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ABSTRACT Microgrids driven by distributed energy resources are gaining prominence as decentralized
power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid
operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and
varying grid electricity prices. This paper presents an Al-driven day-ahead optimal scheduling approach for
a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm
generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power
generation and building load consumption. The approach aims to minimize operational costs and ensure
microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results
conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs
under Sri Lanka’s current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive
demand response management has the potential to minimize costs further. This research contributes to
microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.

INDEX TERMS Microgrid, optimizing, genetic algorithm, machine learning, decision trees, demand
response strategies, renewable energy, battery energy storage, sustainability.

NOMENCLATURE
GENERAL TERMS

BESS - Battery Energy Storage System, used for storing
electric charge for later use.

DR - Demand Response, strategies to adjust demand for
power instead of adjusting the supply.

GA - Genetic Algorithm.

PSO - Particle Swarm Optimization Algorithm.
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VARIABLES AND PARAMETERS

Pret - Net load, the difference between power consump-
tion by the building and power produced by solar panels.
C, - Total cost for a given day, including electricity cost,
battery degradation cost, and DR penalties.

E (X)) - Electricity cost function.

B(X1) - Battery degradation cost function.

P(X3) - Demand Response (DR) penalty function.

SOC - State of Charge, representing the current energy
level as a percentage of its maximum capacity.

DoD - Depth of Discharge, indicating the percentage of
battery energy used.
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e ASOH - Change in State of Health of the battery.

¢ OMmaXx - Maximum rated charge of the battery (Depre-
cated, use QMAX instead).

o Ncycle - Number of life cycles of the battery.

« [ - Charging/discharging current.

e ¢ — rate -A measure used to describe the rate at which a
battery is charged or discharged relative to its capacity.
It is defined as the current in amperes (A) that is either
charged or discharged from the battery, divided by the
battery’s capacity in ampere-hours (Ah).

o SOH - State of Health.

o Qo - State of Charge (SOC) at 1.

e Q1 - State of Charge (SOC) at 1.

o OMAX _ Maximum rated charge of the battery, super-
sedes OmaX.

INDICES AND SETS
— t - Time slot index.
— T - Total number of time slots in a scheduling
horizon.
— i - Index for flexible loads.
— M, M, - Number of Type I and Type II flexible
loads, respectively.

I. INTRODUCTION

This research is an extension of our previous work [1].
This significantly extends the research presented in the
previous work [1] by providing a detailed analysis of battery
degradation modeling, And it introduces an enhanced genetic
algorithm with a novel crossover operation and warm restart
capability, leading to more effective optimization of the
microgrid’s operational strategy. Additionally, this paper
explores a wider range of forecasting algorithms, further
refining the prediction accuracy for solar power generation
and load consumption. These advancements collectively
contribute to achieving higher cost reductions.

The transition towards sustainable energy systems is vital
for combating climate change and reducing dependence
on fossil fuels. The importance of renewable energy in
addressing climate change and decreasing our dependence on
fossil fuels positions microgrids as a pioneer of sustainable
power systems. They play a crucial role in improving the
stability and reliability of local networks, especially when
dealing with the unpredictable nature of renewable energy
sources like solar and wind, as well as varying power
consumption patterns.

Since microgrids can incorporate renewable energy
sources, they lower greenhouse gas emissions [2] aand
advance sustainability at the local level by utilizing solar,
wind, or other clean energy technologies [3]. In addition,
Microgrids enhance the resilience and reliability of electricity
supply, catering to dynamic consumption patterns through
a mix of energy sources [3], [4]. Figure 1 [5] illustrates a
microgrid system, exemplifying such an integrated approach.
Additionally, microgrids provide the adaptability to inte-
grate cutting-edge technologies and energy management
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techniques, like energy management optimization and
demand response, enabling more effective and reliable energy
systems.

A microgrid is an independent energy system that works
connected with a larger power grid or in islanded mode.
The autonomy of microgrids allows islanded operations [6].
It can, in other words, disconnect from the main grid and
keep supplying power to its neighborhood [6]. This ability
is especially useful in times of grid disruption or emergency
because the microgrid can keep running life-saving facilities
like hospitals, schools, or emergency response centers.
In addition to renewable energy sources these power sources
often include conventional generators powered by diesel or
natural gas [4] to ensure the reliability during emergencies.
In Figure 2, it is presented an image showcasing the microgrid
system at the University of Moratuwa.

The purpose of microgrids is to balance local energy
supply and demand [7] reliably and optimally. They optimize
electricity production and consumption using cutting-edge
control and monitoring systems, ensuring effective operation
and grid stability. A microgrid consists of a network of
localized power sources, energy storage systems, and loads
that are all controlled by sophisticated control systems [8].
Energy storage systems, notably batteries, play a pivotal role
in reducing grid dependency and balancing energy supply
[9]. A grid connected microgrid can minimize electricity cost
by storing excess energy when demand is low(when main
grid electricity prices are low) and releasing it during peak
hours(main grid electricity prices are high). Energy storage
devices, such as batteries, play a critical role since they can
store and supply energy based on requirements [9], [10], [11],
[12].

Microgrid optimization involves finding the most efficient
and cost-effective way to manage energy resources within a
microgrid [13]. The goal is to meet the energy demands of
the microgrid while minimizing costs, maximizing reliability,
and ensuring stable operation. This optimization process
includes optimizing the allocation and utilization of available
resources, such as battery charging, discharging, and load
scheduling. By effectively managing energy, microgrids
can reduce their operational costs while improving the
reliability.

However, this optimization task is challenging and requires
sophisticated approaches due to the various constraints asso-
ciated with microgrid operation. This optimization problem
faces hurdles such as the intermittency of renewable sources,
electricity price variability, resource allocation, minimizing
operational costs, and mitigating battery degradation [13],
[14], [15]. In addition, the optimal scheduling solution must
consider a range of constraints related to Microgrid operation
to ensure smooth and effective energy management [16].
Finding the optimal solution involves considering factors
such as load demands, resource availability, and operational
limitations.

Several challenges and considerations are involved in
microgrid optimization:
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FIGURE 1. lllustration of a microgrid system. [5].

1) Intermittency of Renewable Energy Generation:
The renewable energy intermittency and market
dynamics together require sophisticated algorithms
for energy forecasting and cost-effective energy
management.

