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ABSTRACT This work introduces a novel approach to improve the precision of distance estimation in
localization systems by using existing LoRaWAN and RSSI-based techniques. Despite the benefits of range
and power efficiency, these systems exhibit limited accuracy in practical situations. To address the limitation,
this study provides an innovative technique that greatly improves the precision of distance estimations,
particularly in urban environments. The fundamental basis of this approach lies in the use of a dynamic
path loss model. An additional element is to accommodate the varied and dynamic conditions of signal
transmission in metropolitan areas. A better Kalman filter is also used in the study. This is important because
it reduces the effects of multipath fading and environmental noise that often make RSSI-based localization in
LoRaWAN networks less accurate. The study further examines the influence of the environmental exponent,
also known as the path loss exponent, on the RSSI results and the precision of the distance measurements.
This methodology achieves the average error under 1 meters for indoor environments and under 7 meters
for outdoor environments. Finally, the Cumulative Density Function (CDF) shows 90 % of the distance
estimation algorithm error for indoor environment is lower than 1.08 meters while for outdoor environment
is lower than 7.55 meters. Based on these improvements, the introduced methodology not only enhances
and improves existing approaches but also optimizes the precision and dependability of urban localization
technologies, with substantial implications for a variety of practical applications.

INDEX TERMS Distance estimation, Kalman filter, localization, LoRaWAN, path loss.

I. INTRODUCTION
THE prediction of positioning is significant in several appli-
cations, including urban navigation, emergency response
systems, and asset management in different industries [1],
[2]. The primary obstacle in these applications is accurate dis-
tance measurement, especially in challenging circumstances

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandro Pozzebon.

such as indoor spaces and crowded urban regions. Although
standard GPS technology, which is based on satellite signals,
is reliable in outdoor environments [3], it is often inadequate
in urban and interior areas due to signal obstacles [4]. The
limitations of this technology, such as its accuracy margin
of several meters, make it unsuitable for applications such
as indoor navigation and asset tracking [5]. In addition, GPS
devices are often power-consuming and costly when used for
large-scale network deployments. Therefore, it is necessary
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to investigate alternative ways in areas where GPS signals are
ineffective [6].

Wireless sensor networks (WSNs) are now being used as
a practical solution for indoor and urban localization [7].
These networks consist of distributed sensors that utilize
several wireless technologies, including WiFi, Bluetooth,
Radio Frequency Identification (RFID), Ultra Wide Band
(UWB), and cellular networks. They are highly skilled at
measuring distances and locations [8], [9]. Each technology
has its own advantages and disadvantages, which make it
appropriate for particular uses. With the different distance
estimation measurements, including time of arrival (TOA),
time difference of arrival (TDOA), and the received signal
strength indicator (RSSI), each method serves a specific
purpose. TOA (Time of Arrival) and TDOA (Time Difference
of Arrival) are renowned for their exceptional accuracy;
however, they require synchronized clocks [2], [8], [9], which
in turn increase the complexity and costs of the system.
However, RSSI is a simpler method, although it is less
accurate and is susceptible to interference and environmental
noise [10]. This study focuses primarily on improving
the accuracy of the distance estimate of the LoRaWAN
technology [11]. LoRaWAN stands out due to its extensive
communication range and high-energy economy, making it
particularly suitable for urban settings. LoRaWAN systems
often use RSSI-based approaches because they can be
easily adapted to various wireless communication protocols
[9], [12].

This research presents a novel method to improve dis-
tance estimation accuracy in difficult indoor and urban
environments, as mentioned, so we specifically focus on
LoRaWAN and RSSI-based techniques. The essential aspect
of this strategy involves creating a dynamic path loss model.
This model is intricately crafted to effectively adapt to the
changing conditions of signal propagation commonly found
in urban environments. It responds dynamically to environ-
mental factors such as urban clutter or building materials,
which can greatly influence signal strength and quality [13],
[14]. A new part is added to the model that makes it better
adapted to different and changing urban signal settings.
This makes distance estimates more accurate in situations
where fixed models are not enough. There is noise in the
environment and signal reflections from multiple paths that
need to be dealt with in RSSI-based systems. This study
combines the dynamic path loss model with an improved
Kalman filter that does just that. The Kalman filter analyzes
the incoming signal data, eliminating unwanted noise and
rectifying distortions produced by multipath effects, thus
yielding a more precise depiction of the true signal pathway.
This enhancement leads to more accurate distance estimates.
Furthermore, our study examines the relationship between the
environmental exponent and changes in distances, which is
crucial to understanding the mechanics of signal transmission
in various environments. By gaining a comprehensive
understanding of these dynamics, the suggested approach
uses this information to enhance the process of calculating

the distances with the creation of advanced algorithms that
can intelligently modify the distance estimationmodel. These
algorithms use predictive analysis of distance changes to
continuously calibrate the device. This proactive adaptation
ensures that the system maintains a high level of accuracy
in diverse settings, successfully adapting to the various
characteristics of the environment.

