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ABSTRACT The demand for solid wood is high in the construction and manufacturing industries, and the
quality of the wood is crucial. Defects in solid wood can result in hazardous accidents or financial loss. While
manual visual inspection of defects is time consuming and labor intensive, Automated Optical Inspection
(AOI) systems provide a solution that is hindered by defect variations and environmental factors such as mois-
ture content and lighting conditions. AOI systems coupled with machine learning algorithms have emerged
as a promising approach for inspecting wood defects. Despite their promising results compared to manual
visual inspection and AOI systems, machine learning algorithms have shown several limitations in terms of
complex image processing methods, feature engineering, and hyperparameter dependence. Deep learning
algorithms have tremendous potential and have become trends in wood defect inspection in recent years,
particularly Convolutional Neural Networks (CNNs), single-shot detectors (SSD), You Only Look Once
(YOLO), and faster region-based neural networks (Faster R-CNN) algorithms. The coupling of machine
vision technology with deep learning algorithms can enhance the efficiency and accuracy of wood defect
inspection, and their impact has been proven in several studies. This study aims to provide a comprehensive
overview of wood defect inspection approaches by analyzing related studies on machine learning-based and
deep learning-based defect inspection methods. Their principles, procedures, performance, and limitations
were compared and discussed. Subsequently, future trends and challenges in wood defect inspection are also
discussed to provide a detailed understanding and direction for related fields.

INDEX TERMS Deep learning, defect inspection, machine learning, machine vision, wood.

I. INTRODUCTION

Wood has been integral to human society for millennia, offer-
ing strength, durability, and versatility [1], [2], [3], and it has
been widely utilized for construction [4], [5], [6], address-
ing the need for sustainable alternatives amid environmental
concerns [7], [8]. Recent advancements have expanded their
applications to include transparent wood [9], [10], [11],
supercapacitors [12], [13], wood-based-solar steam produc-
tion [10], [14], [15], [16], and wood-based sensors [17], [18],
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[19], [20], [21]. These studies have promoted the use of wood
as a renewable, biodegradable, and environmentally benign
resource.

Therefore, it is crucial to ensure the quality of the
wood-based materials used in various applications. How-
ever, defects in wood are inevitable and can manifest in
various manners [22]. There are some common types of
defects found in wood, including knots, checks, shakes, splits,
and wood decay, which compromise the structural integrity
and strength. These flaws can arise during tree growth or
industrial processing [23], leading to stress concentrations,
dimensional instability, and moisture ingress. Other defects,
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such as holes, wanes, and deformations, further impact the
wood quality, making it unstable and unsuitable for industrial
use.

Therefore, inspection of wood defects has gained signifi-
cance for enhancing wood quality and minimizing resource
wastage. Traditional visual examination by human operators,
while once the norm, is now being phased out because of
its inherent subjectivity and limitations such as fatigue and
declining attention span. Manual inspection is slower and less
accurate than automated technologies such as machine vision,
which utilizes image processing for defect localization and
detection [24]. Machine vision, particularly Automated Opti-
cal Inspection (AOI) systems equipped with components such
as cameras, light sources, processors, and controllers [25],
has revolutionized wood defect inspection by overcoming the
constraints of human vision and offering enhanced accuracy
and efficiency.

Although AOI systems have improved wood defect inspec-
tion, challenges persist owing to variations in defect size,
shape, and wood surface texture. Environmental factors such
as moisture content and lighting conditions further compli-
cate defect detection using cameras. To enhance inspection
accuracy, AOI systems are often coupled with artificial intel-
ligence (AI) algorithms such as Support Vector Machines
(SVM) [26], K-means clustering [27], Principal Compo-
nent Analysis (PCA) [28], and AdaBoost. These algorithms
require image pre-processing and feature extraction, which
are time-consuming and labor-intensive. In addition, their
classifier nature may overlook defect locations, focusing
instead on the preset defect types.

In recent years, deep learning algorithms, particularly
Convolutional Neural Networks (CNNs), have gained promi-
nence in wood defect inspection, surpassing traditional
machine learning methods. CNN-based algorithms eliminate
the need for human intervention in data collection and feature
engineering, thereby achieving superior performance in tasks,
such as image recognition and processing. They have been
extensively applied to various tasks in the wood industry,
including resource surveying, wood type classification, and
moisture content prediction [29]. Moreover, object detection
models such as the single-shot detector (SSD) [30], You Only
Look Once (YOLO) [31], and Faster Region-based Neural
Network (Faster R-CNN) [32] are preferred for wood defect
inspection because of their exceptional defect classification
and localization abilities, combined with high accuracy and
satisfactory inference speed.

In this context, both machine learning and deep learning
rely on data such as images for training and feature learning.
However, deep learning models are typically more complex
with multiple layers, and autonomously extracting features at
various levels of abstraction, in contrast to the manual feature
engineering often required in machine learning.

This review aims to comprehensively explore both
machine learning and deep learning algorithms for accu-
rate and efficient detection of wood defects across various
industrial applications. The scope of this study encompasses
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a thorough examination of wood defect detection methods
with a focus on surface defects, catering to readers and
researchers with diverse levels of expertise in the field.
The research methodology involves defining objectives, sys-
tematically searching academic databases, selecting relevant
literature, and analyzing key findings from studies up to 2023.
This study outlines the principles and implementation steps
used, which result in improving or degrading the inspection
performance, evaluating their performance metrics, and criti-
cally assessing the limitations of the methods. Ultimately, this
review study is expected to offer valuable insights to readers
in related fields, aiding the planning of future research. The
contributions of this study are as follows:

o A detailed research methodology for collecting related
articles was provided, including keyword selection, pre-
defined criteria used for the evaluation of retrieved
studies, and the analysis and synthesis of articles chosen
to summarize the key findings from existing wood defect
inspection works.

o A comprehensive review of wood defect inspection
methods in the past 10 years, which covered machine
learning-based and deep learning-based methods, was
presented.

« An exploration, including the principles and implemen-
tation steps used, which result in improving or degrading
the inspection performance, was conducted to determine
the advantages and disadvantages of these studies.

o The performance of previous studies in terms of evalu-
ation metrics such as accuracy, precision, recall, mean
Average Precision (mAP), and inference time is focused
on and discussed. The performance of each proposed
method is compared and summarized in a table for a
better understanding.

o The future trends and challenges of both machine learn-
ing and deep learning algorithms are discussed, provid-
ing a clearer direction for readers in the related field.

The following section presents the research methodology
used to conduct a systematic search of relevant literature.
Section three reviews the existing machine learning-based
inspection methods. Section four reviews the existing deep
learning-based inspection methods. Section five presents the
future trends and challenges of these algorithms for wood
defect inspections. Finally, section six concludes the study.

Il. RESEARCH METHODOLOGY

In this study, a research methodology was used to review
wood defect inspection methods, particularly for wood sur-
face defects. The research methodology used in this study, can
be divided into four steps: defining the research, searching
for relevant literature, evaluating the retrieved literature, and
analyzing and synthesizing the selected studies.

