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ABSTRACT Parkinson’s disease (PD) is a progressive neurodegenerative disease with multiple motor and
non-motor characteristics. PD patients commonly face vocal impairments during the early stages of the
disease. Therefore, diagnosis systems based on vocal disorders are at the forefront of recent PD detection
studies. Our study proposes two frameworks based onConvolutional Neural Networks to classify Parkinson’s
disease (PD). In recent years, Convolutional Neural Networks (CNNs) have proven highly effective in various
medical applications, particularly disease classification. However, standard CNN designs have significant
limitations because they require extensive manual calibration and supervision, which can result in biases and
poor performance in practical applications. This paper proposes the Self-Operating Convolutional Neural
Network (SOCNN) in conjunction with Convergent Cross-Mapping (CCM) to address these issues. The
SOCNN architecture is intended to modify its internal parameters automatically, eliminating the need for
manual intervention during training and increasing the model’s adaptability to unknown data. Adopting
CCM principles, we construct a seamless connection between the input and output domains, allowing for
rapid information transfer and preservation, which are crucial for accurate disease classification. To this end,
we construct causal networks, extract network features, and perform deep learning analysis to distinguish
Parkinson’s disease patients (PD) from age and gender-matched healthy controls (HC). Using a large
dataset of Parkinson’s Disease (PD) patients and healthy controls, the effectiveness of the proposed SOCNN
with CCM is evaluated. Specifically, we use the SOCNN-CCM to compute the centrality of the network
nodes, which act as features for the classification models. Extensive experiments are conducted to compare
the SOCNN to conventional CNN models and innovative techniques. The results demonstrate that the
SOCNN-CMMoutperforms state-of-the-art in terms of accuracy, sensitivity, and specificitywhen classifying
Parkinson’s patients, confirming its diagnostic potential.

INDEX TERMS Parkinson’s disease, self-operating convolutional neural network, convergent cross-
mapping, health controls.
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I. INTRODUCTION
The death of neurons in the substantia nigra, the
region responsible for dopamine production, characterizes
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Parkinson’s disease (PD) [1]. A key molecule called
dopamine, a member of the phenethylamine and cate-
cholamine families, operates as a messenger between the
brain and the substantia nigra and is a key regulator of
motor activities [2]. Approximately 60-80% of the cells
that generate dopamine are destroyed before Parkinson’s
disease symptoms appear [3]. This occurs when there is
not enough dopamine to control a person’s movements. The
ability to control the body’s motor processes is hampered
by a decrease in the production of dopamine neurons [4].
Four distinct motor symptoms, including tremors, which
appear as quivering of the jaw, hands, legs, and arms, and
stiffness leading to rigidity in the limbs and torso, are
the hallmarks of Parkinson’s disease [5]. Non-motor signs
like dementia, depressive thoughts, restless legs, increased
sensitivity to heat, and digestive problems might accompany
these motor symptoms [6]. Even though Parkinson’s disease
is currently incurable, a few therapeutic options are available
for patients experiencing motor and non-motor symptoms.
There are non-invasive (drugs) and invasive (surgery)
techniques for detection and treatment. By blocking nerve
signals, medications influence the motor system [7]. Side
effects are possible with all prescription medicines and
surgical treatments. Assessments of voice disorders became a
useful and unobtrusive method for early Parkinson’s disease
diagnosis. This is explained by the finding that 90% of people
with PD experience dysphonia or vocal impairment, which
sets them apart from people in a healthy state [8]. In order
to diagnose Parkinson’s disease, voice tests have emerged as
a reliable and useful tool. Parkinson’s disease (PD) affects
about 10 million people worldwide and is the second most
common neurological condition [9].Men aremore prone than
women to get Parkinson’s disease, and people over 65 are the
main demographic affected by the condition. Years before
motor symptoms appear, early symptoms like loss of smell,
constipation, and sleep difficulties are noticeable. Later, other
symptoms like tremors, a loss of coordination, and speech
problems start to show themselves. It is critical to receive the
correct treatments early on to help reduce or stop the disease’s
progression. However, symptom-based diagnosis of PD is
still a complicated and involved process [10]. Speech prob-
lems affect 90% of Parkinson’s patients. Hence analyzing
voice data has lately emerged as a critical tool for diagnosing
the condition [11]. Early identification of Parkinson’s disease
(PD) can be aided by the analysis of acoustic signals [12].
While listeners may not hear vocal issues in the early stages
of Parkinson’s disease, voice markers can be used to identify
these challenges [13]. Neurodegeneration without discernible
clinical indicators characterizes preclinical circumstances,
which are the first stage. After that, Parkinson’s disease
and movement disorders enter the prodromal phase, during
which individuals start to show clinical symptoms, but the
available diagnostic information is still insufficient [14].
Because of this, early detection in all stages is essential
for doctors to identify the illness and deliver prompt
medical care. At this time, PD cannot be early diagnosed