The main contributions of this paper are summarized as
follows:

1) At the core of this approach is the development of a
dynamic path loss model. This model is meticulously
designed to respond to the fluctuating conditions
of signal propagation typical in urban landscapes,
adapting in real time to environmental factors such
as urban clutter and building materials, which can
significantly impact signal strength and quality. A new
part is added to the model to make it more accurate at
estimating distances in cities where static models are
not good enough because signal conditions are always
changing and being different.

2) Combined with the new element in the advance path
loss model, the RSSI reference values at distance(d0)
have also been flexible adjusted. After a lot of testing
and changes, it was found that dynamic changes in the
RSSI reference value in the advanced path loss model
algorithm make the distance estimate more accurate.
In other studies, this change was not considered
important.

3) Furthermore, research also investigates how the envi-
ronmental exponent varies with changes in distances.
This exploration is critical to understanding the dynam-
ics of signal propagation in different settings. When a
thorough understanding of these dynamics is complete,
the proposed approach capitalizes on this knowledge to
refine the distance calculation process.

The paper is organized as follows: Section II covers the
technique, data collection, and algorithm design. Sections III
and IV provide a comprehensive examination of the data
and analysis, including the distribution of errors in various
scenarios. Section V is the conclusion of our paper, which
also proposes future exploration potentials on this topic.

II. RELATED WORK
Recent research has highlighted LoRaWAN’s significant
capabilities in localization, showing substantial advantages
over traditional methods like GPS or Zigbee in terms of
energy consumption and range while maintaining acceptable
accuracy. These studies have primarily focused on Difference
of Arrival (TDoA) and Received Signal Strength Indicator
(RSSI) techniques for distance estimation, crucial for accu-
rate localization [20].

One study explored a simulation combining TDoA and
Angle of Arrival (AoA) techniques but lacked real-world
testing [8]. Additionally, Spachos et al. noted that while
RSSI values can be employed for indoor localization, they
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TABLE 1. The summary results of some other related work.

are susceptible to significant errors due to environmental
factors such as multipath effects and signal reflection, which
can diminish the accuracy of the localization system [20].
Research by Kwasme and Ekin highlighted that indoor
localization systems are challenged by dense multipath
environments and non-line of sight conditions, which lead
to increased localization errors. Their work suggests room
for enhancements in both outdoor and indoor settings using
RSSI [21]. They also demonstrated that the accuracy of
TDoA geolocation could be enhanced through the application
of the Kalman filter, although this was limited to devices
in fixed positions [15]. The integration of TDoA and
RSSI data using the k-nearest neighbors (kNN) algorithm
alongside the more efficient LoRaWAN (V2) gateways,
which achieved a median accuracy of 332.6 meters, shows
the potential for mixed technology approaches. This aspect
was explored further by Lam et al. in noisy outdoor
environments, indicating practical improvements in field
application [11]. Guo et al. investigated the integration of
heterogeneous network technologies to improve location
accuracy, emphasizing the importance of combining multiple
data sources to enhance the reliability of distance estimations
in variable urban environments [3]. Further foundational
insights into the complexity of signal behavior in urban
and indoor environments are provided by the studies of
Han et al., which discussed new approaches to the geometry
of TOA location [4], and Mani et al., who explored
the influence of predicted and measured fingerprint on
the accuracy of RSSI-based indoor location systems [5].
Further contributions by Raza et al. highlighted potential
applications of LPWAN technologies, including LoRaWAN,
for cost-effective alternatives to conventional GPS systems
in urban areas [1]. Best practices in RSS measurements
and ranging, critical for enhancing the performance of these
technologies in dense urban settings, were also updated by
these studies [2].
Table 1 presents a comparison of additional localization

results concerning the mean error as documented in studies,
as well as some details on the approach.

