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ABSTRACT Photovoltaic (PV) output forecasting often uses meteorological and historical PV data, includ-
ing cloud imagery and weather conditions. Access to such data can be limited for numerous dispersed PVs,
particularly in remote areas, making accurate forecasting challenging. Recent advancements in distributed
PVs and communication technologies, such as smart meters, have facilitated the collection of time-series
data from numerous dispersed PV installations. This development has spurred research into new forecasting
models that utilize these data to forecast the PV output across multiple locations. One notable technique
is the optical flow algorithm, which estimates and forecasts PV power generation transitions by converting
PV power generation data from various locations into images. This study introduces a hybrid model that
combines optical flow with machine learning using historical PV generation, time, and location data from
multiple installations. The proposed model has an 18.4% improvement in the mean absolute error (MAE)
over traditional models that depend on weather data. It also exhibits a 5.8% improvement in MAE and a
10.8% improvement in the continuous ranking probability score compared to the optical flow alone.

INDEX TERMS Photovoltaic (PV) power forecast, multiple PV forecasting, ultra-short-term PV forecasting,
prediction interval, optical flow, light gradient boosting machine (LGBM), hybrid model.

ABBREVIATIONS AND ACRONYMS
PV Photovoltaic.
IEA International Energy Agency.
NWP Numerical weather prediction.
ConvLSTM Convolutional long short-term memory.
GCLSTM Graph convolutional long short-term

memory.
GCTrafo Graph convolutional transformer.
SVR Support vector regression.
LSTM Long short-term memory.
LGBM Light gradient boosting machine.
MAPE Mean absolute percent error.
ANN Artificial neural networks.
MAE Mean absolute error.
CRPS Continuous ranked probability score.
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approving it for publication was Giovanni Angiulli .

NV Normalized value of PV generation.
GOSS Gradient-based one-side sampling.
EFB Exclusive feature bundling.
CART Classification and regression trees.
GBDT Gradient boosted decision trees.
MSE Mean squared error.
RMSE Root mean squared error.
PICP Prediction interval coverage probability.
PINAW Prediction interval normalized averaged width.
XGB Extreme gradient boosting.
AR Autoregressive.

SYMBOLS AND MATHEMATICAL NOTATIONS
OPTICAL FLOW
yt PV generation at time t .
y2weeks(t) Highest PV generation in the past twoweeks

at time t .
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u (x, y, t) Normalized velocity vector component of PV
generation in the latitude direction at time t ,
where x and y denote longitude and latitude
coordinates.

v (x, y, t) Normalized velocity vector component of PV
generation in the latitude direction at time t ,
where x and y denote longitude and latitude
coordinates.

f (x, y, t) Normalized PV generation of the mesh at coor-
dinates (x, y) and time t , where x and y denote
longitude and latitude coordinates.

ED Data term representing the disparity between
predicted and actual generation.

Es Smoothness term, enforcing the smoothness
constraint on the motion vector field.

λ Regularization parameter, balancing the
impact of the smoothness term relative to the
data term.

J Energy function combining the data and
smoothness terms.

LIGHT GRADIENT BOOSTING MACHINE
obj (s) Objective function at iteration s of LGBM.
ŷt (s− 1) Predicted PV generation at the (s − 1)th

iteration of LGBM.
fs(xt ) Mapping function of CART generated at

iteration s, where xt denotes the feature vec-
tor at time t .

�(fs) Regularization term for the CART at itera-
tion s.

S Total number of iterations in LGBM.
l Loss function used for calculating the error.
ŷ (x) Predicted PV generation for feature vector x.

HYBRID MODEL(FLOW-LGBM)

Et Set of absolute errors at time t .
eitj,m Forecasting error for the i-th day at time t for PV

with ID j using Model m.
yitj PV generation observed at time t for the i-th day at

a PV with unique ID j.
ŷitj,m PV power generation for the i-th day at time t at PV

with a unique ID j, using model m.
DtJ̈ Set of forecast values considering error distribution

for PV with ID j̈ at forecast time t .

METRIC
N Number of verification samples.
ŷt Predicted PV generation at time t .
εt Indicator function: equals 1 if the observed value

falls within the prediction interval, 0 otherwise.
Lt Lower bound of the prediction interval at time t .
Ut Upper bound of the prediction interval at time t .

F̂ (yt) Predicted cumulative distribution function at
time t .

1 (y− yt) Heaviside function, which is 1 if y − yt is
nonnegative and 0 otherwise.

I. INTRODUCTION
Distributed photovoltaic (PV) power generation enhances
local energy productivity by adapting to diverse regional
conditions and offers greater flexibility than traditional con-
centrated PV power generation. This lays the groundwork
for sustainable energy supply [1]. The International Energy
Agency (IEA) [2] reports that by 2022, distributed PV instal-
lations accounted for approximately 40% of the 1 terawatt
(1 TW) of the PV capacity installed globally, with residential
installations making up over one-third of that. Approximately
25 million PVs (PVs) are installed in homes worldwide
and generate an output of approximately 130 gigawatts
(130 GW). This number is expected to increase to 100million
units by 2030 units.

TABLE 1 presents the timescale and importance of
PV output forecasting. In narrow areas, distributed PV
power-generation systems are installed on individual rooftops
and facilities, and their outputs are affected by local weather
conditions. Thus, short-term power fluctuations are more
extreme than concentrated PV power generation, requiring
precise data analysis and accurate forecast models for out-
put forecasting, especially within a 4-h time frame, known
as ultra-short-term forecasting [3]. The fact that forecasting
models are inherently uncertain has increased the demand for
probabilistic forecasts [4], [5], [6]. These forecasts consider
the uncertainty linked to errors as opposed to deterministic
forecasts that rely on point estimates.