FIGURE 1. Sample Image of PD.

with the use of trustworthy biomarkers. One example of
PD is shown in Figure 1. This paper suggests a new
technique for classifying Parkinson’s illness that combines
Convergent Cross-Mapping (CCM) and Self-Operational
Convolutional Neural Networks (SOCNN), two cutting-edge
techniques. Specifically designed to improve its architecture
and dynamically learn from the dataset, SOCNN stands
out as a unique adaption of the traditional convolutional
neural network. It gradually evolves to achieve better
feature extraction and representation. Convolutional neural
networks [36] are practical tools for image classification.
However, they frequently need more adaptability because
they involve human tuning of hyperparameters and rigid
designs. SOCNN overcomes these problems by incorporating
an autonomous learning mechanism that dynamically adjusts
its settings, improving its PD classification performance.
This study also uses the Convergent Cross-Mapping (CCM)
technique, a strong nonlinear time-series analytic tool used in
domains as diverse as climate science and economics. CCM
enables the identification of complicated causal relationships
among various neurophysiological signals and biomarkers
linked to Parkinson’s disease. This study combines SOCNN
with CCM to create a more inclusive and intelligible
model for Parkinson’s disease classification. We tested the
unique SOCNN and CCM framework on a large dataset
that included both healthy individuals and those diagnosed
with Parkinson’s disease. This dataset incorporates a wide
range of clinical and neuroimaging measures. Through
meticulous comparison with other cutting-edge approaches
and diligent experimentation, we painstakingly evaluated the
effectiveness and resiliency of this unique methodology. This
study holds enormous potential, with the capacity to enhance
patient prognoses and facilitate early intervention through
greater precision and effectiveness in diagnosing Parkinson’s
disease. Furthermore, the combination of SOCNN and CCM
demonstrates great promise for developing durable and
flexible machine-learning models in the medical field. This
lays the groundwork for future studies and breakthroughs
in the fields of sickness classification and individualized
treatment.

A. MOTIVATION
• A neurological disorder recognized as Parkinson’s dis-
ease affects millions of individuals worldwide. Effective
management and intervention depend on timely and
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precise diagnosis. Innovative technological alternatives
must be explored because traditional diagnostic proce-
dures may not have the sensitivity and specificity needed
for early identification.

• The concept of a self-operating CNN adds flexibility and
autonomy to the network’s operation. The impartiality of
this innovation is to construct a neural network that can
adjust to the particular features of Parkinson’s disease
data and learn from it throughout the training process,
possibly leading to a development in performance over
time.

• The addition of convergent cross-mapping improves
the network’s ability to capture complicated links in
data. This approach is intended to rise the model’s
interpretability and generalization, making it more
resilient and relevant to varied datasets. This is critical
when dealing with the inherent heterogeneity in medical
data.

• The impartial of this study is to increase a trustworthy
system for classifying Parkinson’s disease. The aim is
to use medical imaging data to reliably differentiate
among people that are doing well and those who have
been diagnosed with Parkinson’s disease. The intention
is to improve the analysis’s sensitivity, specificity, and
accuracy by utilizing self-operational Convolutional
Neural Networks (CNNs) [37], [38] with convergent
cross-mapping.

B. MAJOR CONTRIBUTIONS
The main contributions of this paper are as follows:

• The Self-Operating Convolutional Neural Network
(SOCNN), in conjunction with Convergent Cross-
Mapping (CCM), are developed to find solutions to this
issue.

• The SOCNN architecture is designed to automatically
alter its internal parameters, minimizing the need for
manual intervention during training and enhancing the
model’s adaptability to unfamiliar data.

• Adopting CCM principles to build a seamless connec-
tion between the input and output domains allows for
speedy information transfer and preservation, critical for
accurate disease categorization.

• To distinguish between people with Parkinson’s disease
(PD) and healthy controls (HC) who are matched for
age and gender, causal networks are created, network
features are extracted, and deep learning analysis are
used.

• A large dataset comprising both healthy individuals and
patients with Parkinson’s disease is used to evaluate the
suggested SOCNN-CCM. The centrality-based network
node is computed by the SOCNN-CCM, which is
utilized as a feature in classification models.