Our research builds upon these studies by proposing
a novel approach that not only utilizes RSSI data but
also enhances its accuracy through the development of a
dynamic path loss model specifically tailored for urban
environments. Unlike static models, our dynamic model
adjusts in real-time to the fluctuating conditions of urban
settings, effectively addressing the primary sources of error
identified in previous studies. We also integrate a refined
Kalman filter to mitigate the effects of environmental noise
and multipath fading [15], which are prevalent in urban
landscapes. This dual enhancement significantly reduces the
average error in distance estimations, making our approach
more robust and reliable for urban applications.

III. METHODOLOGY
To make the RSSI-based distance estimate better in
LoRaWAN networks, a systematic four-step process is used.
Figure 1 shows that the process includes setting up complex
hardware, collecting dynamic data, analyzing the data in
great detail, and making sure that the results are correct.
The first phase sets up the LoRaWAN positioning system to
operate within the frequency band AS923-2, using specific
channels according to the collected data, ranging from
921.4 to 922.8 MHz for LoRa communication. Each channel
is configured with a bandwidth of 125 kHz, in accordance
with the regulation QCVN 122:2020/BTTTT.

The LoRa gateways, communicatingwith a processing unit
via the Chirp Stack interface, are aligned with this configura-
tion. In the second phase, a custom UCA educational board
was set up to transmit signals and a laptop that serves as the
data processor as describe in Figure 4. Regularly, the UCA
board sends LoRa signals that the LoRa gateway receives
and then forwards to the processing unit for data collection.
Third, by collecting RSSI data systematically at different
distances, it generates a comprehensive dataset that captures
various signal strengths and environmental influences. This
dataset is essential for precise modeling and analysis. Later,
in the analytical phase, which is the fourth phase of our
work, Python is utilized for data processing. The obtained
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FIGURE 1. Flowchart of the methodology.

RSSI data is analyzed using an efficient Kalman filter and
a path-loss model. This stage improves the precision of the
signal and extracts the ambient exponent, a crucial factor
for accurate distance estimations. In addition, it takes into
account unpredictable fluctuations in RSSI values, which are
represented as a Gaussian random variable. This is critical
to the development of a reliable distance estimate model.
This methodology guarantees flexibility and accuracy in
addressing diverse urban signal situations, hence ensuring
the model’s correctness in different settings. The fourth and
final part of our work checks how well the system works by
validating it. This is done by estimating distances from sites
that have not been visited before, processing RSSI signals
using a better mathematical framework, and comparing the
calculated distances with actual measurements to see how
accurate the system is. Our methodology aims to improve the
precision of urban and indoor localization technologies by
integrating sophisticated hardware configuration, extensive
data collection, meticulous analytical processing, and rigor-
ous validation.

For the LoRa gateway device, Figure 2 shows the
RAK7240 WisGate Edge Prime, a durable and adaptable
device designed for secure IoT communication. It offers
compatibility with LoRaWAN Version 1.0.2 and features
dual LoRa concentrators for enhanced network density.
Equipped with GPS, Wi-Fi, LTE, and Ethernet connectivity
options, it ensures precise location tracking and versatile
network integration. Experimentally, it operates within the
920-923 MHz band, adhering to regulatory standards.

Figure 3 presents the UCA Education Board, adapted
for LoRaWAN applications. With compact dimensions
and a miniaturized Printed Antenna, it allows frequency

FIGURE 2. LoRa gateway utilized in the setup.

FIGURE 3. UCA education board for signal generation.

tuning from 845 to 950MHz, accommodating various global
LoRaWAN bands.

A. DATA COLLECTION
The collection of Received Signal Strength Indicator (RSSI)
data, which is crucial to improving distance estimation, was
carried out in two different environments. The data gathering
approach was consistent in both situations, beginning with
the establishment of the LoRaWAN positioning system
to ensure its proper functioning. Different RSSI signals,
each associated with a distinct identifier, were periodically
transmitted by the UCA Education Board. A methodical
methodology was employed to collect RSSI data from
different distances, obtaining 60 sets of RSSI signals at each
specified distance to record oscillations in signal strength.
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FIGURE 4. Data collecting setup.

FIGURE 5. RSSI data collection in the indoor environment.

Data validation encompasses careful documentation of each
distinct identification, associated distances, and pertinent
metrics, which is then followed by a preprocessing phase
to arrange the data for subsequent analysis. The meticulous
gathering of data, conducted in various settings, both indoors
and outdoors, has yielded a strong and indispensable data set
that is crucial for developing an effectivemodel for estimating
distances. This methodology included the possibility of
signal disruption, barriers, and fluctuations in signal intensity
caused by varying distances within a given region.

