator. To verify the validity of IGWO-SVR, the
prediction results of IGWO-SVR are compared with those of
20 other models.

The following are the innovations and main contributions
of this paper:
(1) This paper proposes a new grey wolf optimization

algorithm, IGWO, which uses an exponential nonlin-
ear convergence method to replace the original linear
convergence method. This nonlinear convergence fac-
tor not only ensures the ability to expand the search
range of the algorithm but also balances the conflict
between global search and local optimization and fur-
ther enhances the ability of global optimization of
the algorithm, so it is more in line with the actual
convergence process.

(2) In this paper, by combining self-organized criticality
theory, the Evolutionary Population Dynamics (EPD)
is fused into the population updating process of the
GWO algorithm. In this way, the search range of
wolves can be extended to the whole solution space,
thus increasing the probability of obtaining the global
optimal solution.

(3) This paper proposes a new prediction model based on
IGWO-SVR for the signal generator’s output signal
strength. Under the same data set and experimental
conditions, the prediction results of the IGWO-SVR
model are better than other models.

II. RELATED WORK
In 2008, Xu et al. used the numerical calculation method
in the electromagnetic field to study the electromagnetic
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environment prediction and utilized the moment method to
predict the electromagnetic environment effect [7]. The pre-
dicted field strength of the equipment based on the moment
method is in good agreement with the measured field strength
in the space area within 45 degrees of the caliber plane of
the equipment. However, there are certain restrictions on the
caliber surface of the equipment. In 2014, Guo et al. used
the parabola equation to predict electromagnetic environmen-
tal effects [8]. The parabolic equation model calculates the
propagation process of radio waves, and the electromagnetic
environment intensity at a specific geographical position in
the sea battlefield is predicted. It provides a basis for battle-
field commanders to deploy quickly, but it is easily affected
by radiation sources, environment, and other factors. In 2017,
Hu et al. used a Bayesian network to predict and analyze com-
plex electromagnetic environments and solved the problem of
uncertain decision-making [9].
Han et al. [10] put forward AdaBoost for power load

forecasting. However, it is easily affected by noise and redun-
dancy in eigenvalues. Xu et al. [11] found that MLP is
superior to other Antarctic dynamic models in predicting
tropical cyclone intensity, but this only applies to the Atlantic
Ocean, not the whole world. Wu et al. [12] applied RF to
short-term load forecasting of power systems. At the same
time, the grey relational projection method was used to select
similar days to simplify the model training and improve
the prediction accuracy. However, the generalization error
is uncontrollable. Aiming at the problems of low predic-
tion accuracy and too many input variables in the existing
temperature prediction method of grain storage, Guo and
Wang [13] constructed a grain temperature prediction model
combining Bayesianwith XGBoost. However, there aremany
super parameters of XGBoost, which are difficult to choose
reasonably. In 2016, Anicici et al. [14] utilized the SVR
method to predict noise levels in wind turbines. The exper-
iments show that the accuracy of SVR using radial basis
function is significantly higher than that using polynomial
basis function.

In 2016, Chen et al. applied GWO to turbine parameter
optimization. The results show that GWO has better robust-
ness and stronger generalization ability, but there is still the
problem of premature convergence [15]. In 2017, Duca et al.
applied Particle Swarm Optimization (PSO) to optimize elec-
tromagnetic field devices, suggesting that using one thread
per block is the most efficient approach. This method is four
times faster than sequential implementations on hardware
architectures [16]. In 2019, Najimi, et al. applied an Artificial
Bee Colony (ABC) combined with artificial neural network
and applied it to predict the direction of chloride ion pen-
etration. The experimental results show that the model has
higher reliability [17]. Demirdelen et al. applied the Firefly
Algorithm (FA) combined with artificial neural network and
applied it to characteristics for wind turbines prediction.
The experimental results show that the prediction effect is
improved [18]. Holzinger et al. used the Ant Colony Opti-
mization (ACO) algorithm to conduct the shortest path in a