2) Time variability of electricity prices:

Microgrids can be connected to the main grid to
exchange energy when needed. The time variability
of electricity prices is a challenge in microgrid
optimization [14]. This involves aligning consumption
with lower-priced periods and leveraging real-time data
analytics [17].

3) Resource allocation:

Microgrid optimization involves determining the opti-
mal allocation of resources, such as battery storage
and dispatchable generators, to meet energy demand
effectively. This includes deciding when to charge or
discharge the batteries, when to start or stop generators,
and how to balance the load [14].

4) Fuel Cost minimization:

Microgrid optimization aims to minimize the overall
operational costs by optimally utilizing non-renewable
energy sources such as diesel generators which have
high fuel costs [17].

5) Battery degradation:

Battery degradation is a significant challenge in
optimizing microgrids. As batteries degrade over time,
their performance and energy storage capacity decline.
This leads to the need for costly battery replacement or
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refurbishment [15]. Addressing the effects of battery
degradation is a significant challenge in microgrid
optimization since the capital cost of the battery is
considerably high.

Several approaches have been proposed to tackle chal-
lenges in microgrid optimization. Ross et al. [6] introduced
a backcasting algorithm to address the intermittency of
renewable energy generation and market dynamics, achiev-
ing a reduction of up to 8.14% in the average cost of
energy. However, their approach primarily focuses on energy
forecasting and cost optimization, neglecting considerations
such as battery degradation and demand response dynamics.
Goh et al. [18] formulated an energy optimization framework
considering uncertainty in renewable energy and carbon
trading markets. Their approach provides a stable operation
scheme for microgrids and aids in reducing carbon emissions.
However, their focus on uncertainty analysis leaves out
considerations like solar and load forecasting, limiting the
holistic optimization potential of the microgrid.

Yang et al. [19] developed a multi-objective optimal
scheduling model for island microgrids, effectively address-
ing the uncertainty of renewable energy output and empha-
sizing the economic and stability aspects of microgrid
operations. Nevertheless, their reliance solely on Monte
Carlo methods for uncertainty estimation overlooks the
potential benefits of incorporating advanced forecasting
techniques. Wu and Wang [20] explored the integration of
traditional methods with deep reinforcement learning (DRL)
for microgrid energy management. While their approach
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shows promise in handling stochastic system dynamics,
it lacks focus on load forecasting and scheduling, crucial
components for effective microgrid operation and control.

Wen et al. [21] developed an optimal load dispatch model
for community microgrids based on deep learning-based
forecasting, showcasing improved forecasting performance
and cost reduction of 8.97%. However, their separation
of forecasting and optimization models highlights a gap
in understanding the dynamic interaction between these
components, crucial for real-time optimization.

Overall, existing literature has made significant strides
in addressing various challenges in microgrid optimization,
such as energy forecasting and uncertainty analysis. However,
there remains a notable gap in comprehensive approaches
that integrate forecasting, battery degradation, and demand
response dynamics into optimization frameworks to achieve
truly optimal microgrid scheduling. Among these challenges,
the significant gap in existing research is the comprehensive
consideration of battery degradation. Most studies overlook
the impact of battery degradation on the efficiency and
cost-effectiveness of microgrid operations. This oversight can
lead to underestimation of operational costs and overestima-
tion of system performance over time.

The day-ahead or week-ahead scheduling for microgrids
relies on forecasted load consumption and power generation.
The reliability of optimal schedule is thus highly dependent
on the forecasting accuracy [22]. Forecasting uncertainties
can cause the generated schedule to incur higher costs than
anticipated, which can also make it challenging to balance
the supply and demand of the microgrid effectively [23].
The difficulties of predicting power output and demand
in microgrid systems are discussed by Dutta, et al. [22],
particularly for renewable energy sources whose output is
erratic and intermittent. The suggested strategy is based on
the persistence method, which relies on historical power
data instead of numerical forecasts. Traditional machine
learning models for forecasting have limitations [24], such as
requiring large datasets and having relatively low accuracy.

Deep learning-based forecasting can suffer from lengthy
training times. As a result, Park, et al. [25] propose an
accurate Multistep-Ahead (MSA) solar radiation forecasting
model based on the gradient boosting machine (LightGBM).
LightGBM is highlighted for its speed and accuracy in
handling large datasets.

Many researchers have attempted to solve the optimal
scheduling problem of a microgrid, but several challenges
remain unaddressed. A hierarchical Genetic Algorithm
(GA) and a Fuzzy Inference System (FIS) are used in
Leonori, et al.’s work [26] to improve the efficiency of an
Energy Management System (EMS) for energy exchange
with the grid. They also incorporate a battery degradation cost
model to aid in predicting the battery’s remaining lifetime and
reducing degradation costs.

Advanced optimization techniques are employed to tackle
this complex problem and provide the most effective
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scheduling solution for microgrid energy management [16],
[27]. Common optimization techniques used in microgrid
scheduling include linear programming [28], Mixed Integer
Linear Programming [28], genetic algorithms [29], and
particle swarm optimization [30]. These methods help in
balancing energy generation and consumption, minimizing
costs, and ensuring reliable operation.

Genetic algorithms (GAs) offer several advantages over
alternative methods. Unlike linear or quadratic programming,
GAs can effectively capture nonlinear relationships and
multiple conflicting objectives [31], making them suitable
for multi-objective optimization tasks. It initiates with a
pre-defined set of a population of several individuals, each
represented by a chromosome that corresponds to a potential
optimization solution. GA leverages crossover and mutation
operations to generate diverse solutions and uses selection
operations to retain the fittest individuals. The process is
repeated until a workable solution is found or a termination
condition is satisfied.

To address the challenges of operating a grid-connected AC
microgrid, we have developed and implemented a day-ahead
optimal scheduling approach. Our proposed strategy was
tested on the University of Moratuwa microgrid(Figure 2),
which currently uses its battery storage system only as a
backup storage incurring higher operating costs. Our goal
was to minimize the overall operational costs by utilizing
the resources of the microgrid while maintaining a consistent
electricity supply to the loads.