A. DEFINING THE RESEARCH
o Define the research area: The research areas of this study
are wood defect inspection using machine learning and
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deep learning methods, which are illustrated in deep
learning, defect inspection, machine learning, machine
vision and wood.

« Define the research objective: The objective of this study
was to provide a comprehensive review of machine
learning and deep learning algorithms for wood defect
inspection.

« Define the research scope: The scope of this paper cov-
ers a review of existing wood defect inspection methods,
especially for wood surface defects. This paper describes
the concepts and approaches used, from feature extrac-
tion to algorithm training, compares their inspection
performance, and discusses the strengths and weak-
nesses of the proposed methods.

B. SEARCHING FOR RELEVANT LITERATURE

o Select keywords: Relevant papers that match the key-
words chosen for the past ten years (from 2013 to 2023)
will be selected for further consideration. Five keywords
were selected to search for papers: deep learning, defect
inspection, machine learning, machine vision and wood.

o Select academic databases: A few academic databases
were selected for searching papers related to wood
defect inspection, which are listed as follows:

e IEEE Xplore

e Scopus

e ScienceDirect

e Springer

e Web of Science

o Select related papers: Papers related to the research area

and written in English were selected for further consid-
eration.

C. EVALUATING THE RETRIEVED LITERATURE
« Filter the papers: The selected papers were first filtered
and removed according to the following predefined cri-
teria:

e The contribution of the paper is not relevant to the
research areas defined.

e The publication date is out of the range of years
selected.

e The proposed methods used have no significant
contribution to the research areas defined.

« Verified the papers: The papers remaining after filtering
were further verified to ensure that they matched the
research areas of this paper. This review focuses on the
approaches used during feature extraction, robustness of
the algorithm used, and inference performance. Papers
that matched the criteria were cited to promote the value
of this study. Other papers related to the concept of
the algorithms used will also be cited to support these
articles.

o Categorize the papers: All papers selected were cate-
gorized and stored in a few folders, including machine
learning-based inspection methods, deep learning-based
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inspection methods, and supporting references, to ensure
that the paper writing was smooth and well organized.

D. ANALYSING AND SYNTHESISING THE SELECTED
STUDIES

« Analyze and synthesize the paper: The selected papers
were analyzed and synthesized, and further analyzed by
focusing on the proposed networks and approaches used
from feature extraction to algorithm training. Specific
image processing methods for feature extraction and
modification of algorithms on the original structure will
be focused on and synthesized.

o Summarize the paper: The papers were summarized
using the performance metrics used in these studies to
prove their contribution to the defined research area.
Further discussion was conducted on the shortcomings
of the methods proposed in these studies. A summary
of the machine learning-based and deep learning-based
algorithms is presented.

o Determining future trends and challenges: The future
trends and challenges of wood defect inspection based
on the reviewed existing research are discussed.

IIl. MACHINE LEARNING-BASED DEFECT INSPECTION
Machine learning is a computer algorithm that consists of
the ability to learn, analyze, and make predictions based
on the pattern of input data without the need for human
instructions. Fig. 1 shows the general workflow of machine
learning, starting with image preprocessing followed by net-
work training to learn the key features and optimize the
model parameters [33]. Machine learning algorithms have
been applied across industries to tasks such as wood defect
detection, surface inspection, and product assembly verifica-
tion, leveraging their ability to make predictions from data
patterns. Therefore, a few studies on machine learning-based
defect inspections are reviewed in this section.

A. SUPPORT VECTOR MACHINE CLASSIFIER WITH
BAG-OF-WORDS TECHNIQUE

In this context, [34] propose the use of an SVM classifier with
a Gaussian radial basis kernel function to detect wood skin
defects. The Bag of Words (BoW) approach is implemented,
in which the features are extracted using the Speeded UP
Robust Features (SURF) algorithm [35] and clustered by
K-means clustering to create a visual dictionary as input data.
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FIGURE 2. Flowchart of SVM classification with bag of words (BoWw).

The kernel and loss functions are key aspects of the SVM
because they affect the mapping function and maximization
of the margin between different classes [36]. Fig. 2 shows a
flowchart of the SVM classification with BoW, showing the
stages of the main algorithms.

Despite the high recognition rate exceeding 94% across the
three types of wood-skin defects, the proposed method has
limitations. The selection of hyperparameter C of the kernel
function and parameter K in K-means clustering does not
account for the time required to determine the optimal value.
In addition, the SVM simplifies the classification problem
using quadratic programming, which is convex and requires
complex matrix operations, leading to computational com-
plexity [37].

B. FEATURE FUSION TECHNIQUE WITH COMPRESSED
SENSING

In another study [38], the proposed wood defect detection
system benefited from a combination of Principal Compo-
nent Analysis (PCA) and compressed sensing [39]. Initially,
the captured images were segmented using mathematical
morphology to isolate the defect areas. PCA, as illustrated
in Fig. 3(a), was then employed to fuse the features from
segmented images, maximizing the variance across features
with principal components [28]. Subsequently, compressed
sensing was applied to reconstruct the original defect areas
from the sparse feature set, including geometry features,
regional features, texture features, and invariant moments,
thereby enhancing defect representation. Subsequently, the
discriminative power of the system was enhanced by incorpo-
rating Linear Discriminant Analysis (LDA) [40] to maximize
inter-class separation and minimize intra-class variance,
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FIGURE 3. Feature fusion using (a) Principal component analysis (PCA)
and (b) Linear discriminant analysis (LDA).

resulting in a 2% increase in the defect recognition rate [41],
as depicted in Fig. 3(b).

The proposed methods exhibit commendable performance,
surpassing several neural networks by 7% in accuracy while
reducing the classification time to 44.6ms with a classifi-
cation rate of 94%. However, the features extracted in both
studies were complex and required domain knowledge and
increased computation. PCA and LDA use linear combi-
nations that may be suboptimal for nonlinear relationships.
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They cannot localize defects and are impractical for real-time
applications owing to computational demands. In addition,
the benefits of compressed sensing are limited without
inherently sparse data, which making dictionary selection
challenging.

C. WAVELET TRASNFORM AND K NEAREST NEIGHBORS
However, the outstanding success of the approach proposed
in [42] for wood quality control, particularly knot detection,
can be attributed to several crucial factors. Similarly [38],
the image segmentation on the knot areas was performed
using mathematical morphology. Subsequently, the utiliza-
tion of the wavelet transform technique for feature extraction
effectively decomposes defect images into approximation and
detail components. This decomposition enabled the algorithm
to capture both coarse- and fine-grained knot information,
thereby enhancing the discriminatory power of the extracted
features. Additionally, the K Nearest Neighbors (KNN) [43]
algorithm classifies the test data by determining the class of
neighboring data points with the shortest Euclidean distance,
as shown in (1). The optimal number of neighbors (K) was
determined through trial and error to ensure the algorithm
tuning of the knot dataset.