Many forecasting models have been developed to achieve
higher accuracy in forecasting PV generation [7], [8], [9].
TABLE 2 summarizes relevant studies on ultra-short-term
forecasts for PVs. These models use meteorological data,
such as cloud images, satellite images, weather data, and
numerical weather prediction (NWP), in addition to PV
generation and location data. For ultra-short-term forecasts,
in which the forecast period is less than 4 h, cloud gener-
ation, dissipation, and movement are the basic factors that
generate PV power output variability. Consequently, studies
have explored the use of machine learning [10], [11], [12]and
image-processing models [8], [13] that use cloud images.
These studies typically involve the acquisition of cloud
images from ground-mounted cameras. However, the instal-
lation and maintenance of such cameras in many distributed
PV installations are expensive. Using satellite imagery [14],
[15] for forecasting is more suitable for concentrated PVs
but may not be ideal for distributed ones because of the
large scale and low resolution of satellite images. When
using weather data [16], [17] instead of cloud images, dis-
tributed PVs often do not have a multisensor local weather
monitoring system, unlike concentrated PVs. Therefore, data
were collected from weather stations near the PV generation
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TABLE 1. PV generation forecasting periods and their importance.

TABLE 2. Ultra-short-term pv generation forecasting techniques.

station and used for output forecasting [18]. For instance,
the Japan Meteorological Service Support Center which is
affiliated with the Japan Meteorological Agency, a govern-
ment agency that offers real-time, minute-by-minute weather
data from 155 weather stations and special regional weather
stations nationwide. These data include information on the
location, rain, wind, temperature, sunshine, solar radiation,
snow cover, air pressure, humidity, and visibility, which is
available for approximately ten thousand yen per month
(the exact amount varies depending on the communication
facilities, data formats, and other conditions). In distributed
PVs, weather observation points provided by weather stations
are not always in close proximity to PV installations. This
implies that accurate data on the actual weather conditions
may not always be available, which could lead to issues with
the forecast accuracy. NWP is often used when there is no
meteorological observatory near a PV installation or when
forecasting mid- to long-term periods. However, it is essential
to note that the NWP [19], [20] is generally considered less
reliable than field observations and is typically valid only for
forecast steps longer than 4 h [21].
The recent increase in distributed PV installations has led

to the availability of geographically dispersed time-series
data from numerous sites. This has sparked interest in
enhancing the accuracy of variable-generation forecasts, also

known as spatiotemporal forecasts [22], [23]. These forecasts
leverage information from neighboring sites as additional
features. Multi-point data from distributed PV installations
are promising for tracking pseudo-cloud movements. For
example, when a cloud moves into an area, it affects PV
generation in that area and adjacent areas. Therefore, it is
possible to simulate cloud movement in a pseudo-manner
based on changes in the geographic distribution of power
generation across a broad adjacent area. Machine-learning
models that rely solely on multi-point data without meteo-
rological data have been reported in the past. Chai et al. [24]
conducted a multi-site forecast that captured the spatiotem-
poral characteristics of many PVs using convolutional long
short-term memory (ConvLSTM). ConvLSTM combines a
convolutional layer that captures spatially local translational
invariance through convolution operations with LSTM. This
combination allows the model to store long-term time depen-
dence. It uses data from two-dimensional (2D) images of
geographic PV distributions over time as features.

Simeunović et al. [25] conducted a multi-site forecast
that captured spatio-temporal characteristics for numerous
PVs. They employed two models, the graph convolutional
long short-termmemory (GCLSTM) and graph convolutional
transformer (GCTrafo), which utilize data from a graph struc-
ture of PV power generation at multiple locations. These
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models relied solely on the generation of historical data. They
outperformed the single-site forecast accuracy of support vec-
tor regression (SVR) and LSTM using NWP as the input for
forecasts up to 4 h ahead. SVR and LSTM utilize NWP data,
which typically have lower spatial and temporal resolutions
than graphical data representing multi-point generation, a key
feature of GCLSTM and GCTrafo. Thus, the accuracy of
the ultra-short-term forecasts is lower. The main advantages
of machine learning models, especially deep learning-based
models, such as ConvLSTM, GCLSTM, and GCTrafo, are
their flexibility and scalability to data. These models can
effectively capture nonlinear and complex spatiotemporal
patterns, enabling efficient modeling of the interactions and
dependencies between different PV. The disadvantage is that
complex machine-learning models have many parameters
and require large datasets over a long period to properly adjust
the parameters and learn the relationships between the PVs.
For instance, the abovementioned study by Chai et al. [24]
utilized multi-point PV generation at 15-min intervals, cov-
ering 10 h a day for approximately 10 months, to train the
ConvLSTM.Additionally, the study by Simeunović et al. [25]
used GCLSTM, GCTrafo models trained on data at 15 min,
24 h a day, for one year.