snake-like game, and the experimental results show that the
algorithm achieves good results [19]. In 2019, Santra et al.
applied Genetic Algorithms (GA) to power load forecasting,
enhancing the robustness of short-term load forecasting. The
results demonstrate that this method yields a small average
absolute percentage error in the test data [20]. In 2020,
Tao et al. used the PSO-RF combined model to predict wind
speed, and the results showed that the PSO-RF model has
significant performance [21]. In 2021, Li et al. established
a new pavement performance prediction model based on
PSO-SVR to solve the problem of low prediction accuracy
of asphalt pavement performance at present. The research
results show that the generalization effect is good and the pre-
diction accuracy is high [22]. In 2022, Zhu et al. established a
production prediction model of coalbed methaneWells based
on GA-RF, and the results had high accuracy [23]. In 2022,
Wang et al. proposed a new GA-SVR-GRNN combined
model for predicting future oil prices. The experimental
results show that this is an accurate and effective method
for predicting oil futures prices [24]. In 2022, Chen et al.
proposed the IGWO-SVR combined model and applied the
model to the cold load prediction of ice storage air condition-
ers. This model is named IGWO1-SVR for the convenience
of later expression. The prediction accuracy is improved by
changing the convergence factor into a piecewise function
and using a random walk to change the position. However,
it lacks in balancing local search and global search [25].
In 2022, Bi et al. proposed a combined prediction model
of the IGWO-SVR algorithm and applied it to predict coal
mine gas emission. This model is named IGWO2-SVR for the
convenience of later expression. The prediction accuracy is
improved by improving the convergence factor and using the
DLH search strategy to update the location of the grey wolf
population. Still, the convergence rate of convergence factors
is slow [26]. We will conduct comparative experiments on
IGWO1-SVR, IGWO2-SVR, and IGWO-SVR to illustrate
this paper’s contribution further.

III. MODELS
A. SVR
SVR aims to find an optimal hyperplane and minimize
the deviation between all sample points and the optimal
hyperplane [27].
Given the data sample set X = {(xi, yi) | i = 1,2, · · · ,n},

where xi = [x1i , x
2
i , · · · , x

d
i ]

T, yi ∈ R, a regression function is
established as shown in formula 1.

f (x) = w · ϕ (x) + b x ∈ X (1)

where ϕ(x) is a nonlinear mapping function; b ∈ R denotes
the threshold; w is the feature weight vector.

Reference a linear insensitive loss function ξ :

ξ (f (x) , y) =

{
0, |y− f (x)| ≤ θ

|y− f (x)| − θ, |y− f (x)| > θ
(2)
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where f (x) is the predicted value of the fitting function; y is
the corresponding actual value. θ is the maximum deviation
we can tolerate.

The meaning of the reference of the insensitive loss func-
tion ξ is that if the difference between f (x) and y is within the
allowable error range, then f (x) has no loss.
Introducing the relaxation variables ξi, ξ

∗
i , the following

constraint conditions are established:

min
∥ w ∥

2

2
+ C

n∑
i=1

(
ξi + ξ∗

i
)

(3)

s.t.


yi − w · ϕ (xi) − b ≤ θ + ξi

−yi + w · ϕ (xi) + b ≤ θ + ξ∗
i

ξi ≥ 0, ξ∗
i ≥ 0, i = 1, 2, · · · , n

(4)

The Lagrange coefficient is introduced and transformed
into the dual form:

max

−
1
2

n∑
i=1

n∑
j=1

(
αi − α∗

i
) (

αj − α∗
j

)
K
(
xi, xj

)

−

n∑
i=1

(
αi + α∗

i
)
+

n∑
i=1

(
αi − α∗

i
)
yi

 (5)

s.t.


n∑
i=1

(
αi − α∗

i
)

= 0

0 ≤ αi ≤ C
0 ≤ α∗

i ≤ C

(6)

where K
(
xi, xj

)
= ϕ(xi)ϕ(xj) is the kernel function.

The optimal solutions α and α∗ of this programming prob-
lem are solved. Through Karush-Kuhn-Tucker condition,
we can get:

w∗
=

n∑
i=1

(
αi − α∗

i
)
ϕ (xi)

b∗
=

1
Nnsv



∑
0<αi<C

[
yi−

∑
xi∈SV

(
αi− α∗

i

)
K
(
xi, xj

)
− θ

]

+
∑

0<αi<C

[
yi−

∑
xj∈SV

(
αi − α∗

j

)
K
(
xi, xj

)
+ θ

]

(7)

where Nns is the number of support vectors, the offset b∗ is
calculated.

f (x) = w · ϕ (xi) + b∗

=

n∑
i=1

(
αi − α∗

i
)
ϕ (xi) ϕ

(
xj
)
+ b∗

=

n∑
i=1

(
αi − α∗

i
)
K
(
xi, xj

)
+ b∗ (8)

B. IGWO
In 1986, Craig Reynolds first studied swarm intelligence
algorithms and established a simulation model, Boid.
By observing the flight behavior of birds, it reconstructed
the trajectory of birds and abstracted simulation and finally
got a new motion pattern. In 1994, Millonas put forward that
swarm intelligence should follow five basic principles [28].
In 1999, Bonabeau et al. wrote ‘‘Swarm Intelligence: From
Natural to Artistic System,’’ which made swarm intelligence
further development [29]. Swarm intelligence algorithms
have been applied in many fields. The commonly used swarm
intelligence algorithms include the artificial bee colony
algorithm, PSO algorithm, ant colony algorithm, and GWO.
This paper selects GWO as a swarm intelligence algorithm.