N
DIC)= | D (fi(x) = f(C)? ey

j=1

where N is the feature vector, C indicates the class number,
f; (x) indicates the test sample of the ' feature, £;(C) indicates
the j feature of the C"* class. The method proposed in [42]
can detect knots with a success rate of 98%, which is better
than that in [44]. However, certain limitations exist, such
as the computational complexity arising from the multiscale
wavelet analysis. Furthermore, the imbalanced data and K
value selection impact prediction accuracy [45], whereas
higher dimensions in datasets may degrade algorithm perfor-
mance owing to sparse data points and the difficulty in finding
meaningful nearest neighbors during the calculation of the
Euclidean distance.

D. LAW TEXTURE ENERGY MEASURES AND
FEED-FORWARD BACKPROPAGATION NETWORK

Using the same knot dataset as in [42], another study [44]
achieved remarkable success by proposing a knot defect
classifier using a feed-forward backpropagation (BP) neural
network. First, the utilization of the optimal number of neu-
rons in the BP algorithm, as shown in Fig. 4, enables effective
classification of wood defects. By comparing the effective-
ness of the gray-level co-occurrence matrix (GLCM) [46]
and the laws of texture energy measures (LTEM) as feature
extraction methods, this study explored different approaches
for capturing spatial relationships and texture energy from
wood defect images. GLCM and LTEM offer complementary
insights, with GLCM focusing on the spatial relationships

84710

Backpropagation direction

<

<7
\ AN

) ol
Features .V‘v,y A‘X’A
Extracted from XA
LTEM/GLCM

A OO
O

Input Layer| | Hidden Output
(4 inputs) Layer Layer
(LTEM: 30 | | (5 outputs)
neurons,
GLCM: 15
neurons)

Feed-Forward direction

FIGURE 4. Feed-forward backpropagation (BP) Network with feature
extracted from law texture energy measure (LTEM) or Gray-level
co-occurrence matrix (GLCM) as input.

between pixel intensities and LTEM capturing the texture
energy at different spatial scales.

The proposed method demonstrated impressive results in
defect classification, achieving 94.3% accuracy and an MSE
of 0.10728 when utilizing features extracted from LTEM,
outperforming GLCM with 94.3% accuracy and an MSE of
0.10728. However, both methods lack defect localization and
require additional feature-extraction steps. The sensitivity of
GLCM and LTEM can also lead to inconsistencies in fea-
ture extraction, impact co-occurrence statistics, and texture
energy measures. Parameter adjustments in the feed-forward
BP algorithm, such as neuron numbers, are time-consuming
and may lead to suboptimal performance when applied to
different defect types.

E. MODIFIED HU INVARIANT MOMENT AND
BACKPROPAGATION NETWORK
In contrast to [42] and [44], the significant improvements
achieved using the proposed method [47] for wood defect
classification can be attributed to several factors. The seg-
mentation process was performed by integrating modified
Hu moments with wavelet moments in a BP neural net-
work, addressing the limitations of each method individually.
Although Hu moments offer computational efficiency, they
lack translation, rotation, and scaling invariance, which is
addressed by decomposition of the wavelet transform. Mean-
while, the normalization of features ensures consistency and
comparability across different sub-images and wood defect
samples. Fig. 5(a) and (b) illustrate the extraction methods
and proposed BP algorithm, respectively.

The proposed method has great improvements in defect
classification, achieving the highest accuracy of 97.33%
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FIGURE 5. (a) HU invariant moment feature extraction method and
(b) Backpropagation (BP) Algorithm.

among the defects and outperforming the original Hu
moment. However, the proposed method introduces sensitiv-
ity to hyperparameter adjustment and increases the computa-
tional cost owing to double wavelet transform decomposition.
Although it enhances feature sets by capturing shape and
texture information, it is unsuitable for real-time applica-
tion. Optimizing hyperparameters for both Hu and wavelet
moments, such as decomposition levels and wavelet func-
tions, is time consuming and affects the effectiveness of the
method.

F. ARTIFICIAL NEURAL NETWORK CLASSIFIER WITH
GRAY-LEVEL DEPENDENCE MATRIX

The proposed method [48] utilizes an Artificial Neural Net-
work (ANN) [49], which offers the potential to outperform
other standard classifiers, such as KNN, Naiyes Bayes [50]
and Decision Tree (DT), by adjusting parameters to suit the
timber defect detection system better. The diversity of the
dataset, comprising nine types of wood defect images from
four wood species, presents a challenging feature learning
environment during the training process. By converting the
dataset into grayscale images and extracting statistical fea-
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tures using a gray-level dependence matrix (GLDM), the
algorithm effectively captured the characteristics of wood
defects for classification. The focus on tuning parameters
such as the number of nodes and epochs in the ANN
algorithm ensures optimal model performance and adaptabil-
ity to diverse defect patterns.

This study validates the proposed method with the high-
est Fl-score of 84.01% among the four wood species and
outperforms the other algorithms. However, this study has
some limitations. Utilizing wildcard values for neuron num-
bers from the Waikato Environment for Knowledge Analysis
(WEKA) may not yield optimal performance, and deter-
mining the epoch number range is time consuming. Further
improvement is possible by adjusting parameters such as the
hidden layer number and learning rate, which are essential for
optimizing ANN performance.

G. CLASSIFICATION AND REGRESSION TREE WITH
CONVEX OPTIMIZATION

In contrast, the method proposed in [51] employs a Clas-
sification and Regression Tree (CART) algorithm tailored
for wood plate defect identification. The authors ensured
that high-quality images were captured using an image cap-
turing system under adequate lighting conditions. Convex
optimization (CO) was then utilized to refine the images,
followed by the OTSU technique for defect segmentation.
Mean structural similarity (MSSIM) was calculated to mea-
sure the similarity between segmented and original images
based on different weight values, and the optimal weight was
chosen. Meanwhile, the manual extraction of geometric and
intensity features through Commission on Illumination (CIE)
lab transformation enhanced the feature richness of the CART
algorithm input. The CART iteratively determines the best
division points and builds decision trees, whereas the pruning
technique removes less important attributes [52], as shown in
Fig. 6.

The proposed method achieved satisfactory performance,
with the highest accuracy of 96.3% among the defects.
Despite its effectiveness, the OTSU technique is often
sensitive to noise, requiring additional time-consuming post-
processing steps, such as smoothing and denoising. Similarly,
MSSIM’s reliance on reference images and potential vari-
ability makes it less practical in certain scenarios, thereby
increasing the computational workload. In addition, CART’s
use of two child nodes per node and a greedy approach
to predictions may overlook intricate data relationships and
result in suboptimal solutions.

