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ABSTRACT As Computer Vision technology has evolved rapidly these days, the implementation of object
detection and instance segmentation has been presented in various areas. In computer-aided laparoscopic
surgery, the segmentation of surgical instruments is one of the active research areas. This paper presents
the implementation and comparative analysis of a real-time surgical instruments segmentation system by
incorporating ByteTrack, a powerful object tracking system, within the YOLOv8, a state-of-the-art Deep
Learning algorithm for object detection and segmentation, together with an instruments gesture analysis
of the practical results. The instrument gestures have been categorized into separating, crossing, and
overlapping cases according to the most common instrument gestures during the surgery. The datasets
from the ROBUST-MIS 2019 challenge have been applied and annotated for training, validating, and blind
testing in this study. Considering trade-offs among model complexity, speed, and accuracy, the medium
version (YOLOv8m) has been chosen in this study for its comparative model complexity, design for working
in real-time, and relative high accuracy. In order to validate the effectiveness of this research, real-time
segmentation of surgical instruments has been performed with the streaming of laparoscopic gynecologic
surgery on 5 donated soft-tissue cadaver cases. According to the experimental results, although YOLOv8
can provide very high-accuracy evaluation metrics for both F1-score and mAP (mean Average Precision),
the segmentation accuracy results could have been further improved by incorporating the ByteTrack within
the YOLOv8 algorithm. Owing to the 2-association scheme that has been designed for object tracking in
ByteTrack, referring to the tracklet from the previous frame could recover missed segmentations that come
with too low confidence values. The findings identify that the Modified model of incorporating ByteTrack
with YOLOv8 could improve the F1-score from 0.89 to 0.92, which outperformed all of the previous studies
on the ROBUST-MIS 2019 Challenge, and from 0.82 to 0.88 on the blinded captured dataset from live
streaming videos with a real-time segmentation speed of approximately 45 FPS (Frames Per Second), which
is sufficient for a real-time application as opposed to 60 FPS from only the YOLOv8 algorithm. From the
instrument gestures result analysis, ByteTrack could improve the segmentation performance in all gesture
categories: separating, crossing, and overlapping. However, the remaining segmentation failures mostly lie
in crossing and overlapping gestures.
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I. INTRODUCTION
As opposed to conventional open-surgery, laparoscopy has
the advantages of being less painful, a use of smaller incisions
and more rapid recovery time for the patient. Robotic-
Aided Surgery (RAS) has been implemented to mitigate the
long-term muscle fatigue due to holding the laparoscope for
a long period from the start of the surgery to finish [1],
causing unsteady and inaccurate screen monitoring, which
could interrupt the surgeon, leading to taking longer time and
even putting the patient in danger [2]. Since 1995, the daVinci
System [3], which is the most well-known of RAS systems,
has revolutionized Minimally Invasive Surgery (MIS). At the
current time, innumerable approaches towards Image-Guided
Surgery (IGS) [4] have undergone development within the
realm of Computer Vision. As for RAS, organ and surgical
instrument detection, segmentation, and tracking have been
useful not just during the actual surgery but also for surgical
training to improve surgical skills. However, unlike other
images containing a wide RGB range, the viewpoint of these
images, streaming from the laparoscope, is rather unique,
as their color range is quite limited, mostly in a red-brown
tone. Furthermore, objects within these images would appear
bigger and closer positioned than the actual objects, resulting
in what seems to be more rapid motion, which might move
across the whole frame in a split second. A large number
of studies have been undertaken on surgical instrument
detection and tracking [5], along with a prior study [6]
that compared a number of Deep Learning methodologies.
Recently, various research [7], [8], [9], [10], [11], [12],
[13] has progressed towards surgical instrument segmentation
as it provides more fine-grained boundaries and regions
rather than only identifying specific objects along with
their locations [14]. Although the majority (if not all) of
previous research offered outstanding performance, themajor
challenge still remains with close-positioned and overlapping
surgical instruments. The purpose of this study is not only
to present surgical instrument segmentation performance via
the combination of the Deep Learning algorithm, YOLOv8
along with the powerful ByteTrack, but also to perform an
analysis on how this model deals with designated objects in
this unique viewpoint of laparoscopic surgery. Furthermore,
in addition to performing on the dataset, the models have also
been experimented on 5 soft-tissue cadaver surgeries to verify
their real-time performance.