Figure 2 illustrates the components of the grid-connected
AC microgrid system of University of Moratuwa. By opti-
mizing the scheduling of the battery energy storage system
and loads, we aimed to increase the microgrid’s efficiency
and reduce its operational costs. To achieve this, the pro-
posed model uses Genetic Algorithm and demand response
schedules are also generated alongside the optimal battery
dispatch plan in the developed model. LightGBM, a decision
tree-based machine learning method [32], is used to predict
solar and load profiles and optimize the microgrid scheduling.
The impact of battery degradation is also considered, with
a simple and practical battery degradation cost estimation
model. Through simulation results, we have demonstrated the
effectiveness of our proposed approach for the University of
Moratuwa microgrid shown in Figure 2.

This research presents an approach to day-ahead schedul-
ing for grid-connected AC microgrids, with a primary focus
on minimizing costs and enhancing operational efficiency.
Through the integration of Genetic Algorithm and Light-
GBM for predictive and optimization purposes, our method
uniquely addresses the challenges inherent in microgrid man-
agement. Tested on the University of Moratuwa microgrid,
our approach demonstrates significant operational cost sav-
ings. Moreover, our research fills a crucial gap in the literature
by incorporating a comprehensive analysis of battery degra-
dation effects into our optimization model, thereby providing
a more realistic assessment of microgrid sustainability and
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FIGURE 2. Diagram of the main components and connections of the
University of Moratuwa Microgrid.

cost management strategies. The novel application of genetic
algorithms in microgrid scheduling is a key highlight of
our study, introducing tailored chromosome representations,
innovative crossover and mutation techniques, and strategic
warm restart strategies to enhance solution exploration of
the multi-objective optimization problem and efficiency.
These advancements underscore the adaptability and efficacy
of genetic algorithms in navigating the complex dynamics
of microgrid optimization, offering scalable and practical
solutions for sustainable energy management.

The remainder of the paper is organized as follows:
Section II delves into the impacts of battery degradation
on microgrid optimization; Section III provides an overview
of the system architecture, including forecasting and opti-
mization frameworks; Section IV discusses mathematical
modeling for optimization; Section V outlines the method-
ology, including forecasting techniques and optimization
algorithms; Section VI presents test results and discussions,
focusing on data acquisition, forecasting accuracy, and
optimization results.

Il. BATTERY DEGRADATION IN MICROGRID
OPTIMIZATION

Batteries play a crucial role in microgrid systems, revolu-
tionizing energy storage, management, and distribution. They
enable efficient energy management by storing excess energy
during low-demand or high-renewable generation periods
and releasing it during high-demand or limited renewable
supply periods. The degradation of Battery Energy Storage
Systems (BESS) presents the most serious challenge among
the various components of a microgrid due to several reasons:

o The cost of BESS is significant within a microgrid
infrastructure, yet its lifespan is comparatively shorter.

o BESS degradation is closely tied to usage patterns.
The way batteries are dispatched directly impacts their
degradation rate.

While the degradation of other microgrid components
such as inverters occurs at a slower pace, their impact
is less dependent on usage patterns. Hence, there is
no specific advantage in considering the degradation
of these components. Therefore, our focus is primarily
on BESS degradation, as the monetary cost associated
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with the degradation of other components is considered
insignificant.

The higher replacement costs of batteries significantly
influence the economic viability of microgrid systems.
An optimal solution for managing a microgrid must, there-
fore, incorporate strategies to mitigate battery degradation.
Battery degradation, significantly influenced by chemical
reactions, aging, and charging patterns, presents a critical
challenge in microgrid optimization [15], [33].

Research by Koller et al. [15], Zhao [33], Xing [34], and
Leonori et al. [26] underlines the importance of integrating
degradation costs into battery energy storage system (BESS)
management to mitigate operational and replacement costs,
which are significant components of microgrid expenses [35].

BESSs, notably Lead-Acid and Lithium-Ion batteries,
exhibit finite lifecycles, with operational costs often simpli-
fied to constants like the Levelized Cost of Energy (LCOE)
[35]. Ahsan et al. propose a dynamic model accounting
for conversion efficiency and degradation’s impact on SoC,
aiming to reduce microgrid operational costs by up to
12% [35].

This approach not only reduces the need for frequent
replacements but also optimizes the overall operational costs
of the system, making sustainability and efficiency key
factors in microgrid management.

A. BATTERY DEGRADATION FACTORS

Battery degradation significantly affects performance and
longevity, influenced by factors like temperature, depth of
discharge (DoD), state of charge (SoC), and charge/discharge
rates measured as C-rate ((1)). High temperatures and
extreme SoC levels accelerate degradation, while high DoD
and c-rates cause structural and chemical stress, reducing
battery life. Optimizing these factors through thermal man-
agement, maintaining moderate SoC levels, and minimizing
high c-rates can extend battery lifespan, crucial for efficient
microgrid operation. [33].

Charging/Discharging Current (in amperes)
C-rate = F— (H
Battery Capacity (in ampere-hours)

1) IMPACT OF TEMPERATURE ON BATTERY DEGRADATION
Temperature significantly influences battery degradation,
with high temperatures speeding up the chemical reactions
inside batteries, thereby reducing their capacity and lifespan.
This acceleration in degradation is due to faster chemical
reactions and increased self-discharge rates at elevated
temperatures, which can also lead to thermal runaway, posing
risks of failure or combustion [36], [37].

Conversely, low temperatures impair battery power
delivery, voltage, and capacity, until the temperature
rises. Different batteries have optimal temperature ranges,
with lithium-ion batteries being particularly sensitive to
high temperatures, and lead-acid batteries exhibiting more
tolerance [36].
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FIGURE 4. Regression curve of Li-ion battery cycle-life vs DOD [36].

However, temperature’s impact on battery performance can
be effectively managed in microgrids through robust climate
control systems, including heat sinks, thermal insulation, and
active cooling, to maintain optimal conditions and mitigate
degradation [35]. According to Figure 3, the temperature
dependence of battery life is less in normal operating temper-
atures. By adhering to recommended temperature ranges and
using advanced thermal management, the negative effects of
temperature on batteries can be minimized, making it a less
critical factor for degradation in controlled environments.