H. K-MEANS CLUSTERING ALGORITHM

In addition, the proposed method [53] significantly enhanced
wood defect classification by integrating an unsupervised
algorithm and k-means clustering into the image segmenta-
tion process. Compared with previous studies, the proposed
method does not require the use of a complicated illu-
mination and image-capturing apparatus. In addition, the
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implementation of Lab color space conversion enhances seg-
mentation performance by making it easier to identify and
isolate color information relevant to wood defects, surpassing
the segmentation efficacy of alternative approaches, such
as Luminance, In-phase, Quadrature (YIQ) color conver-
sion with thresholding. In addition, iterative refinement and
reassigning of data points in K-means clustering ensure con-
vergence to optimal cluster classification [54], enabling the
calculation of Euclidean distances to classify defects. Fig. 7
illustrates a flowchart of the proposed methods and shows the
stages of the main algorithms.

The proposed method achieved an average accuracy of
95.33% with an Fl-score of 95%, and an optimal average
accuracy of 88.9% using a 3-fold cross-validation method.
However, the dataset quality is limited by brightness varia-
tions and probable occlusions from camera instability. The
proposed method struggles with larger augmented images,
thereby indicating its limited applicability. Moreover, the
K-means approach lacks clarity in selecting the number
of clusters (K), introducing subjectivity and potentially
improper assignments.

I. ADABOOST CLASSIFIER WITH DEEP LEARNING-BASED
FEATURE EXTRACTION

Instead of relying solely on traditional image processing
methods, [55] advocates for the integration of deep learning
approaches, specifically leveraging deep convolutional gen-
erative adversarial networks (DCGANSs) and Inception_v3
neural networks, coupled with the AdaBoost classifier for
Pinus tree disease detection from unmanned aerial vehicle
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(UAV) images. By employing the concept of a generator
and discriminator [56], along with Inception_v3 for back-
ground object elimination, AdaBoost effectively leveraged
the extracted color and textural features of diseased and
healthy trees for accurate disease recognition.

The proposed method outperformed the other machine
learning and deep learning algorithms mentioned in this
study, achieving a precision of 78.6%, recall of 95.7%, and
F1-score of 86.3%. However, the proposed method relies on
rigorous calibration of UAV cameras, making image acquisi-
tion complex and susceptible to noise. Additional denoising
methods such as median filtering are required. Both the
Inception_V3 and AdaBoost algorithms are computationally
demanding and time-consuming owing to their ensemble
nature, in addition to the overall processing time. There-
fore, the proposed method offers an opportunity for further
improvement.
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J. EXTREME LEARNING MACHINE CLASSIFIER WITH DEEP
LEARNING-BASED FEATURE EXTRACTION

Another study employed a CNN for feature extraction from
wood images, serving as an input for an Extreme Learning
Machine (ELM) for defect classification [57]. First, the uti-
lization of the Non-subsampled Shearlet Transform (NSST)
technique during image pre-processing effectively reduces
redundancy and computational complexity, thereby improv-
ing feature extraction efficiency. In addition, the application
of simple linear iterative clustering (SLIC) facilitates the
creation of compact super-pixel image blocks, enhancing
feature extraction by providing clearer contour edges for
defects and backgrounds. This study utilized the advantage
of CNN, which can extract low-level features, such as edges
and textures of wood defects, as well as highly semantic
features relevant to different types of defects. In addition,
the implementation of a Genetic Algorithm (GA) in ELM as
an optimization technique to search the solution space and
iteratively evolve candidate solutions based on the perfor-
mance of the ELM classifier leads to improved stability and
performance. Fig. 8(a) and (b) show the proposed method,
which utilizes a CNN and an ELM.

The proposed algorithm achieved an accuracy of 96.72%
and a fastest detection time of 187ms. However, SLIC’s
reliance on user-defined parameters, such as the number of
superpixels (K) and the compactness factor, poses limitations.
Moreover, ELM’s single-pass learning approach and the need
to specify parameters such as the number of hidden neurons
through GA increase time costs, making it impractical for
real-world industrial applications.

K. SUMMARIZATION OF MACHINE LEARNING-BASED
INSPECTION

Table 1 summarizes the research on machine learning-based
inspection methods. These studies were primarily concerned
with the detection of surface defects in wood. However, there
is a gap between them in real wood defect inspection appli-
cations in the industry. The input data of these algorithms
must be preprocessed, and features must be extracted using
traditional image processing and feature extraction methods,
which are time-consuming and labor-intensive. Thus, the
performance of the algorithms was heavily dependent on the
extracted features. The following are some of the general
limitations of machine learning-based inspections.

o Most of the reviewed studies had limitations in terms
of data quality and dataset characteristics. Challenges
include an imbalanced dataset, limitations in data quan-
tity or quality, and difficulties in determining optimal
parameters for model training and evaluation.

o Traditional image processing and feature extraction
methods are required before defect classification. Owing
to the nature of the chosen classifier, image processing
and feature extraction methods are required to obtain the
input data for the algorithm, which is typically difficult,
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poor, and time-consuming. Domain knowledge is typi-
cally necessary to interpret these features.

o The proposed algorithms are significantly dependent on
the chosen hyperparameters. Hyperparameters, such as
kernels, neuron numbers, and clusters, must be spec-
ified. Certain models may struggle with sensitivity to
scale, rotation, and translation changes, and require
adjustment for optimal performance.

Hence, the computational complexity of traditional image
processing methods and machine learning algorithms poses
challenges, particularly with large-scale datasets, leading
researchers to turn to deep learning approaches, such as
CNNs, for wood defect inspection. CNNs automatically
extract features without manual engineering [58], offering
superior performance in defect detection tasks and provid-
ing defect localization, making them well-suited for wood
defect inspection applications, such as detecting concrete
cracks [59] or even combining with other robust networks in
defect detection, such as small surface defect detection [60]
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and developing automated surface inspection (ASI) sys-
tems [61].

IV. DEEP LEARNING BASED-DEFECT INSPECTION

CNNs are used in computer vision tasks because of their
ability to learn both low- and high-level image features,
making them well suited for wood defect detection, where
defects can appear at various locations in the image. Their
weight-sharing network topology simplifies the model com-
plexity and reduces the number of parameters [62], whereas
deeper CNNs offer improved detection performance by
capturing intricate patterns and hierarchical representations
despite the increased computational cost during training.

A. BILINEAR FINE-GRAINED CONVOLUTIONAL NEURAL
NETWORK CLASSIFIER

In the context of wood defect inspection, [63] proposed the
use of a Bilinear Fine-Grained Convolutional Neural Network
(BLNN) tailored specifically to distinguish closely related
knot defect types. By leveraging data augmentation tech-
niques, such as mirroring, rotation, Gaussian noise, hue value,
and salt-and-pepper noise, to enhance the dataset size and
prevent overfitting, the two BLNN subnetworks efficiently
extract fine-grained features from different scales of the knots
and combine them into a single output vector, as illustrated
in Fig. 9. This enhances the model’s ability to represent the
complex patterns and structures of the knots. The proposed
algorithm is then trained using optimized hyperparameters,
including the epoch, batch size, and learning rate.