1) INDOOR ENVIRONMENT
Data collection in the indoor environment occurred within a
10 m x 8 m room with some obstacles was shown in Figure 5,
but the signal path remained largely in line of sight with
minimal obstructions. Data were collected from three nodes
at different distances of 3, 5, and 7 meters.

2) OUTDOOR ENVIRONMENT
In contrast, outdoor data collection was carried out in real-
world conditions, incorporating obstacles such as trees and
walls to replicate scenarios that could influence LoRa signal

FIGURE 6. RSSI data collection in the outdoor environment.

propagation as was shown in Figure 6. Three nodes were used
at different distances within a testing area of 150 m x 100 m,
corresponding to 26.6, 38, and 47.3 meters.

B. DISTANCE ESTIMATION
In the distance estimation process, the RSSI values were
analyzed and calculated using a simulation platform.
An advanced path loss model is introduced based on the
log-distance path loss model [19], as shown in the formula:

RSSI(d) = RSSI(d0) − 10η log10

(
d
d0

)
+ T (1)

where η is the path loss exponent - a parameter that indicates
how rapidly the signal strength decreases over distance in
a specific environment [22], RSSI(d) is the value of RSSI
at d distance from the transmitter, RSSI(d0) is the value of
RSSI at d0 distance from the transmitter (which is often
considered to be 1 meter in various studies [19], [22],
and T is the Standard Deviation, a new element developed
to enhance precision in distance estimation by minimizing
errors generated by environmental factors such as reflection,
fading, interference, noise, and shadowing. By incorporating
T, the enhanced path loss model significantly improves its
adaptability and accuracy in diverse conditions. Furthermore,
the RSSI reference values at distance d0 have been flexibly
adjusted. Through extensive testing and modifications, it was
found that the inclusion of T in the path loss model, a feature
absent from other research, significantly reduces error. The
equation is reorganized to compute the distance, symbolized
by d . The path loss exponent, denoted as η, fluctuates based
on the environmental conditions of the experiment.

d = 10
RSSI(d)−RSSI(d0)−T

10 × d0 (2)

C. PATH LOSS EXPONENT ESTIMATION
The Path Loss Exponent (PLE), also recognized as the path
loss index or coefficient, is a key parameter in wireless
communications. It describes how quickly the received signal
strength (RSS) decreases as distance increases. PLE is
essential to analyze and create distance estimation models
for wireless systems, and its value varies according to the
specific propagation environment. Generally, η (the symbol
for PLE) ranges from 1.6 to 6. It is approximately 2 in free
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space, between 2.7 and 3.5 in urban cellular areas, 3 to 5 in
shadowed urban regions, 1.6 to 1.8 for in-building line-of-
sight, 4 to 6 in obstructed in-building environments, and
2 to 3 in obstructed factory settings [22]. The equation of
the propagation model is then rearranged to calculate the
path loss exponent. The path loss exponent’s value differs
according to the environment used for the experiment.

η =
RSSI(d0) + T − RSSI(d)

10 log10
(
d
d0

) (3)

D. KALMAN FILTER
The Kalman filter is a state estimator that provides an
estimation of an unobserved variable using noise-containing
measurements. It is a recursive algorithm that considers past
measurements [18]. The task is to determine the actual RSSI
using the measurements collected. The conventional Kalman
filter operates under the assumption of linearity within its
models. This implies that both the shift from the present state
to the subsequent one and the translation of the state into
measurement are expected to be linear transformations.

xk = Akxk−1 + ϵk (4)

The current state xk is determined by combining the
previous state xk−1 (using the state transition matrix A) and
the noise ϵk . This noise is called process noise, as it is
caused by the system itself. In the context of this RSSI
filtering application, it is assumed that the device remains
stationary. In addition, the position is considered static during
the measurement period. In essence, a constant RSSI signal
is expected throughout, with any deviations from this signal
interpreted as noise. To reflect this assumption in the model,
matrix A is defined as an identity matrix. This adjustment
results in a significantly simplified model.

xk = Akxk−1 + ϵk ≈ xk−1 + ϵk (5)

The next step in incorporating the Kalman filter involves
specifying the observation model, which describes the rela-
tionship between a specific state (x) and the corresponding
measurement (z). The overall model can be expressed as
follows.

zk = Ckxk + δk (6)

The transformation matrix C represents the transformation
between the state and the measurements. The measurement
noise, denoted as δk , is caused by faulty measurements.
In our model, the received signal strength indicator (RSSI) is
directly modeled, where the state and measurements match.
It results in the subsequent simplified measurement model.