GWO is a global optimization method of swarm intel-
ligence search, and it simulates the hunting process of
grey wolf predators. Swarm intelligence is the optimization
method of simulating swarm behavior in social organ-
isms [30]. It has strong global search ability and convergence
performance, fewer parameters, easy to implement, and other
characteristics, making the solution’s accuracy higher in
function optimization. GWO is widely used in many fields,
such as feature subset selection [31], optimal control of DC
motor [32], multi-layer sensor training [33], MIMO power
system [34], UAV route planning problem [35], and so on.
However, there are still some problems in GWO, such as easy
falling into local optimum, slow convergence speed in the
later iteration, and high algorithm complexity. In this paper,
the swarm intelligence algorithm GWO is improved, which
makes the algorithm difficult to fall into local optimum and
solves the problem of slow convergence speed. It is used to
optimize the parameters of SVR and establish a prediction
model of signal strength value.

GWO simulates the powerful organization system and per-
fects the cooperation mode of the grey wolf population in
nature. The grey wolf group has a strict social hierarchy.
In the hunting process, each order performs its duties and
cooperates sincerely until it successfully catches prey. Now,
we artificially divide the grades in the wolf pack into four
stages, which are named α, β, δ, and ω wolves, and their
grades are arranged from high to low. The behavior of grey
wolves in hunting can be divided into three stages: dividing
grades to determine leadership, tracking prey, and encircling
and besieging prey.When the final siege of prey is successful,
the position of the α wolf is the optimal value of the super
parameter found by GWO for us. Then, from the perspective
of mathematical theory, the details of the GWO algorithm in
simulating these three stages are as follows.

1) DIVIDING GRADES TO DETERMINE LEADERSHIP
The grey wolf population in nature has a strict social hier-
archy. In each hunting process, the order will be divided
first, the leadership will be determined, and each individual
will find his scale and position and then perform his duties.
As shown in Figure 2, the whole wolf pack is divided into
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FIGURE 2. Grey Wolf hierarchy.

four grades, namelyα, β, δ, andωwolves, which are arranged
from high to low. The first three grades are the three groups
with the best fitness, which are located in the leadership of
the population. The greywolves in the administration not only
have the strongest fitness but also have the function of leading
the grey wolves lower than themselves. However, leadership
is only sometimes constant. Through internal competition,
better young individual wolf will constantly choose to update
the administration to ensure the success of every hunt.

2) TRACKING PREY
After determining the level of each individual in the popu-
lation, GWO will initialize the positions of α, β, δ, and ω

wolves. Its positions and the distances between them will be
continuously updated in tracking prey, as shown in Figure 3.
Formula 9 represents the distance between grey wolves, and
formula 10 represents the update mode of the grey wolf
position.

D =
∣∣C · Xp (t) − X (t)

∣∣ (9)

X (t + 1) = Xp (t) − A · D (10)

FIGURE 3. Principle of GWO algorithm.

D is the distance between the grey wolf individual and its
prey; Xp is the position of the prey; t is the number of iter-
ations; X is the position of the current grey wolf individual;
A is a random variable, calculated as shown in formula 11, and
C is a disturbance to prey, calculated as shown in formula 12.

A = 2a · r2 − a (11)

A controls the increase and decrease of grey wolf indi-
viduals in the algorithm. When |A| > 1, the grey wolf will
expand the search scope and find more possible solutions,
which corresponds to the global search. On the contrary, when
|A| < 1, the grey wolf will narrow the search range and find

the possible solutions in the current field more accurately.