This study focuses on optical flow [26], [27] as a model for
output forecasting that relies solely on multi-point data with-
out meteorological data. Optical flow is an image-processing
technique that estimates and forecasts the geographic distri-
bution of PV generation based on multi-point data. Unlike
traditional optical flow [13], [15], which used cloud or satel-
lite imagery, the optical flow in this study estimates the power
generation trends at each mesh and forecasts future power
generation using images of the power generation distribu-
tion meshed by the latitude and longitude. In the context of
smart grids, where the PV output power can be monitored,
it is possible and cost-effective to forecast the PV output at
multiple locations without the need for meteorological data
or additional equipment. Optical flow motion estimation and
prediction assume that the mesh distribution of the PV gen-
eration undergoes constant-velocity linear motion between
two consecutive times. Therefore, unlike machine-learning
models that require long-term data, optical flow can forecast
the PV output at multiple locations using only multi-point
data at two different times. In a previous study [26], the
accuracy of 30-min-ahead forecasting for 96 PV installations
was compared between artificial neural networks (ANNs)
and optical flow during high output variability when large
errors are likely to occur in PV output forecasting. Optical
flow showed a 20.8% improvement over ANNs in the mean
absolute percent error (MAPE). The ANN was trained with
data collected every 30 min for 11 h a day for approximately
ten months, using the month, day, time, solar radiation, and
temperature as the inputs. Therefore, optical flow is an effec-
tive forecasting model that uses only multi-point data twice
and does not require meteorological data. However, optical
flow can cause approximation errors for two reasons. First,
during the meshing of the geographic distribution of power

generation and generation of image data, interpolation was
performed on meshes without PV. The interpolation accuracy
tends to be low in areas where the PV is not dense. Second, the
transition of the power generation distribution (pseudo-cloud
motion) is assumed to be invariant and in a constant-velocity
linear motion when forecasting future power generation using
an optical flow. However, actual clouds repeat sudden onsets
and disappearances and exhibit complex nonlinear motions.

Owing to the unavailability of meteorological data for
many distributed ultrashort-term PV forecasts, various fore-
casting models such as deep learning and optical flow have
been studied. These models rely solely on multi-point data.
However, each model has its limitations. Deep learning
requires a large amount of distributed PV data over an
extended period, whereas optical flow, which requires only
two consecutive data periods, is prone to approximation
errors. However, if available, optical flow can improve the
existing forecast accuracy by utilizing accumulated data over
time.

This study proposes a hybrid model that combines optical
flow and a light-gradient boosting machine (LGBM) [28].
This model does not use meteorological data and utilizes
multi-point data over a relatively short period (one month)
to forecast the output of many geographically dispersed PV
generation systems 30 min ahead. The proposed method aims
to achieve two primary objectives. First, the output of many
geographically dispersed PVs is forecasted in 30 min using
relatively short-term (one month) multi-point data without
relying on weather data and with higher accuracy than con-
ventional forecast models using weather data. Second, the
forecast accuracy can be improved by combining machine
learning and optical flow to learn the spatiotemporal relation-
ship of PVs and correct the approximation error of the optical
flow. The proposed method first utilizes optical flow to fore-
cast the output of distributed PV generation in Japan 30 min
in advance. Next, by incorporating the predictions of the PV
output by optical flow into the LGBM features, the method
captures the spatiotemporal relationships of the PVs and
forecasts their output. When forecasting the output, in addi-
tion to deterministic forecasting, probabilistic forecasting is
employed, as proposed in [29], to provide quantitative infor-
mation on the uncertainty of PV power generation concerning
the forecasted value. This method constructs an error distri-
bution each time based on forecast errors in the training data
and uses it to construct a forecast distribution. Because the
error distribution is established in advance, only the inference
time for the deterministic forecast is required to construct the
forecast distribution. This approach has the potential for ultra-
short-term forecasting 30min in advance formany distributed
PVs.

The contributions of this study are as follows:
1) Forecast 390 PVs without using meteorological data

such as cloud images or weather data: The authors pro-
posed a hybrid model based on optical flow and LGBM
that does not rely on meteorological data. The model
utilizes multi-point data from historical generation over
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one month. Our proposed method offers deterministic
and probabilistic output forecasting 30 min ahead for
390 distributed PVs.

2) More stable forecasts with shorter period training
data than weather data models: The accuracy of the
deterministic forecasts of the proposed method is com-
pared with the accuracy of forecasting models that
require 4.5 months of weather data. Compared to the
weather data model, the simulation results show that
the proposed method, which learns the spatiotemporal
relationship of the PVs by optical flow forecasting,
improves the mean absolute error (MAE) by 18.4%,
even with one month of training data.

3) Most stable forecast accuracy among the multi-point
data models: The accuracy of the deterministic and
probabilistic forecasts generated by the proposed
method is compared to the forecasting accuracy of
optical flow and an LGBM model trained on 390 dis-
tributed PVs without using optical flow. The simulation
results indicated that the proposed method achieved the
best forecast accuracy for 259 and 362 of 390 PVs in
terms of MAE and the continuous ranked probability
score (CRPS) [30], which are evaluation indices for
deterministic and probabilistic forecasts, respectively,
among the multi-point data models. Furthermore, com-
pared with optical flow, the proposed method improved
the average MAE and CRPS of all 390 PVs by 5.8%
and 10.8%, respectively.

The remainder of this paper is organized as follows:
Section I outlines the optical flow, LGBM, and hybrid model
that combines the two. Sections II and III describe the evalu-
ation metrics and datasets, respectively. Section IV compares
the weather data model, which is a conventional method,
with a multi-point data model that includes the proposed
method. Section V compares the multi-point data models
and demonstrates the superiority of the proposed method
over other models. Finally, the conclusions are presented in
Section VI.