II. RELATED WORK
Within the realm of Computer Vision combined with Deep
Learning, the instance segmentation technique is a significant
improvement in image analysis. The segmentation algorithms
such as Mask RCNN [15], EfficientNet [16], YOLACT++

[17], andMask SSD [18] have been developed in recent years.
Some prominent areas of instance segmentation models are
autonomous driving cars, satellite imaging and agriculture,

robotics, and also medical imaging [19]. Although the
instance segmentation technique can provide more detailed
information about an object’s location and even occlusion
handling, there are still challenges for it to be real-time
segmentation with high speed and reliable accuracy [20].

For surgical instruments segmentation in laparoscopic
surgery, Mask RCNN algorithm has been applied with
various datasets [7], [8], [9], [10]. AlthoughMask RCNN can
provide reliable accuracy, its inference speed is quite low for
real-time applications and it also has failure cases of crossing,
overlapping, and occlusion [9], [10].

As for using the EfficientNet network, surgical instru-
ments segmentation has been implemented with different
datasets [11], [12], [13]. Although EfficientNet can provide
20 FPS speed, its results yield slightly low accuracy, with
problems in poor lighting situations and missed segmenta-
tions due to overlapping [12], [13].
In 2019, the ROBUST-MIS (Medical Instrument Segmen-

tation) 2019 Challenge [21] was organized as an international
benchmarking competition, aiming to find and compare the
algorithms with robustness and generalization capabilities.
While the top-3 rankedDeep Learningmodels, DeepLabV3+
[22], OR-UNet [23], and BARNet, or Dense Pyramid
Attention Network [24], with the highest accuracy, have
been reported [25] for being robust to color changes due to
reflections, blur, blood, and smoke, and YOLACT++ [26]
has been reported for providing 30 FPS speed, there are
still critical challenges, including occluded conditions such
as close-positioned, overlapping, and crossing of surgical
instruments.

Nowadays, YOLO has become the optimal real-time
Deep Learning algorithm for object detection, instance
segmentation, and identification. Since YOLACT++, later
YOLO versions, such as YOLOv5, YOLOv7, and YOLOv8,
have been able to provide instance segmentation to train
the custom model [27]. This instance segmentation is a
modification of the detection architecture with an additional
neural network in the head to output the segmentation masks.

In order to perform real-time object segmentation in video
sequences, the most current, with high tracking accuracy,
object tracking algorithms, StrongSORT [28], OC-SORT
[29], and ByteTrack [30], have been considered. With the
help of Kalman filter, while StrongSORT and OC-SORT
have been designed with respect to SORT (Simple Online
and Real-time Tracking), ByteTrack has been implemented,
considering speed as a critical factor. Unlike other tracking
algorithms, which only associate bounding boxes with higher
scores than the confidence threshold and ignore the lower
scores completely, ByteTrack will filter both higher and
lower scores to work on motion or appearance similarity
in order to recover possible occlusions between consecutive
frames. This association with both high and low scores not
only benefits object tracking but could also be beneficial to
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object occlusion. An occluded object might easily be able to
get detected; therefore, later, once it is occluded, it could still
be detected via the association scheme.

While a number of studies have worked on multi-class
surgical instrument detection/segmentation [5], [10], [13],
only a few have reported on real-time segmentation [26]
and none on detailed analysis, i.e., instrument gestures.
To perform real-time surgical instrument segmentation in
video sequences, ByteTrack has been considered to be
incorporated with the current latest YOLOv8 algorithm,
similarly to other previous works [31], [32]. However, some
issues need to be addressed (i.e., objects appear to be closer,
bigger, and move faster) in order to handle the specific
scenarios in the laparoscopic surgery case to form the
Modified Y+BT model here.