C = 2r1 (12)

Both r1 and r2 are random numbers between [0, 1].
The main control of parameter A is a, named the conver-

gence factor, which decreases linearly from 2 to 0, and the
calculation method is shown in formula13. Where t repre-
sents the current number of iterations and max represents the
maximum number of iterations.

a = 2 − 2
(

t
max

)
(13)

3) ENCIRCLING AND BESIEGING PREY
In encircling and besieging prey, when the leadership finds
the prey position, the α wolf at the top of the pyramid will
lead the β and δ wolves to command the whole wolf pack
and guide the wolves to move closer to the prey from all
directions to surround and besiege the target and finally hunt
successfully. Because the positions of α, β and δ wolvesmust
be closest to the prey when finding prey, the positions of
these three wolves are used to guide the updated direction
and moving step length of other wolves. The mathematical
description of the update method is shown in Equations 14
to 16.

Dα = |C1 · Xα (t) − X (t)| (14)

Dβ =
∣∣C2 · Xβ (t) − X (t)

∣∣ (15)

Dδ = |C3 · Xδ (t) − X (t)| (16)

where Xα, Xβ , and Xδ represent the current position of α, β

and δ wolves, respectively, C1,C2, and C3 represent random
vectors, and X represents the current position of ω wolf.
Formulas 17-19 define the moving direction and step

length of ω wolf to α, β, δ wolves, respectively. Where A1,
A2, A3 stand for random vector. Formula 20 determines the
final position of the ω wolf.

X1 = Xα − A1 · Dα (17)

X2 = Xβ − A2 · Dβ (18)

X3 = Xδ − A3 · Dδ (19)

X (t + 1) =
X1 + X2 + X3

3
(20)

By studying the principle and structure of GWO, we can
see that the dividing line of parameter A is 1, which deter-
mineswhether the greywolf should expand its search scope to
findmore and better food or narrow its encirclement to ensure
its hunting success, that is, the balance between global search
and local optimum. At the same time, we also know that the
value of parameter A is mainly determined by convergence
factor a. From formula 13, we can know that a is linearly
decreasing in the original GWO algorithm. Still, as we all
know, any swarm intelligence algorithm can not be linear
in the whole convergence process, and of course, GWO can
not be linear convergence. Therefore, the convergence factor
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based on this linearity does not conform to the actual conver-
gence process of the algorithm. Reference [36] proposes an
improved convergence factor a, shown in formula 21.

a = 2 − 2
(
2

t
max − 1

)
(21)

Reference [37] also proposes an improved convergence
factor a, as shown in formula 22.

a = 2 − 2 sin(
t

max
·
π

2
) (22)

Inspired by predecessors, another improved convergence
factor a is proposed in this paper, as shown in formula 23.

a = 2 − 4

(
3
2

t
max

− 1

)
(23)

In formulas 21-23, t is the number of iterations, and max
is the maximum number of iterations.

The three improved nonlinear convergence methods are
compared with linear convergence, as shown in Figure 4.

FIGURE 4. Comparison of convergence factors.

The original value represents the convergence factor cor-
responding to formula 13; the improvement one represents
the convergence factor corresponding to formula 21; the
improvement two represents the convergence factor cor-
responding to formula 22; and the improvement three
represents the convergence factor proposed in this paper
corresponding to formula 23. To prove that the convergence
factor proposed in this paper is the most effective, the pre-
diction results are compared with those of other convergence
factors. The evaluation indexes of the experiment are MAE,
MSE, and R2. To avoid randomness, the average value of
the evaluation index results of three experiments is taken as
the final evaluation index experimental results. The forecast
results are shown in Table 1.

It can be seen from Table 1 that the R2 of the improved
convergence factor proposed in this paper is larger than that
of other models, and the fitting degree is better. At the same
time, MAE and MSE are smaller than other models, and the
prediction error is smaller. It can be seen from Figure 4, the
improved convergence factor proposed in this paper grad-
ually decreases in the form of a convex function, and the
attenuation rate falls obviously at the initial stage of iteration,

TABLE 1. Experimental results of different convergence factors.

which means that the global search range is wider, and more
candidate solutions are found. At the later stage of iteration,
the convergence speed of the improved convergence factor
proposed in this paper is accelerated, which makes the local
optimal solution more accurate. Therefore, this nonlinear
convergence factor not only ensures the ability to expand the
search range of the algorithm but also balances the conflict
between global search and local optimization and further
enhances the ability of global optimization, so it is more in
line with the actual convergence process.