II. METHODOLOGY
The authors proposed flow-LGBM, a hybrid model of optical
flow and LGBM, which offers 30-min-ahead deterministic
and probabilistic output forecasts for 390 distributed PVs.
This section presents a brief overview of the optical flow and
LGBM and concludes with a description of the flow-LGBM.

A. OPTICAL FLOW
Optical flow is an algorithm that converts distributed PV
power generation into a mesh distribution based on the lat-
itude and longitude of each time frame. The movement of the
mesh distribution is then estimated. For forecasting purposes,
the algorithm assumes that the motion of the mesh distribu-
tion between two consecutive time frames is invariant and
follows a linear motion at a constant velocity. A flowchart

of the optical flow is shown in FIGURE 1; the steps from
(i) to (iv) in FIGURE 1 are described below.
(i) Obtain the geographical distribution of normalized PV

generation.
To account for the variations in the installation angles and

power ratings among the PVs, the power generation of each
PV systemwas normalized by its maximum power generation
over two weeks. This normalization process converts the
power generation values to a range from 0 to 1, unifying the
different PVs uniformly. The conversion of power generation
to the normalized value of NV is defined in Equation (1).

NV (t) =
yt

y2weeks(t)
(1)

where yt denotes the actual output power at a specific time t ,
and y2weeks(t) represents the highest output power among the
14 data points at a specific time t within the first two weeks
(14 days). These two weeks were selected to ensure that at
least one sunny day was included, and the seasonal variation
in the sun elevation was considered negligible during this
timeframe.

(ii) Meshing geographical distribution of PV generation.
The geographic distribution of the normalized genera-

tion was divided (meshed) into equally spaced distributions
aligned in the latitude and longitude directions.

(iii) Impute missing values in the meshed distribution of
PV generation.

An interpolation method using Delaunay triangulation
[31] was applied to the missing regions in the meshed PV
distribution.

(iv) Forecast PV power generation using optical flow for
mesh motion estimation.

This method assumes that the geographic distribution
of normalized values changes over time and estimates the
motion vector field of these values using an optical flow
for prediction. Assuming that the normalized values remain
constant and undergo linear motion at a constant velocity
between two consecutive times and denoting the normalized
value (NV) of each mesh at time t as f (x, y, t), the relation-
ship between the normalized values at time t and t − 1t is
expressed by Equation (2).

f (x − u (x, y, t) 1t − v (x, y, t) 1t, t − 1t) = f (x, y, t)

(2)

where x and y correspond to longitude and latitude values in
each normalized coordinate, respectively, and u (x, y, t) and
v (x, y, t) represent the normalized velocity of movement in
the longitude and latitude directions at time t . In this context,
the data term ED, which quantifies the sum of the squared
errors between the positions before and after movement for
each mesh at two consecutive time steps, and the regulariza-
tion term Es, which enforces the smoothness constraint on
adjacent movement vectors, are expressed in Equations (3)
and (4), respectively.

E2
D= (f (x−u (x, y, t) 1t, y−v (x, y, t) 1t, t−1t))2 (3)
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FIGURE 1. Optical flow flowchart.

Es = λ(|∇u (x, y, t)|2 + |∇v (x, y, t)|2) (4)

The regularization term Es is based on the sum of squares
of gradients in the longitude and latitude directions, ∇u and
∇v, respectively. This characterizes the spatial rate of change
in the velocity distributions u (x, y, t) and v (x, y, t). The
parameter λ represents the weight of the regularization term,
and a larger λ prioritizes the correlation between adjacent
meshes, thereby increasing the uniformity of the predicted
vectors among the neighboring meshes. The energy function
is defined in Equation (5), where the data term ED and
regularization term Es, are added‘.

J =

∫∫ (
E2
D (x, y, t) + λEs (x, y, t)

)
dxdy (5)

The solution (u, v) of the minimization problem in
Equation (5) is the velocity vector that minimizes the
error in the motion estimation and is derived using the

Euler-Lagrange equations in Equations (6) and (7):

λ∇
T
∇u− ED∂x f = 0 (6)

λ∇
T
∇v− ED∂yf = 0 (7)

∇
T
∇ = (∂2x + ∂2y ) is the Laplace operator. Further details of

the equation solution and algorithm can be found inKameda’s
study [32]. Using the derived velocity vectors (u, v), the
normalized value of each mesh is predicted, assuming that
the normalized value of each mesh will continue to move
in a constant velocity linear motion after 1t . The predicted
normalized values were converted to the output of each PV
using Equation (1).

B. LIGHT GRADIENT BOOSTING MACHINE
The LGBM is a decision-tree-based gradient-boosting
framework that facilitates efficient and scalable learning
on large, high-dimensional datasets. The algorithm uses
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gradient-based one-sided sampling (GOSS) and exclusive
feature bundling (EFB). GOSS is a gradient-based sam-
pling method that removes data instances with small gra-
dients by utilizing only the remaining data to estimate the
information gain. EFB bundles mutually exclusive features
to reduce their number and employs a greedy algorithm
to maintain the model accuracy while reducing the fea-
ture count. A series of basic classification and regression
trees (CART) are iteratively constructed in the learning
process using these methods. The weight parameters for
each classifier were calculated to form a model that min-
imized the objective function. The objective function is
expressed in Equation (8), and the final model is expressed in
Equation 9).

obj (s) =

n∑
t=1

l
(
yt , ŷt (s− 1) + fs(xt )

)
+ �(fs) (8)

ŷ(x) =

S∑
s=1

fs(x) (9)