2) DEPTH OF DISCHARGE (DOD) AND ITS EFFECTS

Depth of discharge (DOD) plays a crucial role in battery
degradation, indicating the percentage of energy used from
a battery relative to its total capacity [35]. A higher DOD
means the battery has been more deeply discharged, which
intensifies chemical and structural stresses during charge and
discharge cycles, accelerating degradation.

A logarithmic relationship between cyclelife and DoD is
obtained for a Li-ion battery in [36] and the relationship is
given in (2). o and B are regression coefficients representing
the relationship of DoD and cyclelife of a particular battery.
BESS manufacturer datasheets [38] provide this relationship
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and the data is used to estimate the regression coefficients.
Cycle Life = « - log(DoD) + 8 2)

The Figure 4 illustrates this logarithmic relationship
and cycle life of Lithium-ion batteries decreases as the
DOD of charging cycles increases [36]. This relationship is
crucial for understanding how to optimize battery usage to
extend its lifespan. High DOD levels can cause electrode
damage, electrolyte breakdown, and mechanical stress,
which diminish capacity and cause physical degradation.
Conversely, maintaining batteries within recommended DOD
limits can reduce stress and enhance longevity, underscoring
the importance of managing DOD to mitigate its effects on
battery health.

3) STATE OF CHARGE (SOC) AND ITS ROLE IN
DEGRADATION

The State of Charge (SOC) is a key factor in battery health,
representing the current energy level as a percentage of its full
capacity. Extreme SOC levels, either very high near 100%
or very low close to 0%, significantly contribute to battery
degradation. At high SOC, stress on internal components
increases, leading to enhanced chemical activity and elevated
temperatures, which harm battery performance. Conversely,
low SOC strains the battery’s active materials, shortening its
lifespan. To minimize degradation, it’s advised to keep the
SOC between 20% and 80%. Effective battery management
systems and charging strategies are essential for maintaining
optimal SOC ranges, thus extending battery durability and
efficiency.

4) CHARGE AND DISCHARGE RATES (C-RATE) AND THEIR
INFLUENCE

Charge and discharge rates, known as c-rates, critically
affect battery degradation. The c-rate measures how quickly
a battery is charged or discharged in comparison to its
total capacity. Charging or discharging at high c-rates puts
the battery under significant stress, leading to more heat
production. This increase in temperature speeds up chemical
reactions within the battery, causing a quicker degradation of
its active materials and reducing its overall lifespan. High
c-rates can also inflict mechanical and structural damage,
exacerbating degradation.

Conversely, employing slower charge and discharge rates
can alleviate stress on the battery. It helps in minimizing heat
production and slowing down chemical reactions, which aids
in reducing degradation and prolonging the battery’s lifespan.

B. BATTERY DEGRADATION MODEL

BESS manufacturers typically estimate the number of
operational cycles under specific charging and discharging
conditions before the BESS undergoes degradation and can
only retain 70-80 % of its original energy capacity [38]. How-
ever, various factors like temperature, state of charge (SoC)/
depth of discharge (DoD), and charging and discharging
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current/power can accelerate the degradation of BESS and
reduce its lifespan. [15].

The state of charge (SoC) refers to the amount of remaining
capacity within a battery relative to its fully charged state.
It is typically expressed as a percentage, where 100%
indicates a fully charged battery and 0% indicates a fully
discharged battery. Depth of discharge (DoD) measures the
extent to which a battery’s capacity has been utilized during
a single discharge cycle, expressed as a percentage of its
total capacity [36]. For instance, a battery at to 60% DoD
if full capacity means that the SOC is 40%. SoC or DoD
are very useful for measuring the usage patterns of a BESS.
If the battery is frequently discharged to higher depths (higher
DoDs), its lifespan will reduce.

Since Battery Energy Storage Systems (BESSs) often
come with robust climate management mechanisms, the
impact of elevated operational temperatures on aging is fre-
quently ignored [36]. Depth of Discharge (DoD) emerges as a
paramount factor influencing battery degradation [35]. Thus,
a Battery Degradation Cost (BDC) model that incorporates
DoD for estimating the lifespan in terms of cycle life is
proposed.

According to the specifications released by manufacturers
of Li-ion batteries [38], the rate of battery degradation does
not depend on the charging or discharging rates provided that
the c-rate remains below 1 [39]. Therefore, the influence of
charge and discharge rates on the cycle life of the battery
is considered negligible at low charging speeds, which is a
factor excluded from this study.

The formula for calculating this phenomenon, as presented
in [35], employs the equation proposed by Ahsan et al. [35] to
determine the variation in the state of health( ASOH) based
on the state of charge levels and depth of discharge of BESS.
The temperature dependence is neglected in this equation
because the BESS has a strong climate control system, and
SoC and DoD have an inverse relationship.

ASOH(Qy0, Qr1, 1) = ASOH(QMAX 0,1, 1)

—  ASOH(QM*X, 04, 1)

1 1
= - 3
Ncycle(Qtl 1) Ncycle(Qth I
The financial cost associated with battery degradation is
then calculated by taking into account the initial investment
in the BESS and the overall change in the battery’s health.

lll. SYSTEM OVERVIEW

This section introduces the system architecture of the model,
detailing system architecture, forecasting mechanisms, and
the optimization challenge it addresses to enhance energy
efficiency and cost-effectiveness.

A. SYSTEM ARCHITECTURE

The proposed model is designed for the University of
Moratuwa microgrid, which is connected to the grid. It incor-
porates photovoltaic (PV) units for generating solar energy,
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a Battery Energy Storage System (BESS) for managing
supply and demand, and buildings that are the primary
consumers of energy. The system is augmented by Distributed
Energy Resources (DERSs), such as backup power generators.

It collects data on power generation, consumption, and
weather at five-minute intervals, which is used to predict daily
energy requirements and production. This forecasted data
informs an optimization process that determines the optimal
schedule for battery dispatch and demand response strategies,
aiming to minimize costs.

B. LOAD AND POWER GENERATION FORECASTING

The microgrid optimization problem is heavily reliant on
precise forecasting of solar power generation and building
power consumption. This forecasting process involves the
analysis of pre-processed data on solar power generation and
building power consumption to identify patterns, trends, and
seasonal variations.

Through experimentation, the optimal set of input features
for each forecasting model is determined. Figure 5 presents
the overall project model diagram, integrating these forecast-
ing outputs into the optimization problem.