For the conventional GWO algorithm, the next optimiza-
tion direction of the grey wolf is determined by formula 20.
It can be seen that the optimization direction of ω wolf in the
population is guided by high-grade grey wolves (α, β and δ),
which makes ω wolf search in the high-grade grey wolves.
The found α wolf will fall into the local optimal solution,
resulting in low convergence accuracy. In this paper, the EPD
operator is integrated into the population renewal process of
the GWO algorithm by combining the self-organized critical-
ity theory so that the search range of wolves can be extended
to the whole solution space and the probability of obtaining
the global optimal solution can be increased. The updated
formulas are:

X11 = X1 + (ub− lb · r1 + lb) (24)

X22 = X2 + (ub− lb · r1 + lb) (25)

X33 = X3 + (ub− lb · r1 + lb) (26)

X (t + 1) =
X11 + X22 + X33

3
(27)

where ub and lb are the upper and lower bounds of the
population search space, respectively, and r1 is a random
number with a value range between [0, 1]. This method is
beneficial to jump out of the local optimum and get the
global optimum solution. To prove the effectiveness of the
population optimization proposed in this paper, its predic-
tion results are compared with those of the original model.
To avoid randomness, the average value of the evaluation
index results of three experiments is taken as the final eval-
uation index experimental results. The forecast results are
shown in Table 2.
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TABLE 2. Experimental results of ω wolf’s final position.

It can be seen from Table 2 that the R2 of the final position
of the improved ω wolf proposed in this paper is larger than
that of the original model, and the fitting degree is better.
At the same time,MAE andMSE are smaller than the original
model, and the prediction result is more accurate.

C. IGWO-SVR
The overall structure of the prediction model of output signal
strength of signal generator based on IGWO-SVR is shown
in Figure. 5.

FIGURE 5. IGWO-SVR model structure diagram.

1) DATA PREPROCESSING LAYER
Standardize the data in the dataset by converting the data
to similar scales to avoid certain features having too much
impact on the model.

2) IGWO LAYER
Initialize IGWO algorithm-related parameters, randomly
generate grey wolf individuals, and the position of each grey
wolf is composed of SVR parameter penalty coefficient C
and kernel parameter γ . Calculate the fitness value of each
grey wolf, sort according to the fitness value, and get the top
three grey wolves: αwolf, β wolf and δwolf. The individual
position of the grey wolf is updated by the position update
formula; a,A,C are updated according to formula 23. The
fitness value of the grey wolf is recalculated. The obtained
fitness value is compared with the optimal fitness value of the
previous iteration to retain the optimal fitness value. Accord-
ing to formula 27, the next generation of grey wolf individual
X (t + 1) is generated. If t reaches max, the optimization
process is terminated, and the optimal penalty coefficient
C and kernel parameter γ of global search are obtained.
Otherwise, it returns to the front to continue optimization.
The IGWO algorithm is used to find the optimal individual

position of the grey wolf as the optimal C and γ of the SVR
model, and the SVR prediction model is established.

3) SVR LAYER
The SVR model is retrained by using the two optimal solu-
tions found in the previous layer, and the prediction result of
signal strength value is obtained.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
The hardware environment and software environment of this
experiment are shown in Table 3:

TABLE 3. Experimental environment.

B. DATA COLLECTION
Irradiation method is used in this experiment. The power
amplifier amplifies the output signal of the signal generator,
and the interference signal is finally applied to the TR com-
ponent through the transmitting antenna and the receiving
antenna, thus completing the electromagnetic interference
experiment. During the experiment, the strength of electro-
magnetic interference is monitored using a field strength
meter. The strength of the interference signal, gain of power
amplifier, signal type, frequency of interference signal, and
output signal strength of signal generator are taken as experi-
mental data. A total of 1000 pieces of data are collected. Some
data are shown in Table 4.

TABLE 4. Partial original experimental data.

In Table 4, the Interference signal (dBm) indicates the
strength of the interference signal in dBm; the Gain indicates
the gain of the power amplifier; in the Signal type field,
1 stands for continuous wave, 2 for amplitude modulation,
3 for phase modulation, and 4 for frequency modulation;
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the Frequency indicates the frequency of the interference
signal in Hz; the output signal (dBm) indicates the signal
strength of the output of the signal generator in dBm.

C. DATA STANDARDIZATION
In the raw data, the values of different features may have dif-
ferent measurement units and ranges. If it is not standardized,
features with a wider range may have a greater impact on the
model, which leads to the inability of the model to learn and
predict effectively. Many machine learning algorithms are
very sensitive to the scale of data. Failure to standardize may
lead to performance degradation of the algorithm because the

TABLE 5. Model parameters.

algorithm may not converge or produce inaccurate predic-
tions. Therefore, in this experiment, zero-mean normalization
is selected to process the original data. After the standardized
data processing, the data has a unified scale and distribution
to improve the performance and stability of the machine
learning model.