The proposed method achieves 99.02% accuracy and
79.5ms detection time by optimizing hyperparameters, sur-
passing other algorithms. Although it excels in wood knot
detection, its applicability to other fine-grained recognition
tasks may be limited owing to tailored features. Additionally,
the use of only two subnetworks in the BLNN may restrict its
ability to capture diverse features, potentially impacting its
performance in new tasks.
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B. MIXED-FULLY CONVOLUTIONAL NEURAL NETWORK
WITH VISUAL GEOMETRY GROUP

On the other hand, [64] proposed a wood defect inspection
model, a Fully Convolutional Neural Network (Mix-FCN),
that integrates a Visual Geometry Group with 16 layers
(VGG-16) network [65]. In this study, two wood defect
datasets were augmented using rotation, diagonal flip, mirror-
ing, hue value, Gaussian noise addition, and transformation
with polar coordinates to ensure a better generalization
performance on unseen data. For the proposed algorithm,
Mix-FCN replaces the front half of the network with VGG-
16, which employs max pooling for parameter reduction and
upsampling layers to restore the images to their original sizes,
as shown in Fig. 10. Techniques such as dropout regulariza-
tion, L2 regularization, and transfer learning have been used
to mitigate overfitting.
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TABLE 1. Machine learning-based wood defect inspection methods.

Article Method Detection Performance Advantages Disadvantages
Criterion
[34] SVM Classifier with Recognition rate 94% High classification rate e Choices of hyperparameters and
BoW Technique kernels

o Using complex quadratic

programming in SVM
[38] PCA and LDA with Recognition rate 94% Fast classification time ¢ Required domain knowledge on
Compressed Sensing Detection time 44.6ms feature extre.lctlon. )

o Challenges in choosing an
appropriate representation
dictionary

[42] Wavelet transforms and Accuracy 98% Outperform performance e Computationally expensive
KNN in [45] e Imbalanced dataset
e Determination of K value
[44] LTEM and Feed forward Accuracy 90.5% High accuracy and low e Classification without defect
BP network MSE 0.0718 misclassification localization

o Sensitive to scale, rotation, and
translation changes

o Adjustment of neuron numbers

[47] Modified HU invariant Accuracy 97.33% Improvement based on the e Computationally expensive
moment and BP network original Hu moment e Determination of optimal
hyperparameter of moments
[48] ANN  Classifier with Fl-score 84.01% Good performance on e Limited choices of neuron
GLDM defect classification number
o Big range of epoch number
o No hyperparameter adjustments
[51] CART with CO Accuracy 96.3% High classification rate ¢ Time-consuming for image
processing.

¢ Required reference images.

o Algorithm with a greedy
approach

[53] K-Means Clustering Accuracy 95.33% High classification rate o Data quality may constraint
Algorithm F1-score 85% o Suitable for small sized dataset

Accuracy at 3-fold 88.9% e Specifying cluster number
cross-validation

[55] AdaBoost Classifier Precision 78.6% Good performance on e Complex image acquisition
with  DCGANs and Recall 95.7% disease classification method
DCNN Fl-score 86.3% e Computationally expensive

[57] ELM Classifier with Accuracy 96.72% High accuracy e Sensitive to parameter defined
CNN and GA Detection time 187ms in image processing method

o Limited ability to adapt complex
defects’ patterns

o Parameter selection of GA and
neuron number

The modified Mix-FCN algorithm achieved an impres-
sive overall classification accuracy of 99.14% and a pixel
accuracy of 91.31%, surpassing other methods such as
SegNet [66]. Although parameter reduction has been imple-
mented, the detection time of 0.368s remains relatively long
for real-world industrial applications. This is potentially due
to the computational demands of the VGG-16 implementa-
tion. In addition, separate training of datasets on VGG-16
and Mix-FCN introduces overfitting risks and hyperparam-
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eter sensitivity and requires time-consuming optimization
methods.

C. IMPROVED SINGLE SHOT DETECTOR WITH RESIDUAL
NETWORK

Meanwhile, the proposed method [67] achieved performance
improvements in classifying five types of wood defects,
primarily because of the replacement of the VGG network
with Residual Network of 101 layers (ResNet-101) [68] in
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FIGURE 11. (a) Modified SSD with residual network of 101 layers and
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the single-shot detector (SSD) [30] architecture. Fig. 11(a)
and (b) illustrate the SSD architecture enhanced with ResNet,
showing the modifications made to incorporate ResNet for
feature extraction. The shortcut connections of the ResNet
model mitigate vanishing gradients and facilitate more effec-
tive feature optimization and learning with deeper layers,
leading to an enhanced detection performance. Additionally,
data augmentation techniques such as mirroring, rotation,
contrast adjustment, and scaling contribute to improving the
robustness of the model by increasing the dataset size and
diversity.

The proposed method improved the accuracy to 89.7%
and reduced the detection time to 90ms, surpassing the
original SSD’s 79.6% accuracy and 116ms detection time.
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However, ResNet’s depth increases computational com-
plexity and memory usage, limiting its applicability in
resource-constrained environments. Furthermore, the pro-
posed method experienced bounding deviations, which
affected the defect localization accuracy and potentially
caused significant losses in the industrial settings.

D. RESIDUAL NETWORK CLASSIFIER WITH TRANSFER
LEARNING

The wood knot detection model proposed in [69] introduced
the utilization of the ResNet-34 network with transfer learn-
ing, building on the success of their previous work [63].
Similar data augmentation techniques were employed to
enhance the dataset size and diversity, along with the use of
a deeper ResNet-34, which leveraged shortcut connections
to address the gradient vanishing issue during training. The
BLNN, the other hand, may not benefit from such shortcut
connections, leading to a slower convergence. The algorithm
utilizes the same loss function and optimizer as in previous
work, with the addition of transfer learning by pre-training
ResNet-34 on ImageNet [70], providing a valuable starting
point for feature learning on the wood knot dataset and reduc-
ing the training time.

The proposed algorithm achieved superior performance
compared to AlexNet, VGGNet-16, and GooglLeNet [71]
with an accuracy of 98.69%, a recall of 98.66%, an F1-score
of 98.46%, and a false acceptance rate (FAR) of 0.25% [63].
Despite the benefits of transfer learning, the use of a fully
connected layer in the algorithm introduces computational
constraints and potential overfitting, particularly when rely-
ing solely on identity mapping and residual learning provided
by residual blocks. To address this, [72] we propose a study
using a shallower ResNet-18 model with a global pooling
layer (GAP) to reduce computational requirements.