zk = Ckxk + δk ≈ xk + δk (7)

By setting up the two transitions, the prediction step of
the Kalman filter is established. This step describes the
expected state of the system before any measurements are
taken into account. With the presumption of a static system,

the prediction step and the error covariance are defined as
follows.

x̂−

k = x̂k−1 (8)

P−

k = PK−1 + Q (9)

The distinction between x and x̂ lies in the fact that x̂
represents our estimation, while x represents the true value
of the state. The presence of a negative sign above x̂ and
P indicates that it is only a prediction which needs to
incorporate additional information from the measurement. P
determines the certainty of our estimate, which is based on
the previous certainty and the process noise R that accounts
for the noise generated by the system itself. The process
noise R can be taken by calculating the variance of a set of
RSSI values, which is the squared standard deviation. And
the estimation value x̂ is the mean RSSI of the data set. In the
research, the process noise R is assigned a low value (e.g.
0.01) since it is claimed that most of the noise originates
from the measurements. By utilizing the prediction estimate,
Kalman gain is calculated. In the static system, a simplified
version of the typical Kalman gain is employed.

Kk = P−

k (P
−

k + R)−1 (10)

serves as a factor that determines the balance between con-
fidence in our estimation and reliability of the measurement,
which is influenced by the presence of measurement noise (R)
and estimation error (P). In situations where our prediction
of the system is highly uncertain (i.e., P is large), it is
advisable to place more trust in the measurement. Similarly,
if the measurement noise is minimal (i.e. Q is low), it is also
recommended to rely on the measurements. In such cases,
the Kalman gain will be high. Conversely, if we have a high
level of confidence in our prediction of the system and/or the
measurement noise is substantial, the Kalman gain will be
low. This directly affects the update step.

x̂k = x̂−

k + Kk (zk − x̂−

k ) (11)

Pt = P−
t − (KkP−

t ) (12)

During the update step, the final estimation of the system
is calculated, denoted as x̂k , as well as the estimation
uncertainty, P. The Kalman gain plays a crucial role
in determining the extent to which the measurement is
incorporated into the state estimate. A higher Kalman gain
implies a greater integration of the measurement, while
a lower Kalman gain indicates a higher level of trust in
the estimation and a lesser reliance on the measurement
information. This characteristic of the Kalman filter can be
visualized as follows. At every step, the Kalman filter decides
how much of the measurement it takes into account based on
the certainty of the measurements.

In this research, Kalman filter’s parameters are adjusted to
fit the research objectives. Firstly, noise within the system is
crucially examined through two parameters: Q, representing
internal process noise, and R, reflecting measurement noise.
Given the system’s stability, Q is set low to signify minimal
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FIGURE 7. The RSSI values in the indoor environment.

internal noise, while R is intentionally higher to account for
measurement noise. For the analysis, Q is initialized at a
low value, near zero, and R is estimated from the standard
deviation of the Received Signal Strength Indicator (RSSI)
signal. Secondly, for the RSSI filtering application, it is
assumed that the device remains stationary. Furthermore,
within the timeframe of the measurements, the gateway
position is considered static. In essence, a constant RSSI
signal is expected over time, with any variations being
classified as noise. Thus,A andC are set to 1. Lastly, the initial
estimation x̂−

k is set to the average value of the RSSI signals
in order to achieve a faster Kalman estimation.

E. ERROR ESTIMATION
The distance error is defined as the absolute of the distance
between the estimated distance and the original one. The error
is calculated as:

Error = |dest − dreal | (13)

In this equation, dest is the estimated distance with T value
and dreal is the actual distance from the transmitter to the
receiver. Once the errors for all the tests performed are
determined, an average can be taken. The resulting value of
the mean error(ME) was then calculated as:

ME =
1
n

n∑
i=1

Errori (14)

IV. RESULTS
A. INDOOR ENVIRONMENT
As Figure 7 shows, the farther the distance, the smaller the
RSSI values. Also, the RSSI level varies a lot when we
measure it. The RSSI fluctuation at each distance can reach
up to 3 dBm. This is because signal transmission suffers
from multipath fading. The RSSI values were measured in a
small space that contained only tables and some devices that
could not cause significant interference in the area, creating
a low-noise environment for testing.

Then the Received Signal Strength Indicator (RSSI) in the
log-distance model (formula 1) is utilized to estimate the path

FIGURE 8. Measured environmental exponent.