In these equations, xt is the feature vector at time t , and
yt corresponds to the actual output at that same time. The
term ŷt (s− 1) denotes the prediction result for xt at iter-
ation step s − 1 within the additive training process of
the LGBM. Furthermore, fs is described as a new CART
generated at the s-th iteration, which is responsible for map-
ping a particular training sample xt to its corresponding
leaves. The function l is utilized to calculate the squared
error for each data sample, and �(fs) acts as the regular-
ization term to prevent over-fitting of the new CART. The
predicted output ŷ (x), emerges as the sum of the predic-
tions from all iterations and is denoted as S in the LGBM.
Each iteration contributes to a new prediction fs (x) based
on feature x through a newly generated CART. This results
in the final prediction being the aggregate of the individual
predictions across all iterations. By employing these meth-
ods, the LGBM speeds up the gradient-boosted decision
tree (GBDT) learning process by up to 20 times or more,
providing superior performance on large, high-dimensional
data.

C. HYBRID MODEL(FLOW-LGBM)
The flow-LGBM utilizes optical flow predictions as features
for deterministic forecasting. It also generates error distri-
butions for probabilistic forecasts based on error data from
the learning process. This approach improves the forecast-
ing accuracy of existing optical flows by correcting errors
resulting from the interpolation of missing mesh values.
Additionally, it addresses errors arising from the assumption
that the mesh motion (pseudo-cloud motion) is invariant and
follows a constant-velocity linear motion. This correction
was achieved by learning the spatiotemporal relationships of
multi-point PVs through optical flow predictions. The LGBM
flowchart is shown in FIGURE 2, and steps (i) to (v) in
FIGURE 2 are described below.

(i) Optical flow prediction
The power outputs 30 and 60 min before the distributed PV

generation forecast time were extracted from the database.
Subsequently, using the optical flow motion estimation, the
PV generation output was forecasted for the next 30 min.
(ii) Train the models and search for parameters using a grid

search.
The LGBM was trained using five-fold time series cross-

validation. These features included the predicted optical flow
values, past power generation, and variables related to the
location and time. The target variable was the power gener-
ation at the forecast time. To ensure uniformity, the power
generation data were normalized using the maximum power
generation of each PV system for the training period, scaling
it such that the maximum value was 1. A grid search was con-
ducted to minimize the out-of-fold MAE for the parameter
selection.
(iii) Derive error distribution from training result.
The absolute error setEt for a specific time, t was obtained

by comparing the predicted data with the observed data from
the training results. The prediction error during the model
training was calculated using Equation (10)

eitj,m = yitj − ŷitj,m (10)

where eitj,m denotes the forecasting error for the i-th day at
time t in the training set; j represents the unique ID of the
PV system; and m represents the model number. From step
(ii), one model is obtained for each fold, resulting in a total
of five models. This error quantifies the disparity between
the actual observed value yitj and predicted value ŷitj,m for
the corresponding day and time. From Equation (10), the
absolute error set Et is expressed as Equation (11).

Et :=

{
eitj,m| for all i, j,m

}
(11)

The set Et , as defined in Equation (11), provides a com-
prehensive overview of the forecasting errors throughout the
dataset for each time instance. This set served as the basis for
constructing a histogram at each time point, denoted as the
error distribution in the context of this document.

(iv) Forecast deterministic PV generation by the trained
models.

The five trained models from step (ii) were used as inputs,
along with the predicted optical flow values, power gen-
eration in the past 30 min, latitude, longitude, and time,
to forecast the power generation of the PV at multiple
locations. To combine the predictions of each model, equal
weights (weight factor of 1/5) were assigned to each model,
and the predictions were averaged.

(v) Make prediction intervals from error distribution and
deterministic forecasting.

To construct the prediction distribution, a set of predictions
is calculated by adding the error distribution obtained in step
(iii) to the predictions for each PV obtained in step (iv).
For example, when the ID of the PV to be forecasted is J̈ ,
the forecast time is t , and the forecast value is ŷtJ̈ , the set
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FIGURE 2. Flow-LGBM flowchart.

of forecast values DtJ̈ considering the error distribution is
expressed in Equation (12).

DtJ̈ :=

{
ŷtJ̈ + eitj,m| for all i, j,m

}
(12)

As a simple post-processing of set DtJ̈ , the elements com-
prising DtJ̈ are corrected to 0 if they are below 0 and to
1 if they are above 1. These adjustments ensure that the
generation output falls between zero and one. To output a
95% confidence interval, the upper and lower 2.5% points of
the set DtJ̈ were defined as the upper and lower limits of the
prediction intervals, respectively.

III. METRICS
This section describes the metrics used to evaluate the
deterministic and probabilistic forecasts. For deterministic
forecasts, metrics such as the mean squared error (MSE), root
mean squared error (RMSE), and MAE are commonly used
to assess the error between the predicted values and observed
data. In this study, theMAE, which is relatively robust against
outliers, was employed as an evaluation metric. The MAE is

defined by Equation (13).

MAE =
1
N

N∑
t=1

|ŷt − yt | (13)

where N is the number of verification samples, ŷt and yt are
the point forecast and the corresponding actual value at time t ,
respectively.