E. AUTOMATED OPTICAL INSPECTION SYSTEM WITH
INCEPTION RESIDUAL NETWORK V2

Furthermore, [73] advances have been made in edge-glued
wood panel defect detection by evaluating CNN variations,
including MobileNetV2 [74], ResNet-50 [68], InceptionRes-
netV2 [75], and DenseNet-201 [76]. In this study, raw and
laser-aligned images of wood panels were captured using an
industrial camera with structured light detection, and defect
characteristics were extracted using k-means clustering with
contours and morphological processing. In this context, the
architecture of InceptionResnetV2 includes various modules,
such as inception and ResNet modules, which are designed to
extract features at different levels of abstraction. These mod-
els employ techniques such as multi-scale feature extraction,
spatial aggregation, and residual connections, enabling them
to capture both low- and high-level features in images.

They reported that InceptionResnetV2 achieved the best
classification performance with real-time capabilities, with a
precision of 97%, recall of 90%, and evaluation time of 80ms.
However, the AOI-based image acquisition method faces
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challenges, such as environmental sensitivity and the need
for frequent recapturing, whereas the use of denoising and
geometric filters adds complexity. In addition, the sensitivity
of CNN algorithms to hyperparameters necessitates careful
tuning to achieve an optimal performance.

F. FASTER REGION-BASED CONVOLUTIONAL NEURAL
NETWORK WITH PRE-TRAINED RESIDUAL NETWORK-152
In this study [77], the adoption of more advanced object
detection models, such as the Faster Region-based Convo-
lIutional Neural Network (Faster R-CNN) [32] with transfer
learning, marked a significant advancement in wood defect
detection instead of classification. In this study, the intro-
duction of a Region Proposal Network (RPN) efficiently
generated defect region proposals, enhancing accurate defect
identification by handling variations in size and aspect ratio.
Predefined anchor boxes aid precise defect localization.
Meanwhile, Region of Interest (Rol) pooling coupled with
max-pooling contributed to the efficiency of the algorithm by
producing fixed-size outputs for the selected defect regions.
Extensive training of pretrained models, such as AlexNet,
VGG16, BNInception, and ResNet152, with various combi-
nations of batch size and learning rate optimized the base
networks for improved defect detection. Fig. 12 shows an
illustration of the proposed Faster R-CNN and its defect
detection operation.

The proposed method [77] achieved notable improvements
in detection speed, but exhibited poorer accuracy compared
to the other algorithms. Specifically, Faster R-CNN with
ResNet-152 achieved an average accuracy of 80.6% with
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a detection time of 48.01ms. However, the algorithm still
utilizes Rol pooling, which sacrifices spatial information and
is invariant to object sizes. The use of fully connected layers
introduces computational intensity and limits the receptive
field owing to fixed-size windows.

G. MASK REGION-BASED CONVOLUTIONAL NEURAL
NETWORK WITH GLANCE NETWORK

Instead of the Faster R-CNN, a study [78] adopted a Mask
Region-based CNN (Mask R-CNN) [79] and achieved a
significant advancement in wood defect detection by utiliz-
ing pixel-level segmentation. The incorporation of a glance
network designed using neural architecture search (NAS)
technology iteratively evaluates multiple architecture can-
didates and enhances the detection and classification of
defects in wood veneers. By combining the intermediate fea-
tures extracted from the NAS-designed glance network using
genetic algorithms (GA), the proposed method combines
relevant intermediate features. A multichannel mask R-CNN
is then employed to detect defects by providing rectangular
region proposals and predicting pixel-level masks for each
defect, as shown in Fig. 13.

The proposed method achieved a high Overall Classifica-
tion Accuracy (OCA) of 98.7% and mean Average Precision
(mAP) of 95.31%, but with an inference time of 2.5s, making
it unsuitable for real-time applications. However, the long
inference time is attributed to the two-stage nature of Mask
R-CNN and the separate feature extraction process for each
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test image’s region proposals. The implementation of GA can
also lead to inconsistent results across different runs of the
algorithm, making it less deterministic.

H. YOU ONLY LOOK ONCE V3 WITH GHOST BLOCK
STRUCTURE

In another study [80], an enhanced version of You Only Look
Once (YOLO), the YOLOV3 algorithm, was proposed for
wood surface defect detection. By incorporating skip con-
nections from ResNet in Darknet and replacing the residual
blocks with a ghost block structure, the algorithm was sim-
plified and optimized for limited computational resources,
as shown in Fig. 14(a) and (b). In addition, GridMask [81]
was introduced for data augmentation to aid the model in
learning features that are invariant to various transformations
and occlusions. The replacement of focal loss with confi-
dence loss further improves the ability of the model to control
false positives and negatives, ensuring more balanced scores
and convergence.
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The improved YOLOV3 algorithm achieved a notable
improvement in wood defect detection with an mAP of
86.49% and 28FPS. However, compared to previous studies,
the algorithm is slower and lacks robustness for real-time
applications. This limitation may be attributed to the smaller
input image size of 200 x 200 pixels, which was insufficient
for YOLOvV3’s optimal size of 416 x 416 pixels. Furthermore,
the algorithm struggles to accurately detect and localize larger
objects, and the implementation of GridMask introduces sen-
sitivity to the grid parameters. Despite efforts to reduce model
weight, significant computational resources are required for
inference.

I. IMPROVED YOU ONLY LOOK ONCE V4 WITH SPATIAL
ATTENTION MODULE

A newer version of YOLOv4 was further enhanced and
proposed for lumber surface defect detection, focusing on
improving detection performance while maintaining effi-
ciency [82]. The algorithm reduces the convolutional layers
of CAP Darknet-53 and the path aggregation network (PAN)
in the head part, along with reducing the channels of the back-
bone networks using a scaling coefficient o. The proposed
algorithm also incorporates the Mish activation function to
prevent exploding gradients and saturation, thereby enhanc-
ing gradient flow. To further enhance spatial information,
a Spatial Attention Module (SAM) was implemented before
the head part, as shown in Fig. 15, selectively attending to the
relevant spatial locations for defect detection.

The proposed method outperforms previous versions in
detecting wood defects across various input sizes, achiev-
ing mAPs of 91.5% with 77.1FPS, 93% with 54.4 FPS,
and 92.8% with 40.9FPS at different resolutions. How-
ever, its inference speed remains low for real-time industrial
applications, as the image size increases. Reductions in con-
volutional layers aim to alleviate computational demands, but
may compromise pattern capture and feature representation.
In addition, channel reduction results in less expressive fea-
ture representations, hindering the ability of the algorithm to
learn relevant information effectively. Mish activation, while
beneficial, requires careful parameter selection in addition to
computational complexity.
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J. DEEPLABV3+ WITH YOU ONLY LOOK ONCE V5 AND
SQUEEZE AND EXCITATION

The YOLOVS algorithm, known for its improved weight size
and training speed, was utilized in [83] and leveraged as
the backbone network in a DCNN architecture for defect
detection on particleboard, as shown in Fig. 16, with the
aim of improving the weight size while increasing training
and detection speeds. In this study, the algorithm addresses
the grid sensitivity of image edges, enhancing bounding
box predictions for objects near image corners based on
DeepLabv3+, [84] which introduces an encoder-decoder
architecture with atrous convolutions and spatial pyramid
pooling for semantic segmentation. Additionally, YOLOvS
incorporates attention mechanisms [82], specifically Squeeze
and Excitation (SE) layers, in [85] which the squeeze
operation reduces the spatial dimension of feature maps,
whereas the excitation operations recalibrate the importance
of different channels within each feature map by learning
channel-wise weights, significantly improving feature repre-
sentation and detection accuracy.