FIGURE 9. Filtered path loss exponents.

loss exponent η for the environment at distances d equal to 3,
5, and 7 meters, respectively, with a reference distance d0
equal to 1 meter.

As shown in Figure 8, the path loss exponents are very
small between 1 to 3 meters, indicating that the environment
has a relatively weak impact on the Received Signal Strength
Indicator (RSSI) value when the receiver is close to the
transmitter. However, the η values increase significantly
when measured at distances of 5 to 7 meters. This increase is
due to factors such as signal reflection, fading, interference,
and noise in the transmission environment.

Subsequently, Kalman Filter applied to estimate the path
loss exponent of the environment. Since the path loss
exponent has a weaker impact at close distances, for example,
at 1 to 3 meters, the analysis focuses on the data collected at
5 to 7 meters. Figure 9 shows the comparison of the path loss
exponent estimation with and without the Kalman filter. The
red line represents the path loss exponent estimation without
the Kalman filter, while the blue line represents the path loss
exponent estimation with the Kalman filter.

Furthermore, the average of estimates provided by the
Kalman filter is taken to determine the path loss exponent.
The estimated path loss exponent of the indoor environment
is 2.103. For the next step, a test set of RSSI values from
an unknown distance is collected, and then use the path loss
exponent of the environment to estimate the real distance.
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FIGURE 10. Filtered RSSI values of the first unknown distance.

TABLE 2. Distance estimation and error of indoor environment.

After we collect the new data, the Kalman filter is applied to
minimize the fluctuation of the RSSI values. In figure 10, the
red line is the RSSI values without the Kalman filter, whereas
the blue line is the RSSI values with the Kalman filter.

As the figure 10 shows, the set of rawRSSI data varies from
−39 dBm to −46 with a standard deviation of 1.73 dBm and
an average value of −41.86 dBm. When the Kalman Filter
is applied, the estimated RSSI at this unknown distance is
−42.28 dBm with the standard deviation of only 0.5 dBm.
For the next step, the distance estimate is made by formula 2.
The result is 4.241 meters. Furthermore, data are collected
at a distance of 5 meters. Later, the same process is applied
to calculate the distance for 3 more different RSSI data sets.
Resulted in the following table 2:
As Table 2 shows, the longer the distance from the receiver

to the transmitter, the lower the RSSI value and the greater
the overall standard deviation (T value). This can be easily
explained by the increase of reflection, fading, interference,
and noise from an environment when we increase the
distance. While the estimations of 3.5, 4, and 5 meters take
the reference value of 1 meters, the estimation of 7.5 meters
actually takes the reference RSSI value of 5 meters. This is
because when we look at the path loss exponent estimation
in Figure 8, the value η of 5 to 7 meters is actually higher
than that of 1 to 5 meters. Therefore, if an RSSI reference
value of 1 meter was taken for all estimates, the precision
would be reduced. Furthermore, the new T element in the
path loss model also significantly decreases the system error.

FIGURE 11. Distance estimation comparison graph of indoor
environment.

Therefore, regardless of a highly fluctuated RSSI data set,
a careful application of the path loss model as well as
a well-programmed Kalman filter are very crucial in the
calculation of distance.

Figure 11 presents a visual comparison of indoor distance
estimations utilizing the proposed RSSI-based model with
and without the T value. The inclusion of T significantly
refines the distance estimations, as illustrated by the prox-
imity of the ‘Estimated distance with T’ bars to the ‘Real
distance’ bars. The raw RSSI data (in dBm) is used to
estimate distances at various points, which are 3.5 meters,
4 meters, 5 meters, and 7.5 meters respectively. The graph
clearly demonstrates the enhanced accuracy of our model
with T. This marks a substantial improvement, showcasing
the effectiveness of our advanced path lossmodel andKalman
filter in mitigating the impact of environmental noise and
signal reflection within indoor settings.

Following that, we collected 50 data points at random
positions within the testing range of 3 to 7 meters. The ME
for indoor measurements is 0.565 meters

B. OUTDOOR ENVIRONMENT
As Figure 10 illustrates, RSSI measurements collected out-
doors at distances of 26.8 meters, 38 meters, and 47.3 meters
show a reduction in signal strength as distance increases.
The graph displays significant signal fluctuations, which is
common in outdoor scenes due to obstacles such as walls,
trees, and other structures that induce multipath fading. The
signal of the outdoor environment suffers from noise more
than the signal of the indoor signal in the previous exper-
iment. Therefore, RSSI values in the outdoor environment
fluctuate more significantly than in the indoor environment.
In particular, the substantial variability at 38 meters suggests
a dense presence of such obstacles, resulting in enhanced
interference at this range and contributing to a challenging
noise environment for testing and analysis. These data
emphasize the need for environmental considerations in the
effective management and mitigation of signal degradation
and variability, which is crucial to maintaining strong and
reliable LoRaWAN signal communication.