In probabilistic forecasting, it is crucial to assess the
reliability and sharpness of the forecast distribution simul-
taneously. Reliability assesses the proximity between the
predicted and observed distributions, whereas sharpness
assesses the sharpness of the peak within the predicted dis-
tribution. Both criteria should be evaluated simultaneously
because excessively sharp predictions may lack reliability,
making it impossible to characterize them uniquely as good
prediction intervals without evaluating reliability. Probabilis-
tic forecasting aims for a predictive distribution to be as
sharp as possible if well-calibrated [33], [34]. In this study,
the authors used the prediction interval coverage probability
(PICP) as a measure of reliability, defined by Equation (14).

PICP =
1
N

N∑
t=1

εt (14)
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where εt is an indicator function, which takes the value
of 1 if the observation at time t falls between the lower
(Lt ) and upper (Ut ) bounds, and 0 otherwise. Additionally,
to assess the sharpness, the authors utilized the prediction
interval-normalized averagedwidth (PINAW). PINAW repre-
sents the average width of the prediction intervals at nominal
probability and is defined by Equation (15). A smaller
PINAW indicated a sharper prediction.

PINAW =
1
N

N∑
t=1

(Ut − Lt ) (15)

As mentioned previously, a good prediction interval maxi-
mizes the sharpness of a prediction based on the assumption
of high reliability, and the two indicators must be evaluated
simultaneously. This study used the continuous ranked prob-
ability score (CRPS) to evaluate the two indices in a unified
manner. CRPS is defined by Equation 16.

CRPS =
1
N

N∑
t=1

∫ 1

0

(
F̂ (yt) − 1 (y− yt)

)2
dy (16)

where 1 represents the Heaviside function, which is 1 if its
argument is nonnegative and 0 otherwise. CRPS is consis-
tent with MAE at extremes, where the uncertainty in the
probabilistic forecast decreases and approaches deterministic
forecasting. Similar to MAE, CRPS is less influenced by
outliers.

IV. DATASET DESCRIPTION
The PVs used for the optical flow in this study were
located throughout Japan, totaling 5096 units, as shown in
FIGURE 3(a). In the Flow-LGBM, 390 PVs, represented by
blue and green dots, were evaluated for learning and testing,
as shown in FIGURE 3(b). These 390 PVs were selected
from 5096 PVs, and all data were available over the test
period. The three green dots in FIGURE 3(b) indicate the
three PVs evaluated in Section IV, whereas the three red dots
indicate the locations of the weather stations. Each weather
station was located within 4 km of the PVs denoted by green
dots, and the weather data obtained from these stations were
used in the weather data model as the comparison model for
the Flow-LGBM in Section IV. The correlation coefficients
between the solar radiation measured at each weather station
and the PV generation of the respective green dots is greater
than 0.85 during the test period. The test period spanned four
months, from January 2014 to April 2014, with data collected
every 30 min from 7:00 AM to 6:00 PM.

V. WEATHER DATA MODELS VS MULTI-POINT DATA
MODELS
A. MODEL DESCRIPTION
This section presents a comparison of weather data models
with multi-point data models that utilize generation data from
multiple PVs instead of weather data. For the weather data
model, the authors provided models trained for one month,
four and a half months for machine learning, and one month

FIGURE 3. Locations of PVs used in the evaluation of each forecast
model, and meteorological stations.

for the multi-point data model. The authors aimed to deter-
mine whether the forecast accuracy of the multi-point data
model was comparable to that of the conventional weather
data model within a shorter training period. TABLE 3 and 4
outline each model and the data used. The three PVs indi-
cated by the green dots in FIGURE 3 (b) are the evaluation
targets, with the weather data for each PV system obtained
from the meteorological stations. Notably, the weather data
used here are real-time observational data, which tend to
result in smaller forecasting errors than past weather data
or NWP data. In TABLE 4, the forecast models that use
weather data include XGB (1-month), XGB (4.5-month),
LGBM (1-month), and LGBM (4.5-month), which utilize
variables related to time, 30min prior generation, andweather
data such as solar radiation. Each forecasting model trains
one model for each PV system. Specifically, XGB (1-month)
and LGBM (1-month) use data up to one month before
the test data as training data, whereas XGB (4.5-month)
and LGBM (4.5-month) use data up to 4.5 months before
the test data as training data. For example, when the test
data are from January 1, 2014, to January 31, 2014, XGB
(1-month) and LGBM (1-month) use data from December 1
to December 31, 2013, as training data, andXGB (4.5-month)
and LGBM (4.5-month) use data from August 15, 2013,
to December 31, 2013. In TABLE 4, the forecasting mod-
els using multi-point PV power generation are optical flow,
multi-LGBM, and flow-LGBM. The optical flow forecasts
the generation of the 5096 PVs shown in FIGURE 3 (a), using
datameshed based on the latitude and longitude of the genera-
tion 30 and 60min before the forecast time. Themulti-LGBM
uses variables related to time, historical power generation
of the 390 PVs, unique PV features, and data specific to
each PV, such as the location and rated power, as shown in
TABLE 3 and 4. Flow-LGBM uses the variables used by the
multi-LGBM and the predictions of each of the 390 PVs by
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TABLE 3. Feature abbreviation.

TABLE 4. Model description.

TABLE 5. Hyperparameter.

optical flow. The multi-LGBM and flow-LGBM have one
month of training data and forecast 390 PVs using a single
model. The hyperparameters of the machine learning model
were grid-searched and updated monthly, as presented in
TABLE 5. In addition to weather data models and multi-point
data models, the authors added a persistent forecasting model
that uses the power generation 30 min prior as the forecast
value and an autoregressive (AR) model, which is a statistical
model.