The contributions of this research are as follows:

• The Modified Y+BT model, which has been evaluated
on the ROBUST-MIS 2019 Challenge dataset, over the
state-of-the-art YOLOv8 algorithm and also the original
Y+BTmodel. The results have also been compared with
those from the ROBUST-MIS 2019 Challenge.

• The real-time results from the experiments and eval-
uation of the Modified Y+BT model on 5 soft-
tissue cadaver cases for live-streaming laparoscopic
gynecologic surgery over the state-of-the-art YOLOv8
algorithm and also the original Y+BT model.

• The analysis of the practical results according to
instrument gesture categories.

• A new dataset, captured images from 5 soft-tissue
cadaver cases used in this research.

III. METHODOLOGY
This section commences with the Modified Y+BT model,
then how the datasets have been obtained, followed by the
details of the experimental process, real-time process, and
evaluation metrics. The gesture categories for later analysis
are described at the end.

A. THE MODIFIED Y+BT ALGORITHM
The Modified Y+BT algorithm consists of YOLOv8 as the
core segmentation and ByteTrack as an adapted module,
as shown in Figure 1. Two confidence thresholds (high and
low) have to be defined for ByteTrack in order to take
advantage of having 2 associations between the current frame
and the previous frame, unlike other segmentation algo-
rithms, including YOLOv8, which concern only a specific
confidence threshold. Any instance that might get segmented
with a low confidence value (as indicated in the red circles) by
the YOLOv8 algorithmmay be recovered by ByteTrack later.
In this study, the optimal instance segmentation model from
the training process, together with this optimal confidence
threshold, was applied in the ByteTrack algorithm.

Figure 2 illustrates how these 2 confidence thresholds take
part in both the first and second associations of ByteTrack.
Per the first association, the high confidence threshold serves

as the typical confidence threshold of other segmentation
algorithms to identify whether an instance is segmented.
While in ByteTrack, this segmented instance within high
confidence values in the current frame might or might not
have a tracked instance (aka tracklet) from the previous
frames associated, depending on whether the location of
the segmented instance falls down in the predicted location
of any tracklet from the previous frame. If so, the tracklet
is updated, but if not, a new tracklet is introduced in this
frame and held up for a certain time (configured to the
capture rate in this study) before faded off. The next step,
an exclusive feature in ByteTrack, requires another (low)
confidence threshold. Similarly to the first association, this
time the association is between a tracklet from the previous
frame and an instance in the current frame within low
confidence values at the predicted location. Two cases could
occur, where the second association only concerns when a
tracklet is associated with an instance, promoting what used
to be an unsegmented instance due to its low confidence value
to become a segmented instance, and the tracklet is updated.
Where any other instances with low confidence values do
not have any tracklet associated, those instances will then be
ignored. Lastly, for those instances with confidence values
lower than the low confidence threshold, these instances will
be neglected as they might have used to be there but not
anymore, or it is a false alarm as they have never been there
in the first place.

The main distinction between the Modified Y+BT
algorithm used in this study and other YOLOv8 + ByteTrack
algorithms is its attempt to make it more reliable for handling
the dataset’s unique characteristic of laparoscopic surgery.
As mentioned in the paper, the dataset from laparoscopic
surgery has a uniqueness over other scenarios because objects
are in a more closed-up position, hence the objects appear
bigger and in more rapid motion. As a result, according
to the motion uncertainty of an instance in this scenario,
two hyperparameters within the Kalman Filter, position and
velocity weights, must be modified to support the size and
speed of the designated objects here.