The combination of YOLOVS and DeepLabv3+ achieved
an mAP of 93.20%, a mean IoU of 76.63%, and an infer-
ence speed of 56.02FPS. Nevertheless, the inference speed of
the algorithm requires improvement for real-time industrial
applications, as observed in this study. DeepLabv3+’s use
of dilated convolutions may struggle with fine detail capture,
especially in small or occluded defects such as glue spots and
sand leakage. In addition, the class imbalance in the dataset
affects minority class learning, leading to higher error rates
for specific defects. During real-world inferences in the wood
industry, real-world inference times range from 183ms to
208ms, hindering practical real-time use in the wood industry.

K. STC-YOU ONLY LOOK ONCE V5

Another study [86] also used the concept of the atten-
tion mechanism in YOLOvVS, combining a swin trans-
former to detect wood defects of various sizes. The
implementation incorporates the Coordinate Attention (CA)
mechanism [87] to capture spatial dependencies within fea-
ture maps and replaces the C3 layers in YOLOvVS with
a transformer—encoder module for encoding both local
and global contextual information. Meanwhile, weighted
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bi-directional feature pyramid network (BiFPN) in the net-
work’s neck enhances feature fusion efficiency, and the swine
transformer in the detection layer captures global and con-
textual information with different head sizes to improve
detection performance. Fig. 17 shows a section of the mod-
ifications in the proposed YOLOVS5’s backbone and neck
network.

Finally, the improved YOLOVS achieves an mAP of 84.2%
and 74.6FPS with 6M parameters using a ghost network.
However, the additional complexity introduced by the swine
transformer in the detection part leads to a slower inference
speed because it captures more diverse spatial relationships
of the features. In addition, the implementation of the trans-
former encoder requires storing attention weights for the
entire sequence of representations, resulting in significant
processing time. These factors contribute to the slower infer-
ence speed of the proposed algorithm compared to that of the
original YOLOVS.

L. YOU ONLY LOOK ONCE V5 WITH GHOST NETWORK
AND SIMPLE, PARAMETER FREE ATTENTION

In this study [88], the concept of a ghost network and
attention mechanism were integrated into the YOLOVS back-
bone, resulting in a lightweight and efficient wood surface
defect detection model. The ghost module, inspired by Ghost-
Net [89], [90], replaces the C3 and SSPF layers in YOLOvS
and reduces the computational resources by downsizing fea-
ture maps and convolving and concatenating them to maintain
the same channel number. Meanwhile, the simple, parameter
free attention (SimAM) mechanism [90] allows the model to
selectively focus on the relevant features within the input data
and optimize the energy functions in each neuron without
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adding parameters, enabling the design of lightweight models
suitable for real-time applications.

The proposed model outperforms the original YOLOVS
with a mAP@0.5:0.95 of 43.3% and an inference
time of 1.4ms, and even surpasses YOLOvSm with a
mAP@0.5:0.95 of 45.2% and an inference time of 4.8ms.
Despite having only 0.82M and 7.46M parameters, suitable
for real-time applications, its detection performance remains
suboptimal for robust defect detection. Although efficient, the
use of a cosine learning rate schedule may require manual
adjustment for different datasets or architectures, and its
sensitivity to hyperparameters can lead to suboptimal perfor-
mance.

M. SUMMARIZATION OF DEEP LEARNING-BASED
INSPECTION

Table 2 summarizes various deep learning-based inspection
studies, predominantly employing CNN-based algorithms
for automatic feature extraction and simplifying image pro-
cessing. Object detection models, such as SSD, R-CNNs,
and YOLOs, are utilized for defect localization and classi-
fication with variations in inference speeds. However, their
performance can be influenced by factors such as the model
architecture, training strategies, and optimization techniques.
However, these deep-learning algorithms still need to be
improved, and their general limitations can be summarized
as follows:

e Most deep learning-based algorithms consist of deep
layers to extract detailed features and improve detection
performance. This contributes to the large number of
parameters and high computational requirements, that
are unsuitable for real-time applications and limited
computational devices.

o Large and balanced datasets are required for algorithm
training to achieve excellent inspection performance.
Most deep learning algorithms exhibit poor performance
with small datasets. However, high-resolution wood
defect datasets are limited.

« Annotation of the dataset is required before training the
algorithm. Object detection models require annotated
datasets as the input data. Thus, careful annotation and
labeling with correct classes is time consuming. Inaccu-
rate bounding boxes result in a poor performance of the
algorithms.

o Most deep learning-based algorithms are sensitive to
the chosen hyperparameters. Different combinations of
hyperparameters, such as epochs, batch size, learn-
ing rate, and neuron number, can cause differences in
inspection performance. The selection of optimal values
is time consuming.

V. FUTURE TRENDS AND CHALLENGES

A. FUTURE TRENDS IN WOOD DEFECT INSPECTION
Manual inspection, once relied upon for wood defect detec-
tion, has become impractical because of its subjective
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interpretation, high time cost, and low efficiency. The advent
of AOI systems, integrating machine vision components such
as cameras, light sources, processors, and controllers, has
significantly enhanced inspection performance by offering
more precise detection. Further enhancements have been
achieved by incorporating machine learning algorithms into
AOI systems. Since 2013, an increasing number of stud-
ies have focused on leveraging machine learning algorithms
for automated defect inspection, resulting in higher effi-
ciency and precision. Ongoing research continues to refine
these algorithms to improve the wood inspection perfor-
mance. In recent years, sophisticated algorithms, particularly
deep learning algorithms such as CNNs, have significantly
enhanced inspection performance by eliminating the need for
humans.

B. CHALLENGES IN WOOD DEFECT INSPECTION

1) WOOD DEFECT DATASET

Designing a robust wood inspection system using both
machine learning and deep learning algorithms requires a
wood defect dataset that fulfils requirements such as high res-
olution, large dataset size, and a balanced class for each type
of defect. From the reviews in sections three and four, most
wood defect datasets are not available to the public but are
obtained using self-developed AOI systems and image acqui-
sition methods. Therefore, it is difficult to obtain high-quality
wood datasets that satisfy researchers’ demands. Although
some open-source datasets are available, they have limited
resolutions and defect types. To overcome these limitations,
data augmentation techniques are required to increase the
dataset size. However, over-augmentation can affect the rep-
resentation of the dataset in real scenarios, which may cause
suboptimal detection performance of the algorithm.