C. OPTIMIZATION PROBLEM

The optimization problem aims to determine two outcomes:
(1) optimal battery dispatch schedule and (2) a Demand
Response(DR) strategy for the microgrid while adhering
to various constraints such as maximum charging and
discharging rates, and allowable state of charge range.

The scheduling problem for the BESS is modeled as
a series of discrete charging and discharging rates (X')
across time intervals within a day, with rates varying from
maximum discharge to maximum charge. Additionally, the
demand response (DR) strategy encompasses shifting Type |
flexible loads within specified time frames to optimize
start times (X2) and shedding Type II flexible loads to
balance supply-demand and minimize costs, represented
by binary values indicating load curtailment (X3). This
comprehensive approach integrates BESS dispatch, load
shifting, and shedding strategies to minimize operating costs
while considering consumer comfort and energy supply-
demand balance.

IV. MATHEMATICAL MODELING

The following section outlines the comprehensive mathemati-
cal modelling framework employed to optimize the operation
of a Battery Energy Storage System (BESS) and to develop an
effective Demand Response (DR) strategy within a microgrid
context. This modelling approach aims to balance energy
supply and demand efficiently, minimize operational costs,
and maintain system reliability and consumer comfort.

A. PROBLEM DEFINITION

The objective of this study is to optimize the use of the BESS
and to develop an effective DR strategy for a microgrid. This
involves creating a schedule for when and how the BESS

83275



IEEE Access

W. M. N. Witharama et al.: Advanced Genetic Algorithm for Optimal Microgrid Scheduling

Electricity Pricing / Tariff Structure
Flexible Load Details

Forecasted
Renewable Power
Generation

Weather Data }—|
Trained
Past Solar Power For e
Generation Data Ofccastg
_— Model

v

Forecasted
Building Power
Consumption

|
_4
Optimal Dispatch
Schedule

A4

Demand Response

—
Past Power
Consumption Data 2

~
{Period to be Forecasted

Optimizations Load Sheddin;
Model ¢

Strategy |
J

Load
Scheduling or Shifting

- {

Battery Capacity
Battery Degradation Cost Data

FIGURE 5. Proposed Model Diagram depicting the use of forecasting model output as inputs for optimization model, alongside other optimization input

parameters.

should charge or discharge throughout the day. We represent
this schedule with X!, a sequence of T numbers, where T is
the number of time slots in a day. Each number, ¢;, indicates
whether the BESS is charging (positive value), discharging
(negative value), or idle (zero) at time slot ¢, within a range
from —cyx t0 +Cppax- For example, in our BESS schedule
shown in Figure 10, the numbers 3 to —3 represent different
rates of charging or discharging.

The strategy for Demand Response (DR) integrates two
pivotal components: (1) shifting Type I flexible loads and
(2) shedding Type II flexible loads. Type I flexible loads have
an allowable time period (starting time #;, terminating time
t.), power consumption, and duration #;. These loads can be
shifted within the allowable time period to minimize total
operating costs. For an input case of m Type I flexible loads,
the DR strategy for Type I loads is represented by X2, a series
of M length representing the starting time (hour of the day,
h; € [0, T —1] where i € [0, M1]) of each Type I flexible load
according to a given schedule. The DR strategy for Type I
load schedule in Figure 10 depicts the start time for each load.

Type II flexible loads are defined as electric loads that can
be turned off to balance the supply-demand and minimize
costs. However, this demand response (DR) method, also
called load shedding, affects consumer comfort. The loads
that can be shed are represented by a series of M, numbers,
and they have corresponding penalty values (p; for I €
[1, M3]) representing consumer discomfort. The DR strategy
for Type II flexible loads is represented by X3, a series
of M; binary values, as shown in Figure 10. Each element
bi € [0, 1] in X? indicates curtailed loads. In Figure 10,
curtailed loads are represented by 1, and unaffected loads are
represented by 0.

B. OBJECTIVE FUNCTION

The objective function encapsulates the daily operational cost
associated with the AC microgrid, encompassing electricity
costs, expenses due to battery wear, and penalties associated
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with demand response (DR). Initially, we introduce the
concept of the net load (Pper), calculated as the difference
between power consumption by the building (P¢) and the
power produced by solar panels (P¢), as depicted in (4)

Ppet = Pc — Pg (4)

A microgrid system typically incurs operational costs such
as electricity charges for energy exchange with the main grid
and the cost of fuel for dispatchable energy sources utilized
within the microgrid [40]. In the case of a fully renewable
energy microgrid, fuel costs are nonexistent. However,
despite being less apparent, the depreciation or degradation
of system components constitutes a significant operational
cost. While the degradation-related costs of renewable energy
sources, inverters, and other equipment tend to be minimal,
the focus often centers on the cost of battery degradation.
Additionally, certain demand response methods, like load
shedding, can lead to consumer discomfort, prompting the
incorporation of penalties into models to account for such
discomfort [41]. These penalties help quantify the impact of
consumer discomfort on the overall operational cost of the
microgrid system.

The total cost for a given day d, denoted by Cy, is a sum
of the electricity cost E(X dl ), battery degradation cost B(X [}),
and DR penalties P(X 3). Equation (5) demonstrates that the
electricity cost E(X 0}) depends on the net load Ppet, 4, and the
operational decisions X 1 Xj, and X 3, whereas the cost of
battery degradation is a function of X 0} and the DR penalty
is determined by the DR strategy for type II loads X; for the
day d.

min  Cyg = E(Poer.a, X}, X3, X3) + BX)) + P(X3) (5)
Xp.X3.X]

1) COST OF ELECTRICITY
The cost of electricity is calculated based on the time-varying
electricity prices, represented by m,;forr € [0, T']. The cost
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of electricity also depends on the total electric load supplied
to the microgrid by the main grid utility provider. The total
electric load is the sum of P!, flexible load electricity
consumption at time ¢, P§ battery charging or discharging rate

at time ¢, Ppgss as shown in Eq. (6).

T
E:Z”t'(PZez"‘P;?Ess"‘Pts) (6)

t=1

Assuming constant Direct Current (DC) voltages, the
charging or discharging power of the BESS Py o €
[—PgEss» —Pgrss] is proportional to ¢;, the discrete repre-
sentation of charging rates.