B. DATASETS
As mentioned in Section II, ROBUST-MIS 2019 Challenge
datasets [33], which have been considered as the first-
occurring large-scale annotated MIS dataset, have been
applied, trained, and tested. A total dataset of 10,040
captured images (from 25 FPS videos) was used, each
with a resolution of 960 × 540 pixels, from 30 minimally
invasive surgical procedures from 3 laparoscopic surgery
types: Proctocolectomy, Rectal Resection, and Sigmoid
Resection (named C1 to C10 datasets). Independent testing
sets, divided into 3 different stages, have been included in
the dataset in order to evaluate the model with different
levels of difficulty. All of the captured images were then
annotated through the Roboflow [34] online annotation tool
by using the polygon annotation type. After annotation of
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FIGURE 1. Overview diagram of the modified algorithm.

FIGURE 2. Association procedure.

all captured images, augmentation is necessary in order
to enlarge the size of training and testing datasets for
improving model accuracy and preventing models from
overfitting [35]. Additionally, YOLOv8 provides some data
augmentations, such as blurring, median blurring, gray
scaling, and contrasting, from the Albumentations package,
but only for the training dataset [27]; nonetheless, image
augmentation techniques in the geometric transformation
aspect were not applied. Therefore, further augmentations,
including horizontal flipping and ±15◦ random rotation via
Roboflow, have also been applied to all the datasets.

Moreover, per real-time evaluation, the models have been
tested in laparoscopic gynecologic surgery undertakings
on 5 donated soft-tissue cadaver cases for the purpose of
educational research at SrinagarindHospital, KKU, Thailand,
under the Ethical approval #HE641206, waived by the
Center for Ethics in Human Research, Khon Kaen University

(KKU), onMay 13th, 2021. Later, the Streaming dataset com-
prising 262 annotated images with a resolution of 1,920 ×

1,080 pixels acquired from these 5 recorded surgery clips was
created and applied as additional testing datasets, named S1 to
S5, serving as one of the contributions here andwhich is avail-
able at ‘‘https://www.kaggle.com/datasets/nyinyimyo2022/
streaming-datasets.’’ Table 1 lists the details of the
training-validation (80:20) and testing datasets from the
ROBUST-MIS 2019 Challenge and the Streaming dataset
with the number of captured images used in this study.

TABLE 1. Datasets details.

C. EXPERIMENTAL PROCESS
Two processes contained in this study are the computational
process and the real-time process. Figure 3 illustrates the
overview diagram for the computational process, comprising
model training, validation, and testing for both YOLOv8
and the Modified Y+BT surgical instrument segmentation
models. The dataset includes 10,040 captured images from
the ROBUST-MIS 2019 Challenge as training-validation-
testing datasets and 262 captured images from the streaming
gynecologic surgery. With the help of Roboflow, the number
of annotated and augmented images has increased to 14,361
images for training, 3,588 for validating, and 12,957 for
testing. Furthermore, the number of images within the
training dataset has been increased by 57,444 by YOLOv8
albumentation.
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FIGURE 3. Computational process.

Per the real-time streaming process (Figure 4), the
trained YOLOv8 along with the Modified Y+BT instance
segmentation models have been performed to verify the
segmentation speed. The captured images from these live
streamings of the laparoscope have been sent back to the
computational process once again to evaluate the accuracy,
as shown in Figure 3.

FIGURE 4. Real-time process.

YOLOv8 instance segmentation algorithm has been
applied to train the custom model as it is the state-of-
the-art Deep Learning algorithm with the optimal speed
and accuracy to apply in real-time applications. Five sized
versions of YOLOv8, running from lower to higher ver-
sions: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x, are available, with the higher versions being
capable of providing higher accuracy but lower segmentation
speed, and a more powerful machine will be required. In this
study, considering the trade-off between speed and accuracy,
YOLOv8m was selected in order to apply in real-time
surgery as the segmentation model. It has been trained on
the Google Colaboratory platform with a pre-trained model
that was trained using the COCO val2017 dataset [36]. The
following settings parameters were selected for the configu-
ration in the training process: epochs=300, batch_size=16,
image_size=640, workers=8, optimizer=SGD, lr (learning
rate)=0.01, momentum=0.937, weight_decay=0.0005 etc.