B. RESULT
TABLE 6 and FIGURE 4 present the MAE for each forecast
model when evaluating the three PV systems. Flow-LGBM
demonstrated the highest forecast accuracy in PV 1 and

PV 3, whereas, in PV 2, it ranked second after optical flow.
The average MAE across the three PVs for the flow-LGBM
improved by 37.7%, 16.9%, 25.7%, 18.4%, 17.0%, and 5.6%
compared with persistence, AR, XGB (4.5-month), LGBM
(4.5-month), multi-LGBM, and optical flow, respectively.
The statistical significance was confirmed using a t-test,
with p-values of less than 1% in all comparisons. Opti-
cal flow shows the second-best forecast accuracy in the
average MAE across the three PVs but performs less accu-
rately than AR, multi-LGBM, and flow-LGBM at PV1. The
multi-LGBM ranks fourth in terms of average MAE forecast
accuracy, but its performance is significantly lower in PV2.
The flow-LGBM enhances the forecasting accuracy of both
the optical flow and multi-LGBM by combining the optical
flow and LGBM. Regarding weather data models, LGBM
outperformed XGB when comparing models trained for the
same period. Both models exhibited improved forecast accu-
racy with a training period of 4.5 months compared with a
training period of one month.

The authors analyzed the relationship between the impor-
tance of each feature and the forecast accuracy for the
LGBM (1-month), LGBM (4.5-month), multi-LGBM, and
flow-LGBM using the LGBM feature importance. TABLE 7
lists the correlation coefficients between the features used
in the weather data models and generation, representing the
average correlation across the three PVs. FIGURE 5 illus-
trates the relative importance of each feature, as evaluated
by the LGBM feature importance assessment. As shown
in FIGURE 5(a), the importance of each feature is nearly
identical for LGBM (1-month) and LGBM (4.5-month). Both
models assigned high importance to features such as the
two-week maximum generation, 30 min prior generation, and
solar radiation, which exhibited high correlation coefficients,
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TABLE 6. MAE of each model for three PVs.

FIGURE 4. MAE [pu] of three PVs for each forecast model.

as shown in TABLE 7. Whereas the correlation coefficient
assesses the linear relationship of each feature with the target
variable, the LGBM feature importance evaluates the lin-
ear and nonlinear relationships between the target variable
and features and the interaction between features. Therefore,
there may be a slight discrepancy between the correla-
tion coefficient and feature importance, as evaluated by the
LGBM. FIGURE 5(b) shows that the multi-LGBM assigns
high importance to features such as generation 30 min prior
and maximum generation. Conversely, FIGURE 5(c) shows
that Flow-LGBM is highly important to the optical flow
features, representing the predicted generations for 390 PVs
using optical flow. Furthermore, the Flow-LGBM rates the
importance of time-related variables as low. This assessment
may stem from the inclusion of time information in opti-
cal flow features. Hence, the 17.0% MAE improvement of
the flow-LGBM over the multi-LGBM can be attributed to
learning spatial-temporal PV relationships through optical
flow features. The 25.7%MAE improvement of Flow-LGBM
over LGBM (4.5-month) could be attributed to factors related

to the weather data quality and their correspondence with
the generation, in addition to the utilization of optical flow
features in Flow-LGBM.

The authors analyzed the error factors for PV1, which
exhibited the lowest forecast accuracy among all the weather
datamodels, based on the relationship between solar radiation
(the most important weather data), generation, and the fore-
cast accuracy of the LGBM (4.5-month) and Flow-LGBM.
TABLE 8 presents the correlation coefficient between gen-
eration and solar radiation and the MAE of the flow-LGBM
and LGBM (4.5-month) for PV1. FIGURE 6 shows the rela-
tionship between generation and solar radiation and the MAE
difference between Flow-LGBM and LGBM (4.5-month).
TABLE 8 and FIGURE 6 demonstrate that the LGBM
(4.5-month) exhibits better forecast accuracy and less vari-
ation in the forecast accuracy than the Flow-LGBM when
the correlation between power generation and solar radia-
tion is strong. Conversely, when the correlation is weak,
the LGBM (4.5-month) exhibits a lower forecast accu-
racy and higher variability than Flow-LGBM. Specifically,
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FIGURE 5. LGBM feature importance.

TABLE 7. Correlation coefficients between features used in the weather data model and power generation (average of three PV).

TABLE 8. Correlation coefficient between generation and solar radiation, and MAE of Flow-LGBM and LGBM(4.5-month) for PV1.

FIGURE 6. Relationship between generation, solar radiation, and difference in MAE between Flow-LGBM and LGBM (4.5-month).

FIGURE 6 (b) depicts conditions where the solar radiation
exceeds 0.33 kW/m2 and power generation is below 0.1 pu;
the forecast accuracy of LGBM (4.5-month) significantly
lags behind that of the Flow-LGBM. This notable decrease
in forecast accuracy is attributed to PV1’s location in Mae-
bashi City, Gunma Prefecture, an area with heavy snowfall,
where generation can decrease owing to snow covering the

PV panels. Thus, the alignment between weather data, such
as solar radiation and generation, is crucial for forecasting
the accuracy of weather data models. Addressing factors
such as data loss and quality due to sensor failure and
environmental elements such as snow cover are essential
for improving the accuracy of forecast models. In contrast,
the Flow-LGBM, a multi-point data model, maintains a
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stable forecast accuracy even during short learning peri-
ods by learning the relationship between spatiotemporal PV
patterns, akin to pseudo-cloud motion, using optical flow
features.