2) BATTERY DEGRADATION COST

The equation used to model this effect is mentioned in [35],
The Eq. (3) proposed by Ahsan, et.al [35] is employed to
find the change in the state of health( ASOH) based on the
state of charge levels and depth of discharge of BESS.

ASOH(Qy0, Qr1, 1) = ASOH(QMAX 041, 1)

— ASOH(OM*X, 040, 1)

. 1 B 1 @
cycle(Qtl 1) Ncycle(Qth I)

The financial cost associated with battery degradation is
then calculated by taking into account the initial investment
in the BESS and the overall change in the battery’s state of
health

3) DEMAND RESPONSE PENALTY

Demand Response (DR) penalties are assigned on type II
flexible loads subject to curtailment under the type II loads
DR strategy. These penalties, denoted as P; for each i within
the set {1, ..., My — 1}, quantify the discomfort experienced
by consumers due to the reduction in load. The formula
defining these penalties is presented in Eq. (8).

M,
PX)) = biPi ®)

i=1

C. CONSTRAINTS

This section outlines the constraints related to operation
within the microgrid system. Specifically, we define limits
on the battery’s charging rate to prevent charging at a rate
exceeding its design capabilities. Additionally, we introduce
state of charge (SOC) constraints to maintain the battery’s
charge within optimal levels, thus avoiding the risks of
overcharging or deep discharging, both of which could
degrade the battery’s performance and lifespan. Unlike the
constraints for battery charging and SOC, the constraints
related to the power transfer capacity of distribution lines are
omitted, assuming their maximum transfer capability always
surpasses the actual demands of power supply. Furthermore,
it is essential to ensure that the battery’s charge level at the
conclusion of the operational period reverts to its initial state,
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FIGURE 6. Solar forecasting model.
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FIGURE 7. Building load forecasting model.
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necessitating that the cumulative charging activity over the
designated T periods results in a net zero change. These
operational constraints are detailed in Equations (9), (10),
and (11).

—PRiss < Pprss < Phiss ©))
SOCHHs < SOChpss < SOCHSS (10)
T
Z =0 (11)
0

In addition, during scheduled power interruptions the net
power exchange between main grid and microgrid is zero.
Given T as the starting time and 7 as the ending time
of a scheduled power interruption, the relationship between
the net power (P!, battery energy storage system power
(Pggss)- and solar power generation (P§) within the interval
T, <t < T is represented by Equation 12

Pl + Popss +P5 =0, forT) <t <T, (12)
V. METHODOLOGY
A. SOLAR POWER AND BUILDING LOAD FORECASTING
The microgrid optimization problem depends on the accurate
forecasting of solar power generation and building power
consumption. A sophisticated algorithm that considers the
variations and dependencies of numerous variables, including
the time of day, the weather, and load-consuming activities,
is needed to achieve this.

The pre-processed solar power generation and building
power consumption data is examined to find patterns, trends,
and seasonal fluctuations prior to train the forecasting
models. The input variables for solar power generation
forecasting include weather data, solar irradiation, ambient
temperature, rainfall and past day’s solar power generation
data. For building power consumption forecasting, the input
variables include schedule variables such as the hour of day,
day of week, and previous load consumption data. In addition
the ambient temperature was used as another input variable to
further improve the accuracy.
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Simplified Example
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Type | flexible loads DR strategy (Load Shifting)
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FIGURE 8. Example-Chromosome representation in the genetic algorithm.

Generate initial
population

Crossover
NO

EIEE

Termination and
condition

YES

FIGURE 9. Flow chart of genetic algorithm: The selection crossover and
mutation operations.

LightGBM, a machine learning-based forecasting library
that uses boosting techniques to increase speed, is used to
carry out the forecasting. With its innovative gradient-based
one-side sampling algorithm, LightGBM can successfully
handle large datasets. Through experimentation, the ideal
set of input features for each building and load forecasting
model is chosen. The Figure 6 shows the inputs of Solar
Forecasting model and Figure 7 shows the inputs of Building
Load Forecasting model. The Figure 5 shows complete model
diagram of the project.

B. OPTIMIZATION ALGORITHM

1) CHROMOSOME REPRESENTATION

The scheduling for the Battery Energy Storage System
(BESS) and Demand Response (DR) strategies, encapsulat-
ing charging/discharging rates and load management, is opti-
mized using a genetic algorithm. This approach addresses
operational constraints and balances supply-demand.

2) GENETIC ALGORITHM

The genetic algorithm (GA) stands as a broadly applied, adap-
tive algorithm based on a population approach, renowned for
its flexibility and efficiency in optimization tasks. It begins
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FIGURE 10. Example-Triplet crossover function (I) for chromosomes.

with an initially determined population comprising numerous
entities, each symbolized by a chromosome, which signifies
a possible solution for optimization. GA employs crossover
and mutation techniques to cultivate a variety of solutions
and applies selection techniques to preserve the most suitable
individuals. This procedure is iterated until a viable solution
emerges or a predefined termination criterion is met. The
operational schema of the genetic algorithm is depicted in the
Figure 9 [42].

Each chromosome is a triplet of three series, BESS
dispatch schedule X!, type I flexible load DR strategy X2,
and type II flexible load DR strategy X2. X! is a series
of T integers each representing the discrete charging or
discharging rate ¢, at time period ¢.

The second and third series represent the DR strategy of
flexible load type I X2 and DR strategy flexible load type II
X?. An example chromosome is shown in Figure 8 and
Figure 10

3) INITIALIZING POPULATION

The effectiveness and speed at which genetic algo-
rithms (GAs) converge towards optimal fitness values are
significantly affected by the composition of the initial
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population. For superior results, the initial population is
generated randomly, adhering to a uniform distribution.

The chromosome series X! is generated randomly from
T integers in the range [—cuax, +Cmaxl, X 2 s generated
randomly from M integers in the range [0, T, —T;] where T,
and T are the termination time land duration of type I flexible
load. X? is generated randomly from M, binary integers in the
range [0, 1].