The size of the input image was set to 640. NVIDIA Tesla
A100 GPU has been chosen for the runtime type during the
training process on Colab. A total of 300 epochs were trained
to generate the last weight, and then the best weight was
applied for the testing process.

D. EVALUATION METRICS
The performance evaluation in this study has been measured
in 3 schemes: accuracy, speed, and complexity. For the
trained model, the validation and testing results have been
evaluated according to accuracy evaluation metrics such as
Precision, Recall, F1-score (aka DSC - Dice Similarity
Coefficient) and mAP [37]. Intersection Over Union (IOU)
is responsible for calculating overlap between the predicted
bounding box and the ground truth one. The value will be
between 0 and 1, according to overlapping regions. For the
Confusion Matrix, True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) are calculated
by comparing IOU and a predefined threshold value. From
these values, Precision andRecall can be calculated by using
Equations (1) and (2).

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

From these values, F1-score, the harmonic mean of
Precision and Recall, can be calculated by using
Equation (3).

F1 − score = 2 ×
Precision× Recall
Precision+ Recall

(3)

Precision and Recall are computed for different Con-
fidence Thresholds for generating Precision-Recall curves.
Average Precision (AP) is computed as the area under the
Precision-Recall curve. While AP is computed per class,
mAP can be calculated as the average over all classes for
combining AP scores. The optimal Confidence Threshold
has also been defined firstly for the model in order to have
the highest F1-score. Segmentation speed has also been
evaluated practically in terms of Inference Time and FPS
in order to be applied in real-time applications. In order to
fulfill an optimal segmentation model, a trade-off among
accuracy, speed, and model complexity is very important.
The model complexity in Deep Learning refers to the number
and size of hidden units and layers, activation functions,
and learning algorithm parameters. The model complexity
comparison among the top models from the ROBUST-MIS
2019 Challenge and the YOLOv8m according to the number
of parameters in millions (M) is as listed in Table 2.

E. GESTURE CATEGORIES
Although the existing state-of-the-art instance segmentation
algorithms can provide reliable accuracy to deal with and
segment blur cases due to reflection or motion and overlay
of blood or smoke, there are still some segmentation failures
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TABLE 2. Model complexity.

FIGURE 5. Separating cases.

FIGURE 6. Crossing cases.

FIGURE 7. Overlapping cases.

due to the position of instruments in the viewpoint [25], [26].
In-depth study and analysis should be performed, therefore,
and so three main gesture categories of surgical instruments,
those of separating, crossing, and overlapping cases, are
classified to be analyzed in this study. The definitions for
these three categorized gesture cases, along with a mixed
case, are as follows, while Figures 5-8 provide relevant
depicted drawings and example images.

Separating Case (S): Each surgical instrument in the image
is separating without overlapping each other (Figure 5).
Crossing Case (C): Two surgical instruments in an image

are crossing each other, showing both tips (Figure 6).
Overlapping Case (O): One surgical instrument in an

image is overlapped by another (Figure 7). Only one tip is
pronounced.

Mixed Case (M): Some images might have more than
one gesture case (Figure 8). Five mixed cases, found in
this study, are: a C+S case; an O+S case; a C+O case

FIGURE 8. Mixed cases.

TABLE 3. Numbers of gesture cases.

where 3 instruments are involved; a (C+O)+S case where
4 instruments are involved; and a (C+O)+O case where
5 instruments are involved.

An image in each dataset in this study could contain a
number of 1-instrument separating cases or a 2-instrument
crossing case or a 2-instrument overlapping case or a
3-instrument C+O case or a 3-instrument C+S case or a
3-instrument O+S case or a 4-instrument (C+O)+S case or
a 5-instrument (C+O)+O case. The number of each case can
be accumulated from its simple case along with its special
case within mixed cases as well. It is noted that there is
no crossing case in the real-time streaming videos. Table 3
lists the numbers of gesture cases for Stage 3 and Streaming
datasets.