VI. COMPARISON OF MULTI-POINT DATA MODELS
The authors compared the deterministic and probabilistic
forecast accuracies of the 390 PVs evaluated in this study
for multi-LGBM, flow-LGBM, and optical flow, all of which
are multi-point data models. This study aimed to assess the
superiority of the Flow-LGBM over other models. TABLE 9
evaluates the deterministic and probabilistic forecast accura-
cies of the 390 PVs of the multi-point data model during the
test period, as shown in FIGURE 7. TABLE 9 and FIGURE 7

demonstrate that the deterministic and probabilistic evalua-
tion indicesMAE andCRPS are superior for the Flow-LGBM
compared with the other models for each month. Over the
entire period, Flow-LGBM improved the multi-LGBM and
optical flow by 18.9% and 5.8% for MAE, and 16.7% and
10.8% for CRPS, respectively. A T-test confirmed these
improvements were statistically significant, with p-values of
less than 1% for theMAE andCRPS comparisons. FIGURE 8
shows the average forecast accuracy of each PV system for
the MAE and CRPS for the entire period. This indicates that
for each of the 390 PVs, the flow-LGBM had the best fore-
cast accuracy relative to the multi-LGBM and optical flow,
with the MAE and CRPS at 259 and 362 PVs, respectively.
Considering the feature importance in FIGURE 5(b) and 5(c),

TABLE 9. Average forecast accuracy for 390 PVs in the multi-point data models.

FIGURE 7. Average forecast accuracy for 390 PVs.
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FIGURE 8. Average forecast accuracy for each PV over the entire period.

FIGURE 9. Average forecast accuracy by time for all PVs.
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FIGURE 10. Violin diagram of average MAE over the entire period of 390 PVs.

the Flow-LGBM evaluates the importance of the optical flow
features. This suggests that learning the spatiotemporal PV
relationship through optical flow features can improve fore-
casting accuracy compared to other models. TABLE 9 and
FIGURE 7 also illustrate that for PICP and PINAW, Flow-
LGBM is superior in all months except February for PICP and
eachmonth for PINAW. The flow-LGBM improves themulti-
LGBM and optical flow for the entire period by 0.3% and
0.9% for PICP and 9.3% and 16.2% for PINAW, respectively.
The PICP falls below 0.9 in March in all the multi-point
data models. This decrease in the PICP can be attributed to
the high average power generation and large output fluctu-
ations during this month, resulting in increased prediction
errors.

The authors analyzed the accuracy of the prediction inter-
vals for each time because the multi-point data models
obtained the error distribution for each time and generated
prediction intervals. FIGURE 9 shows the average forecast
accuracy over time for all PVs, and FIGURE 10 presents a
violin diagram of the average MAE over the entire period
for 390 PVs. FIGURES 9(a) and 9(b) show that Flow-LGBM
has the best forecast accuracy in terms of MAE and CRPS for
many periods. FIGURE 9(c) demonstrates that Flow-LGBM
has the narrowest PINAW at almost all times, whereas the
optical flow exhibits the widest PINAW at almost all times.
The wide PINAW of the optical flow may be due to errors
in the interpolation of missing values in the image of the
power generation distribution and errors resulting from the
assumption that the power generation distribution is invariant
and in constant velocity linear motion, leading to a larger vari-
ation in the forecast, as shown in FIGURE 10. FIGURE 9(d)
indicates that the PICP for all models exceeds 0.94 when the
average generation was large from 8:30 to 14:00. However,
the PICP is below 0.94 during other periods when the aver-
age generation is small. Additionally, from 16:30 to 18:00,
the PICP for the flow-LGBM tended to increase, whereas
that of the optical flow tended to decrease. This trend in
the optical flow may be attributed to the narrow PINAW
during that time and the high variability in the prediction
accuracy.

Flow-LGBM improves the MAE and CRPS in almost all
periods by learning spatial-temporal PV relationships from
optical flow features. Additionally, by reducing the variability
of the optical flow predictions, the PINAW is narrowed, and
the PICP is stabilized. A challenge in this study was that the
PINAWwas narrower, and the PICPwas lower during periods
of low generation. Therefore, improving the PICP by adding
a correction to the forecast interval width during periods of
low power generation is necessary.

VII. CONCLUSION
In this study, the authors proposed a hybrid model that com-
bined optical flow and LGBM without using meteorological
data such as cloud images or weather data. The model aimed
to forecast deterministic and probabilistic outputs 30 min in
advance for 390 distributed PVs, relying solely on one month
of PV generation and location data. The model achieved two
primary objectives. First, it could use weather data to forecast
the output of dispersed PVs 30 min in advance with higher
accuracy than conventional models. Compared to the LGBM
trained on 4.5 months of weather data, the proposed method
improved the MAE of the three PVs by 18.4%. Second,
it enhanced the forecast accuracy by combining machine
learning and optical flow to learn the spatiotemporal rela-
tionships of PVs. Compared to the optical flow alone, the
proposed method improved the MAE and CRPS of 390 PVs
by 5.8% and 10.8%, respectively. Therefore, the proposed
method achieved higher accuracy in forecasting the output
of geographically dispersed PVs without weather data than
conventional methods that use weather data or optical flow.
A future challenge is to classify distributed PV systems into
clusters based on multiple factors, such as geographic loca-
tion and output generation, and apply specialized forecasting
models to each cluster to enhance the overall accuracy of the
output forecasts.
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