4) SELECTION

In the selection phase of a genetic algorithm, a probability
distribution is created based on the fitness of individuals,
assigning higher probabilities to fitter individuals. These
probabilities are normalized to ensure their sum equals 1, and
then cumulatively summed to form a distribution list. This
setup facilitates stochastic selection, where a random value
between 0 and 1 is used to select an individual, favoring those
with higher fitness. This method biases the selection process
towards fitter individuals, enhancing the algorithm’s ability
to evolve better solutions over time.

5) FITNESS FUNCTION

Parents are selected based on the fitness of the creatures
in the population, with higher probabilities of selection
given to the fittest creatures based on a fitness function
that assesses the quality of each solution, the genetic algo-
rithm generates new solutions attractively using selection,
crossover, and mutation operations. The fitness function is
defined as awarding higher fitness scores to solutions with
lower operating costs.

When the operating cost of a schedule is f, the fitness is cal-
culated in an inverse relationship as shown in equation (13).
Here min(f) is the minimum value of cost of all schedules
generated so far.

1
(max{SN, f — min(f)})¥
The k is chosen based on experiments to maximize the
training efficiency. We found £ = 0.25 as a good fit. SN is

a small number which is used in the denominator to prevent
division by zero when f = min(f).

fx) = (13)

6) CROSSOVER OPERATION

The Crossover function is the most important operation in
genetic algorithm [43]. A single point crossover function is
defined to crossover a triplet of three chromosomes separately
as shown in Figure 10 [1].

In the crossover process, there’s a risk that key charac-
teristics of a specific chromosome series might be lost due
to the deficiencies present in another series within the same
chromosome. To mitigate this issue, an alternative crossover
method is introduced in this paper, as illustrated in the
Figure 11, which focuses on crossing over one series at a
time. By selecting a series randomly, this approach enhances
the results while making convergence speed faster than the
convergence speed observed with chromosome structure 1.
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7) WARM RESTART

One of the key challenges in genetic algorithms is observed
when the entire population becomes dominated by a certain
chromosome, which represents a local minimum rather than a
global minimum. Although mutation is employed to prevent
the population from getting stuck in a local minimum,
sometimes it is not sufficient.

Warm restart in genetic algorithms refers to a technique
where the algorithm is restarted from a state that is not
the initial random state, but rather from a partially evolved
state or solution. This approach leverages the knowledge
gained from previous runs of the algorithm to potentially
accelerate convergence towards an optimal or near-optimal
solution. By initializing the population with individuals
(solutions) that have already shown promise, rather than
starting from scratch, the genetic algorithm can explore
the solution space more efficiently. This method helps in
avoiding redundant exploration of less promising regions of
the solution space, thereby saving computational resources
and time. Warm restarts are particularly useful in dynamic
optimization problems where the solution landscape changes
over time or when fine-tuning a solution to a highly complex
problem.

8) CONSTRAINT MANAGEMENT

To manage constraints in genetic algorithms, two methods
can be employed: penalizing chromosomes that violate the
constraints or filtering out chromosomes that satisfy the con-
straints and advancing them to the next population. Drawing
inspiration from natural selection, where creatures that do
not meet minimum survival requirements fail to survive,
we adopted the second method. Consequently, we eliminated
chromosomes that do not satisfy the constraints.

VI. TEST RESULTS AND DISCUSSION

A. DATA ACQUISITION

The data used in this study was obtained from the Microgrid
laboratory of the University of Moratuwa. The collected
data includes solar power generation and building power
consumption data from four different buildings for a period
of four months from November 2022 to February 2023.The
building power consumption and solar power generation of
these four buildings were aggregated for analysis. Addi-
tionally, weather data such as solar irradiance, temperature,
rainfall, and wind speed collected at the university premises
during the same period was obtained. The collected data was
pre-processed, cleaned, and formatted before being fed into
the forecasting algorithm.

In addition to electricity prices, forecasted solar power
generation, and building power consumption data, the
optimization problem requires a few other inputs to generate
an optimal demand response strategy, including the power
consumption and flexibility of certain loads. These loads are
defined as flexible loads. As demand response methods such
as load shifting and curtailing can affect day-to-day activities
and consumer comfort, a survey is conducted to assess them.
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FIGURE 12. lllustration of warm restart.

One of the non-essential loads in the context of the Micro-
grid considered for this project is the air conditioners in some
lecture rooms. A survey conducted among students at the
University of Moratuwa provided insights into the perceived
importance of air conditioning, aiding in the estimation
of discomfort penalties and suggesting a methodology for
broader application in microgrid load management.

B. SOLAR GENERATION FORECASTING

The solar power generation forecasting model was developed
with a learning rate of 0.075, aimed at predicting day-ahead
solar power generation with hourly intervals. This model’s
performance was assessed by comparing the forecasted solar
power generation against the actual solar power generation
data. The assessment yielded an R? score of 0.91, indicating a
high level of accuracy in the forecasts produced by the model.
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FIGURE 13. Solar generation forecasting.

This score suggests that the model is capable of capturing a
significant portion of the variance in solar power generation.
The forecasting results for the first week of February,
as compared to the actual solar power generation, are depicted
in Figure 13. The high R? score demonstrates the model’s
effectiveness in predicting solar power generation, making it
a valuable tool for energy management and planning in solar
energy-dependent applications.

We simulated and analysed with different forecasting
models for Solar Generation Forecasting, and their respective
performances are shown in Table 1. Among them, LightGBM
has the second-highest accuracy. Considering its faster
training speed, it is the best choice.

C. LOAD CONSUMPTION FORECASTING

For the building load forecasting, the model was also trained
with a learning rate of 0.075. This model forecasts the
building load consumption a day ahead, with predictions
made for each hour. The accuracy of the building load
forecasting model was evaluated by comparing its predictions
against the actual load consumption, achieving an R? score
of 0.93. This indicates an excellent predictive performance,
showing that the model can accurately forecast building load
consumption with minimal error. The forecasting results for
the first week of February, in comparison with the actual
building load consumption, are illustrated in Figure 14.
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FIGURE 14. Load consumption forecasting.

The high R? score underlines the model’s efficiency in
understanding and predicting the consumption patterns of
the building load, thereby facilitating more effective energy
management and optimization strategies.