IV. RESULTS AND DISCUSSION
This section contains 3 parts, starting with the overall
performance evaluation of the YOLOv8, the original Y+BT
and the Modified Y+BT models on both the ROBUST-MIS
2019 challenge and the Streaming datasets, then instrument
gesture cases analysis, and lastly, the evaluation of the
Modified model performance.

A. OVERALL PERFORMANCE EVALUATION
Subsequent to the completion of the training process,
a validation of the trained model is important to ensure its
performance, providing the opportunity for the model to be
improved. For the first association, the high threshold value
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FIGURE 9. F1-score comparison.

FIGURE 10. mAP comparison.

was set to 0.5 for the original Y+BT model and 0.42 for
the Modified model in this study, the same as the optimal
confidence threshold, obtained from the validation process,
to be the highest accuracy. For the second association, the
low threshold value was set to 0.1 for the original model and
the minimal value as low as 0.01 for the Modified model to
retrieve almost all correct segmentations in the configuration
of the ByteTrack algorithm. In order to perform the evaluation
for instance segmentation models as described in Table 1 and
Figure 3, the YOLOv8m model, the original Y+BT model,
and the Modified Y+BT model have been performed on two
experiment sets (P1 to P10 and E1 to E5), with the blinded
ROBUST-MIS 2019 Challenge testing dataset (C1 to C10)
and the Streaming dataset (S1 to S5). Figures 9 and 10 present
the F1-score and mAP for these cases. Both evaluation
metrics of the Streaming dataset are slightly lower compared
to those of the Stage 3 dataset, which is understandable as the
captured images from the streaming surgery were originally
acquired just for this study from different settings. As can be
seen clearly, there is an improvement in the Modified Y+BT
model over the YOLOv8, for both metrics and both testing
datasets. Details on the benefits of the Modified model are
shown and discussed in the following sections.

To benchmark the accuracy for binary segmentation of all
models in this study, the comparison with the top 3 ranked
models [22], [23], [24] with the highest mean DSCs (or
F1-score in this study) on the ROBUST-MIS 2019 Challenge
testing dataset has been declared as listed in Table 4. As can

TABLE 4. Benchmarking with the top 3 previous models.

FIGURE 11. Real-timed experiment on a cadaver.

TABLE 5. Computational speed.

be seen here, all models in this study, especially the Modified
Y+BT model, conquered the results of those top 3. This
is because all models benefit from the advantages of the
anchor-free approach and augmentation technique during
the training process. As for the model complexities of all
models experimented and analyzed in this study, they are
much the same, while the additional ByteTrack and Modified
algorithms are not part of the training process in the Deep
Learning model.

Next, as for the real-time process to evaluate the com-
putational speed of the models, 5 practical laparoscopic
gynecologic surgeries on donated soft-tissue cadavers have
been performed. Figure 11 illustrates a special set-up of the
experiment conducted on a cadaver in the operating theater
room. With the help of the extra light via a medium-sized
incision through the abdomen, the inner view could be seen
and observed much more clearly and easily. As can be
seen vividly on the main monitor, used by the surgeon to
do the operation, two surgical instruments were captured
by the laparoscope, while the left monitor was used for
showing the real-time segmentation results from theModified
model. All of the results from the streaming cases shown
in this paper have come from this set-up. Table 5 reports
on the computational speed for the YOLOv8m and Y+BT
models performed here, measured in Inference Time (ms)
and FPS. In the use of the PyTorch GPU version with
NVIDIA RTX 3050 Ti, with speeds of 60 FPS and 45
FPS for the YOLOv8m and Y+BT models, respectively, the
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results showed that both models could cope well for real-time
applications, with 25 FPS streaming videos having the same
speed as those in the ROBUST-MIS 2019 Challenge dataset.