2) INSPECTION PERFORMANCE OF ALGORITHM

Most machine learning algorithms classify wood images as
either defective or non-defective without obtaining the spatial
information of defects, such as defect location. In addi-
tion, the additional image preprocessing methods required by
machine-learning algorithms increase the inference time of
the model. However, deep learning algorithms achieve high
accuracy in defect inspection. However, the architecture of
algorithms typically consists of deep layers and requires large
computations, which are not suitable for limited resources.
Object detection models are suitable for detecting defects
with both classification and localization, but it is challeng-
ing to balance the accuracy, inference speed, computational
resources, and mAP. In addition, most algorithms are specif-
ically designed for detecting specific wood defects, and it is
difficult to achieve high inspection performance by imple-
menting a new dataset. Furthermore, most of the proposed
algorithms are designed to classify only a few types of
wood defects, which may be suboptimal in real-world sce-
narios because wood defects can be presented in various
forms.
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TABLE 2. DEEP learning-based wood defect inspection methods.

Article Method Detection Performance Advantages Disadvantages
Criterion
[63] BLNN-based Accuracy 99.02% High accuracy o The algorithm is less transferrable to
Classifier Detection time 79.5ms a new task
o Simple feature extraction
[64] ~ Mix-FCN Classification 99.14% High accuracy * Long detection time
Clasmﬁerlvglth VGG- accuracy 91.31% . Cf)mplex and fieep algor'lt.hm used
. o Time-consuming for training
Pixel accuracy 0.368s
Detection time
[67] Improved SSD with Accuracy 89.7% Improvement e Complex and deep algorithm used
ResNet-101 Detection time 90ms based on the e Large computations required
original SSD * Bounding box deviation
[69] ResNet-34 Accuracy 98.69% High accuracy and e Fully connected layers introduced
Classifier with transfer Precision 98.32% low error rate large parameters.
learning Recall 98.66% o Heavily relying on identity mapping
Fl-score 98.46% and residual learning
FAR 0.25%
[73] AOI System with Precision 97% High accuracy o Complex machine vision system.
Inception ResNetV2 Recall 90% e Complex image processing method
Detection time 80ms e Sensitive to hyperparameters
[77] Faster R-CNN with Averrage 84.01% Classification of e Poorer accuracy
Pre-trained ResNet- Accuracy 48.01ms nine types of o Invariant to object sizes
152 Detection time wood defects e Fully connected layers introduced
large parameters.
[78] Mask R-CNN with OCA 98.7% High mAP o Low detection speed
Glance Network mAP 95.31% o Time cost for finding the optimal
Detection time 2.5s glance network
o Stochastic nature of GA
[80] YOLOV3 with mAP 86.49% High accuracy o Low detection speed
Ghost Block Structure Detection speed 28FPS o Improper input size
e Sensitivity of grid parameters
chosen
o Large model weight
[82] Improved mAP 91.5% and 77.1FPS ~ High mAP e Low detection speed for larger
YOLOv4 with SAM Detection speed (320x320 pixels) images
93% and 54.4 FPS o Less expressive representation of
(512x512 pixels) features
92.8% and 40.9FPS o Time cost for finding optimal
(608x608 pixels) hyperparameter of activation
function
[83] DeepLabv3+ with mAP 93.20% High mAP o Sensitive to class imbalance dataset
YOLOVS and SE mean IoU 76.63% o Slow inference speed when applyied
Detection speed 56.02FPS to real-world applications
[86] STC-YOLOVS5 mAP 84.2% Fast detection o Additional complexity on detection
Detection speed 74.6FPS speed layer
o Time-consuming
e Require large computational
resources
[88] YOLOVS with mAP@0.5:0.95 43.3% with 1.4ms  Fast detection e Low mAP
Ghost Network and Detection time (YOLOv5n) speed o Sensitive and less transferrable
SimAM 45.2% with 4.8ms

(YOLOv5m)

learning rate decay strategy

3) DETECTION OF SMALL-SIZED WOOD DEFECTS

Previous studies on wood defect inspection have mostly
focused on large- or medium-sized defects, which can easily
be observed by the human eye. While the wood consists of
complex wood grains and texture, some small-sized defects,
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such as pinholes and small knots, can be ignored by both

the human eye and AOI system cameras. Object detec-
tion models such as SSD and YOLO pose challenges in
detecting small-sized defects owing to their limited abil-
ity to capture the fine-grained details of these defects.
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Therefore, setting appropriate confidence thresholds during
post-processing is needed to find the correct balance to avoid
false positives, whereas not missing true positives can be
challenging. Modifications, such as the implementation of
attention mechanisms in the algorithms, can potentially add
to the complexity of the model and may inadvertently focus
on irrelevant features.

VI. CONCLUSION

Wood defect inspection has undergone a remarkable evolu-
tion, transitioning from manual inspection methods to the
adoption of automated optical inspection (AOI) systems. The
integration of machine learning and deep learning algorithms
into these systems has recolonized defect detection, offering
unprecedented levels of precision and efficiency compared
with traditional approaches.

Machine learning algorithms have played a pivotal role
in enhancing the inspection performance by including extra
feature extraction and learning from vast datasets. How-
ever, in recent years, there has been a notable shift towards
deep learning techniques, particularly CNNs and even object
detection models which have demonstrated superior accuracy
and robustness by eliminating the need for manual feature
engineering.

Anticipating continued advancements in deep learning
methodologies, driven by improvements in model archi-
tectures, training algorithms, and computational resources.
These advancements are expected to further enhance the
capabilities of wood defect inspection systems, enabling them
to achieve higher levels of accuracy and efficiency.

Object detection algorithms in reviewed studies such as
YOLO have shown significant strides in addressing lim-
itations such as computational expense and performance
degradation. The integration of lightweight network archi-
tectures such as Ghost Network reduces the computational
overhead while maintaining performance. In addition, atten-
tion mechanisms, such as self-attention or spatial attention,
can enhance defect detection by allowing models to focus on
relevant features and regions within images. Enhancement of
inspection performance can be achieved by applying these
modifications to YOLOvVS in the future.

Furthermore, the enhancement by the integration of
advanced technologies such as reinforcement learning, gen-
erative adversarial networks (GANSs), and attention mecha-
nisms into defect inspection systems, opens up new avenues
for enhancing performance and adaptability. In addition,
emerging trends such as transfer learning, domain adaptation,
and federated learning hold promise for improving model
generation and deployment in real-world scenarios.

In conclusion, ongoing research and development in wood
defect inspection, coupled with the adoption of cutting-edge
machine learning and deep learning techniques, are poised to
revolutionize the industry. By staying abreast of new trends
and embracing emerging technologies, the efficiency, reli-
ability and effectiveness of defect inspection systems can
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be improved, ultimately maximizing the utilization of wood
products and driving sustainable advancements in the field.
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