Then the RSSI in the log-distance model (formula 3)
is applied to estimate the path loss exponent η for the
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FIGURE 12. RSSI data collection in the outdoor environment.

FIGURE 13. Path loss exponent measured of the outdoor environment.

FIGURE 14. Filtered path loss exponent of the outdoor environment.

environment at distances d equal to 26.8, 38, 47.3 meters,
respectively, and the reference distance d0 equal to 1 meter.
As Figure 13 shows, the graph reveals data fluctuations

due to environmental noise interference, requiring attention.
Subsequently, the Kalman Filter is utilized to estimate the
path loss exponent of the environment by isolating the true
signal from the noise-induced variance. Figure 14 shows the
comparison of the path loss exponent estimation graph with
and without the Kalman filter.

FIGURE 15. Filtered RSSI values of the unknown outdoor distance.

TABLE 3. Distance estimation and error of outdoor environment.

Next, the average of estimates provided by the Kalman
filter is taken to determine the path loss exponent. The
estimated path loss exponent for the outdoor environment is
2.691. Subsequently, a test set of RSSI values is gathered from
an unidentified distance and employ the path loss exponent
of the environment to calculate the actual distance. Following
data collection, Kalman Filter is utilized to reduce RSSI value
fluctuations. Figure 15 illustrates this, the red line is the RSSI
values without the Kalman filter whereas the blue line is the
RSSI values with the Kalman Filter.

As depicted in the Figure 15, the initial RSSI dataset ranges
from −77 to −83 dBm, showing a standard deviation of
2.15 dBm and an average value of −65.62 dBm. Following
the application of the Kalman Filter, the estimated RSSI at
this unidentified distance becomes −67.56 dBm, featuring a
significantly reduced standard deviation of only 0.56 dBm.
Subsequently, distance estimation is performed using the
propagation model formula 2, which yields a result of
49.3 meters. It is worth noting that the data was originally
collected from a distance of 56.8 meters, resulting in an error
of 7.5 meters. Later, we used the same process to test 3 more
RSSI data sets. The results are displayed in Table 3:

Figure 16 illustrates the comparative effectiveness of
our distance estimation method in an outdoor environment,
taking into account the dynamic path loss model with and
without the adjustment value T. As observed, the estimations
with the T value applied show a closer alignment with the
real distances recorded, emphasizing the model’s ability to
contend with the complexities of outdoor signal propagation,
including the effects of urban clutter and natural obstacles.
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FIGURE 16. Distance estimation comparison graph of indoor
environment.

FIGURE 17. CDF distance error of indoor environment.

The raw RSSI data provided estimates for distances spanning
40 meters to 90 meters. The graph reveals our methodology’s
capacity to decrease the outdoor estimation error, with the
largest improvement noted for distances beyond 50 meters,
where environmental factors are most impactful.

Later, 50 points of data at random positions in the range
of 30 to 90 meters were collected. The ME for outdoor
measurement is 4.8 meters.

C. CDF
Figure 17 and 18 shows the cumulative distribution of error
for 50 random indoor and outdoor points, respectively. The
measurement range for indoor is 3 to 7 meters, and for
outdoor is 30 to 90 meters. The red line represents the
cumulative distribution of error when the T value is utilized
in the system and the blue line represents the cumulative
distribution of error without the T value in the system.
As can be seen from Figure 17, the red line is higher than

the blue line in the y axis. The proof is that 90% of the
estimated distance has an error smaller than 1.08 meters for
the system in which the T value is implemented, while for the
systemwithout the T value 90% of error is below 1.98 meters.

Figure 18 illustrates the cumulative error distribution in
an outdoor setting. Similar to the earlier figure, the system
incorporating the T value exhibits notably lower direct errors
compared to the system lacking the T value. This is because,

FIGURE 18. CDF distance error of outdoor environment.

in the system with the T value, 90% of the distance estimates
have errors less than 7.55 meters, whereas in the system
without the T value, 90%of the errors are under 21.22meters..
Additionally, the maximum error recorded for the system
incorporating the T value is 8.6 meters, in contrast to
24.6 meters for the system lacking the T value. This explains
the presence of a long horizontal red line in the figure. It also
suggests that the research method is more effective in noisy
environments.