In this experiment, 800 pieces of data are selected as
training set, 100 samples are used as verification set, and the
remaining 100 are used as test set.

D. MODELS PARAMETERS
In this experiment, the important parameters of the
twenty-one models are shown in Table 5.

E. EXPERIMENTAL ANALYSIS
To verify the effectiveness and accuracy of the prediction
model of output signal strength of signal generator based on
IGWO-SVR, the prediction results of this model are com-
pared with those of other models. R2, MAE, and MSE are
used as evaluation indexes. At the same time, to eliminate
the influence of randomness on the results, the average value
of the evaluation index results of the three experiments is
taken as the final evaluation index experimental results. The
experimental results are shown in Table 6. The results show
that the IGWO-SVR model is superior to other models in all
evaluation indexes.

It can be seen from Table 6 that the fitting degrees of DT,
AdaBoost, and XGBoost models in signal strength prediction
only reach 0.6392, 0.7174, and 0.7718, respectively, and the
fitting degrees are poor compared with other models. The
fitting degree of MLP reaches 0.8039, which is improved
compared with the first three, but it is easily affected by
the amount of data. The fitting degrees of RF and SVR are
0.8130 and 0.8795, respectively. Compared with other single
models, RF and SVR have good processing ability for small

TABLE 6. Table of experimental results.
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FIGURE 6. Comparison of true values with the predicted results of DT, AdaBoost, XGBoost, MLP, RF, and SVR.

FIGURE 7. Comparison of true values with the predicted results of GWO-RF, GWO-SVR, PSO-RF, PSO-SVR, GA-RF, GA-SVR,
ACO-RF, ACO-SVR, ABC-RF, ABC-SVR, FA-RF, FA-SVR, IGWO1-SVR, IGWO2-SVR, and IGWO-SVR.

samples. The comparison between the true value and the
predicted results of DT, AdaBoost, XGBoost, MLP, RF, and
SVR is shown in Figure 6.
The algorithms of PSO, ACO, ABC, FA, GWO, and GA

can optimize themodel’s hyperparameters well. Since RF and
SVR perform well on a single model, PSO, ACO, ABC, FA,

GA, and GWO are combined with RF and SVR. It can be
seen from Table 6 that the fitting degree of GWO-SVR is
0.9080, which is the highest among the combined models
except the models (IGWO2-SVR, IGWO1-SVR, and
IGWO-SVR) combined the GWO improved model and SVR,
so GWO is the most suitable method for our problem.
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Therefore, we combined the improved grey Wolf optimiza-
tion algorithm IGWO with SVR. It can be seen from Table 6
that the IGWO1-SVR and IGWO2-SVR proposed by prede-
cessors are compared with our proposed IGWO-SVR, and the
fitting degree of IGWO-SVR is the highest, reaching 0.9430.
The comparison between the true values and predicted results
of GWO-RF, GWO-SVR, PSO-RF, PSO-SVR, GA-RF, GA-
SVR, ACO-RF, ACO-SVR, ABC-RF, ABC-SVR, FA-RF,
FA-SVR, IGWO1-SVR, IGWO2-SVR and IGWO-SVR is
shown in Figure 7.

V. CONCLUSION
This paper presents a prediction model of output signal
strength of signal generator based on IGWO-SVR in radar
TR component electromagnetic interference experiment.
By comparing SVR with other single models, it is found
that SVR has the best fitting degree. At the same time, the
IGWO algorithm enhances traditional grey wolf optimiza-
tion by introducing an exponential nonlinear convergence
factor a, thereby improving search range and global opti-
mization effectiveness, and aligning more closely with actual
convergence processes. The IGWO also enhances the GWO
algorithm by combining EPD with self-organized criticality
theory to update the ω wolf’s final position, expanding the
search range and improving the likelihood of finding the
global optimum. The IGWO improves the optimization
of SVR’s penalty coefficient C and kernel parameter γ .
Therefore, the IGWO-SVR combined model improves the
nonlinear fitting ability of the model to the data and enhances
the model’s prediction accuracy.

Currently, the model is limited to irradiation methods.
We plan to add injection methods to enhance the model’s
capabilities in future studies. In addition, we could explore
improving GA or other advanced swarm intelligence
algorithms such as PSO.
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