We experimented with different forecasting models for
Solar Generation Forecasting, and their respective perfor-
mances are shown in Table 1. In terms of solar forecasting
accuracy, LightGBM achieves an R2 score of 0.90, plac-
ing it closely behind Random Forest’s 0.91. Additionally,
LightGBM demonstrates robust performance for load fore-
casting with an R2 score of 0.93, which is only slightly
lower than Recurrent Neural Networks’ impressive 0.97.
Notably, LightGBM’s training speed surpasses that of its
counterparts, making it a practical and efficient solution
for forecasting tasks. Therefore, considering its balanced
performance and expedited training process, LightGBM
emerges as the optimal choice for accurate and efficient solar
generation and load forecasting.

The validation of LightGBM results further underscores
its reliability and suitability for forecasting applications.
During testing the optimization model which produced an
optimal schedule based on forecasted results performed well
with actual data without violating any constraints. Extensive
validation procedures, including cross-validation and testing
on independent datasets, confirm the consistency and gener-
alizability of LightGBM’s predictive capabilities. Therefore,
the comprehensive validation of LightGBM results reinforces
its status as a dependable and effective forecasting tool,
empowering stakeholders to optimize resource allocation and
enhance operational efficiency in renewable energy systems.

D. OPTIMIZATION RESULTS

1) OPTIMIZATION CONVERGENCE

In this study, the genetic algorithm-based optimization model
was applied to generate day-ahead hourly battery dispatch
schedules for the month of February, considering forecasted
solar power generation and consumption patterns. The model
initiated with a set of 1000 potential schedules, undergoing
50 iterations within the genetic algorithm framework. The
evolution of electricity costs over these iterations is illustrated
in Figure 17. The model was configured with 10 distinct
battery charging states, adhering to a maximum charge and
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FIGURE 15. Battery dispatch plan based on price variation.

discharge rate of 0.5C. Our evaluation involved comparing
the cost implications under the existing Time-of-Use (TOU)
tariff regime in Sri Lanka, as detailed in Table 2. According
to the current electricity tariff structure in Sri Lanka,
the proposed model facilitated a reduction in electricity
expenses by 13.86% on a monthly basis. Nevertheless, when
considering the impact of battery degradation costs, the net
savings in total operating expenses were marginal in relation
to the prevailing tariff scheme.

Amidst the ongoing reforms within the Sri Lankan power
sector, there is an anticipation of the introduction of more
reflective time-varying electricity pricing structures or a
real-time electricity market in the near future. In light of
these potential changes, our study extended the applicability
of the optimization model by incorporating electricity market
prices. We used time varying electricity market prices
from Victoria, Australia for the period of February 2023,
as reported by the Australian Energy Market Operator
(AEMO) on their National FElectricity Market (NEM)
dashboard [44]. Our microgrid optimization model, when
tested under time varying prices in these market conditions,
showcased a significant reduction in monthly electricity
costs by 39.42%, alongside a noteworthy decrease in total
monthly operating costs(considering battery degradation) by
9.52%. This pronounced cost reduction shows the critical
role of microgrid optimization in environments characterized
by greater price volatility within electricity markets. The
findings suggest that, as electricity pricing structures evolve
to more closely reflect real-time market conditions, the poten-
tial for savings through optimized microgrid management
becomes increasingly substantial, thereby highlighting the
importance of adopting advanced optimization techniques in
anticipation of future market dynamics.

One of the primary factors contributing to the cost reduc-
tion in the Australian Energy Market is the implementation of
an optimal battery dispatch schedule. This strategy becomes
particularly effective when there is a significant variation in
prices, allowing for the charging of batteries during periods
of low prices and discharging them when prices are high. This
approach can result in considerable savings, as demonstrated
in the Figure 15.
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TABLE 1. Forecasting model performance.

Model R2 Score (Solar Forecasting) ~ R2 Score (Load Forecasting)
Random Forest (RF) 0.91 0.90
Artificial Neural Networks (ANNs) 0.89 0.8
Recurrent Neural Networks (RNNs) 0.78 0.97
LightGBM 0.90 0.93

TABLE 2. Tariff structure for government facilities: An overview of CEB
pricing(February 2023).

Time slots Energy Charge (Rs./kWh)
Day (05:30 - 18:30 hrs) 47.00
Peak (18:30 - 22:30 hrs) 55.00
Off Peak (22:30 - 05:30 hrs) | 39.00

Demand Charge (Rs./kVA) - 1600.00
Fixed Charge (Rs./Month) - 5000.00

TABLE 3. Comparison of monthly electricity costs.

Optimal Current Reduction
Schedule Schedule Rate
Electricity Cost in | 1,067,100 1,244,000 14.22%
Sri Lanka Tariff
Structure (LKR)
Total Operation | 1,643.28 1,816.26 9.52%
Cost in Victoria,
Australia Electricity
Market Price (AUD)
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FIGURE 16. Operational cost reduction compared to idle battery state.
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FIGURE 17. Genetic algorithm training-daily electricity cost (Rs.) vs
number of iterations.

VIi. CONCLUSION
In conclusion, our study demonstrates the potent synergy
of Genetic Algorithms and LightGBM in optimizing the
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operational efficiency of AC microgrids. Through intelligent
demand response strategies and precise forecasting of solar
power generation and load consumption, we achieved a
significant reduction in operational costs by 14.22% under
Sri Lanka’s current tariff structure. This underscores the
transformative potential of advanced scheduling and proac-
tive demand response management in enhancing microgrid
sustainability and efficiency. Moreover, by incorporating
battery degradation costs into our model, we contribute to the
discourse on sustainable energy management, emphasizing
the extension of battery lifespan.

The successful application of our model within the
University of Moratuwa microgrid validates the efficacy of
integrating machine learning techniques with optimization
algorithms to refine microgrid operations. This research not
only paves the way for scalable solutions to reduce electricity
costs and improve system reliability but also establishes a
foundation for future studies to explore the integration of
additional renewable energy sources, sophisticated forecast-
ing models, and real-time optimization strategies.

Given the dynamic nature of energy markets and the
intermittent characteristics of renewable energy sources, our
findings offer valuable insights into microgrid optimization.
Future endeavors may expand the model to include real-time
data analytics, examine the impact of electric vehicles on
microgrid dynamics, and apply our approach to larger, more
complex energy systems. This would further validate its
effectiveness and adaptability, marking a significant step
toward realizing the full potential of microgrids in the
transition to sustainable energy systems.
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