Since both models were equipped with YOLOv8, which
is a single-stage algorithm, processing the prediction and
classification in a single pass with the assistance of a
high-performance PyTorch GPU version, this results in a
fast speed capable of real-time applications. As a result,
the Y+BT model could continue associating without the
segmentor delay, yielding 45 FPS, which still serves well
along with 25 FPS streaming video from the laparoscope,
despite the fact that its overall segmentation speed decreased
due to the additional processing time in the ByteTrack.

B. GESTURE CASES ANALYSIS
Per gesture cases analysis, all the results came from the
YOLOv8 vs. Modified models. Figure 12 shows exam-
ple images of successfully segmented results from the
ROBUST-MIS 2019 Challenge and Streaming datasets for
the different gesture categories of separating, crossing, over-
lapping, andmixed cases. As noted in Table 3, only separating
and overlapping cases existed in Streaming datasets. The left
column illustrates ground truth from annotation, and the right
column illustrates practical results from YOLOv8 surgical
instruments segmentation. These results are also the same as
those from the Y+BT and Modified models.

Although YOLOv8 can segment surgical instruments
accurately with high evaluation metrics, a number of
segmentation failures can still be found in all gesture cases.
Figure 13 illustrates example images of unsuccessfully
segmented results by YOLOv8, which can be recovered
by ByteTrack for different gesture categories, together with
corresponding ground truth images from the ROBUST-MIS
2019 Challenge and Streaming datasets. From the results,
the most straightforward case to gain the least missed
segmentations was the separating case; however, there are a
few factors that could cause segmentation failures, including:

• Instance Tininess: a problem which occurs when the
instrument is shown in a very small size that could be
caused by occlusion.

• Occlusion (by tissues and/or instruments): a problem
which occurs when the designated instance is covered
by some tissues and/or other instances. Per the instance
tininess and occlusions, the failures can be seen in
Figures 13(a-d) and (f).

• Underexposed Instance Color: a problem which occurs
when the color of the surgical instrument is similar to
or not obviously different from the background color,
as can be seen in Figures 13(d) and 13(e).

The next section shows how ByteTrack could recover these
failures.

C. EVALUATION ON THE MODIFIED MODEL
PERFORMANCE
In order to exhibit the benefit of ByteTrack, sequences of
frames in Figures 14-16, show results from the YOLOv8

FIGURE 12. Successful segmentations.

model (left column) and results from the Modified Y+BT
model (right column) for each gesture case. It is visible that
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FIGURE 13. Segmentation improvements.

only T1 (for all cases) and T4 (for Figures 15(a) and 16(b))
frames were segmented accurately for both columns.

However, during T2-T4 frames (in Figures 14, 15(b)
and 16(a)) and T2-T3 frames (in Figures 15(a) and 16(b)),
any features causing segmentation failures have taken
place, resulting in low confidence values on one of those
instruments, hence the segmentation failure for the YOLOv8
model. While instances have been segmented correctly in
the previous frame (T1), in ByteTrack, tracklets have been
introduced or updated as important information for the
following frames (T2, and so on). For instance, in the T2
frame, with a low confidence value for an instrument in the
first association, causing a segmentation miss, ByteTrack
could recover that particular instrument segmentation by
using the held tracklet in the second association if the low

FIGURE 14. Frame sequences showing ByteTrack performance.

score bounding box of the missing instrument is matched
correctly to the held tracklet.
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FIGURE 15. Frame sequences showing ByteTrack performance.

Furthermore, in addition to the overall accuracy evaluation
metric, F1-score, in this study, the accuracy percentage has

FIGURE 16. Frame sequences showing ByteTrack performance.

been used to report on the performance of each gesture
category in order to determine the strengths and weaknesses
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TABLE 6. Accuracy Percentage on Gesture Categories.

FIGURE 17. Limitation of the modified model.

of the models. Table 6 lists the results of segmentation
accuracy percentages for three main gesture categories:
separating, crossing, and overlapping. Notice that only
3 different gesture categories are shown, whereas the final
mixed case did not specifically exist, as each sub-case in
the mixed cases has been presented separately along with
its main case. The Modified algorithm can improve accuracy
percentages for all gesture categories. The highest accuracy
percentage (92%) went to the separating case, which means
92% of this case has been correctly segmented. Furthermore,
the accuracy percentage for the overlapping case is 72%.
However, the crossing case still remains challenging, with
only 38%.