V. DISCUSSION
This paper presents findings that confirm the viability and
illuminate the achievable outcomes and critical elements of
distance estimation using RSSI-based methods in LoRaWAN
networks. The Path Loss Exponent (PLE), indicating the
rate at which received signal strength (RSS) diminishes
with increasing distance, is significantly lower in indoor
environments (2.103) compared to outdoor environments
(2.691). This is because outdoor signals are more affected
by noise than indoor signals. Additionally, the outdoor
environment is cluttered with obstacles like walls, trees, and
various structures that lead to multipath fading, whereas
the indoor environment mainly consists of tables and a few
devices, which do not significantly disrupt the signal.

Moreover, adding the new element T to the path loss
model significantly enhances the system’s accuracy. The
indoor CDF figure shows that 90% of the distance estimates
with the T value have an error smaller than 1.08 meters,
compared to the system without the T value where 90%
of the errors are less than 1.98 meters, nearly doubling
the error rate of the system with the T value. Additionally,
for outdoor CDF, 90% of the distance estimates in the
system with the T value have errors below 7.55 meters,
in contrast to the system lacking the T value, where 90%
of the errors do not exceed 21.22 meters, almost tripling
the error rate. These figures demonstrate that the addition
of T to the path loss model substantially decreases the
system’s inaccuracies. This system is likely to provide more
accurate distance measurements across various conditions,
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particularly in outdoor environments, as it significantly
reduces errors compared to indoor measurements.

Additionally, the Mean Error (ME) for indoor estimations
stands at 0.565 meters, representing approximately 0.0807 to
0.188 of the measurement range of 3 to 7 meters. In contrast,
the ME for outdoor estimations reaches 4.8 meters, which
corresponds to 0.053 to 0.159 of the measurement range
of 30 to 90 meters. These results indicate that the ME for
outdoor measurements is significantly higher than for indoor
measurements. Nevertheless, the proportion of error relative
to the measurement range is marginally lower in outdoor
measurements compared to indoor measurements.

Despite its positive outcomes, the system has several
limitations. First, it necessitates a thorough examination of
the environment, requiring a significant amount of data from
the measurement area to gather all essential figures and
conditions for the advanced path lossmodel andKalman filter
parameters to function correctly. Second, using the system
to measure distances in locations outside the test area leads
to greater inaccuracies, potentially causing system failures.
Lastly, the system is only effective with stationary objects; its
accuracy drops markedly when used with moving entities like
vehicles or pedestrians. However, continuous research and
development are being conducted to resolve these problems
and improve the system’s efficacy. In the future, efforts are
being made to incorporate advanced machine learning and
positioning techniques to improve the system efficiency

VI. CONCLUSION
A location estimate algorithm has been successfully created
using the log-distance propagation model and Kalman filter,
based on LoRa technology. The Received-Signal-Strength
(RSS)-based technique successfully mitigates the accuracy
limitations arising from environmental fluctuations, such as
reflection, fading, interference, or noise. It has been deter-
mined that considering environmental fluctuations is equally
important as accurately calculating distances. In indoor situa-
tions, the path loss exponent is at its lowest between lengths of
1 to 3 meters. However, as the coverage extends to distances
of 5 and 7 meters, the influence of the surroundings on signal
strength and stability becomes notably more pronounced,
resulting in a substantial elevation of the path loss exponent.
The exponent is determined by both the distance and the
specific qualities of each environment, as demonstrated
by the distinct path loss exponents in indoor (2.103) and
outdoor (2.691) settings. Furthermore, the incorporation of
the Kalman filter into the log-distance propagation model
has resulted in improved precision and stability of the
results. The utilized method resulted in ME (Mean Error) of
0.565 meters for the indoor estimation and 4.8 meters for
the outside estimation. For the CDF at fixed position, 90%
of the distance estimates have errors less than 1.08 meters
for indoor environment and less than 7.55 meters for outdoor
environment. Implementing the adjusted path loss model
and the Kalman filter has demonstrated efficacy in reducing
the influence of environmental factors on signal accuracy.

In the future, the objective is to incorporate advancedmachine
learning and positioning techniques. such as fingerprinting
or trilateration, to improve the precision of the system. The
goal is to present a novel locating system that overcomes the
limitations of GPS while maintaining exceptional precision
and stability. This study represents progress toward achieving
that goal, showcasing the potential of LoRa technology to
improve future localization techniques.
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