As can be seen clearly, with the help of the two-association
scheme of ByteTrack, the Modified Y+BT algorithm could
improve segmentation accuracy by using the information
from the previous tracklet. However, there are still some
existing limitations.

Figures 17 and 18 present two examples of the limitations
of ByteTrack, with two frame sequences (T1-T7), commenc-
ing from relevant ground truth, showing segmentation failures
as limitations of ByteTrack. In Figure 17, only one instance
can be correctly segmented as its confidence value was higher

FIGURE 18. Limitation of the modified model that can be recovered.

than the confidence threshold at all times, whereas the other
existing instance failed throughout T1-T7 frames due to its
too low confidence value. On the other hand, Figure 18 shows
how any instances could come back as segmented instances.
This sequence commenced from an undetected instance due
to low confidence values in T1 and T2, where the correct
segmentations occurred in T3 and T4 as the confidence value
reached the high confidence threshold; hence, the tracklet
was introduced and can be held to support instances with low
confidence values in the following frames. Later, though with
low confidence values, the instance could still be segmented,
as shown in the T5 and T6 frames. However, with a too low
confidence value, that instance was undetected completely
again, as in the T7 frame.

V. CONCLUSION
Up until now, a large number of object segmentation
algorithms have been developed, and high accuracy could be
reached, but only a few could deal with it in real-time. Fur-
thermore, object occlusion has still been a critical challenge
for all, including surgical instruments segmentation. This
would not be easily solved unless the root cause had been ana-
lyzed. The main purpose of this research was to investigate
real-time surgical instruments segmentation in laparoscopic
surgeries, which was commenced by applying YOLOv8,
the state-of-the-art instance segmentation algorithm, and
testing the model on ROBUST-MIS 2019 Challenge datasets;
hence, the results from this could be compared with those
of other previous studies. However, unlike other images,
the viewpoint of images from a laparoscope is somehow
unique due to their red-brown tone range limitation and
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more rapid motion from a close-up position. Although
YOLOv8 could have offered an excellent result for all of
the evaluation metrics—the overall accuracy (F1-score and
mAP), the model complexity, and also segmentation speed,
which is very important for real-time operations—from the
results analysis, three features (instance tininess, occlusion,
and underexposed instance color) remain critical issues for
segmentation failures. With the modification added on to the
combination of the state-of-the-art YOLOv8 and ByteTrack,
the experimental results show that the Modified model could
easily serve in real-time and expressed the best results in both
F1-score and mAP with the comparative model complexity.
All results were then further inspected according to three
different instrument gesture categories: separating, crossing,
and overlapping, to find that the segmentation difficulties
lie mostly in crossing and overlapping. From the close-up
observation of frame sequences, when an occlusion occurs,
usually instances have transitions before and after the occlu-
sion. Therefore, instead of dealing with segmentation from
still images, analyzing the segmentation from a sequence
of frames was considered. ByteTrack, the high-performance
object tracking algorithm, was opted for incorporating with
YOLOv8 along with some modifications to deal with the
unique character of the dataset for having close-up and fast-
moving objects to accomplish better segmentation. Owing
to the 2-association scheme of ByteTrack, segmentation
failures of a current image frame could be recovered by
the tracklet from the previous frame, resulting in higher
accuracy with a small price to pay for computational time,
which is still efficient for the real-time application. Real-
time experiments conducted on 5 soft-tissue cadaver cases to
validate the effectiveness of YOLOv8, the original Y+BT,
and the Modified Y+BT models have also guaranteed the
measured results. Captured images from these streaming
surgeries have also been utilized as blinded test data and
have been publicized. As for future research, further effort
to investigate how to gain better instance segmentation and
tracking in laparoscopy should be considered.
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