• Finally, statistics demonstrate that when identifying
Parkinson’s patients, the SOCNN-CMM outperforms in
accuracy, sensitivity, and specificity, demonstrating its
diagnostic potential.

The remainder of this paper is divided into the following
sections: A thorough analysis of the relevant literature
is provided in Section II. The strategy, including the
self-operating CNN architecture with CCM and the pre-
processing techniques used, is covered in Section III.
Section IV describes the experimental setup, outcomes,
and performance measures. Section V concludes with a
comprehensive conclusion and future research directions.

II. LITERATURE SURVEY
To diagnose Parkinson’s disease (PD), Gunduz [15] pro-
pose two frameworks that utilize vocal (voice) data and
convolutional neural networks. These frameworks share the
common objective of amalgamating multiple feature sets
but adopt distinct approaches. In the latter method, parallel
input layers connected directly to convolutional layers receive
the feature sets. In contrast, the earlier structure combines
various feature sets before inputting them into a nine-
layered CNN. Consequently, deep features from each parallel
branch are concurrently gathered before integration into the
merge layer. The proposed models undergo training using
data from the UCI Machine Learning collection, and their
effectiveness is evaluated through the Leave-One-Person-Out
Cross Validation (LOPO CV) technique. Alalayah et al. [16]
present novel ways to improve early detection tactics for
Parkinson’s disease in their study. They accomplish this by
focusing on specific elements, refining hyperparameters of
machine learning algorithms, and overcoming speech-related
diagnostic challenges. To analyze the relevance of features
in connection with the desired trait, the researchers used
the recursive feature elimination (RFE) method. In addition,
to ensure a balanced dataset, they used the synthetic minority
oversampling technique (SMOTE). Several classifiers, such
as support-vector machines (SVM), K-nearest neighbors
(KNN), decision trees (DT), random forests (RF), and
multilayer perceptrons (MLP), were used to classify the
features produced by t-SNE and PCA.

Mei et al. [17] investigated the usefulness of machine
learning (ML) in diagnosing Parkinson’s disease, as modest
non-motor symptoms may go unnoticed in a physician’s sub-
jective evaluation. The study examined 209 papers, employ-
ing datasets, various machine learning approaches, and
deriving useful findings. Using three machine learning (ML)
techniques, Khachnaoui et al. [18] examined a Parkinson’s
disease dataset with the goal of differentiating between those
with the disease and those that are healthy. For a thorough
analysis, the dataset was put through Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).
Models such as DBSCAN and K-means rely on feature-
reduction techniques. Compared to PCA, LDA excels.
Therefore, clustering algorithms use its result as input. A 64%
accuracy, 78.13% sensitivity, and 38.89% specificity were
achievedwithDBSCAN. Pramanik et al. [19] developed three
techniques for utilizing ForestPA characteristics to detect
Parkinson’s disease based on decision-forest and SysFor
algorithms. With this method, only a limited number of
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decision trees are needed to achieve high accuracy. Assessing
recent, real-time data and dynamically increasing the number
of decision trees during training is the most efficient method
for Parkinson’s disease diagnosis. By leveraging ForestPA’s
features, the precision of the decision tree reached 94.12%.

For classification, Khoshnevis and Sankar [20] utilized
EEG recordings from a population of 20 people with Parkin-
son’s disease (PD) and 20 age-matched healthy controls. Six
lower-order and thirty higher-order statistical factors were
employed. EEG recordings were utilized to gather data from
the participants and patients. We found that the RUS Boosted
trees ensemble, notably for the late PD class, achieved the
maximum sensitivity for this task due to the imbalanced
structure of our dataset. The RUS Boosted trees ensemble
performed the best, even though alternative techniques
may have an overall greater accuracy. The accuracy of
categorization significantly increased due to the use of the
recently discovered attributes. Machine learning techniques
are critical to the telemedicine sector, as demonstrated by
Govindu and Palwe [21] method for early Parkinson’s disease
diagnosis. Using MDVP audio data collected from thirty
Parkinson’s disease (PWP) patients and an equivalent number
of healthy participants, we trained four machine learning
(ML) models. The Random Forest classifier was shown to
be the most successful method for detecting Parkinson’s
disease after a comparison of the classification results
of Support Vector Machine (SVM), Random Forest, K-
Nearest Neighbors (KNN), and Logistic Regression models.
With a sensitivity of 0.95 and a detection accuracy of
91.83%, the Random Forest classifier model performed
well. These results point to a promising direction for the
further application of machine learning in telemedicine,
which could have a major positive impact on Parkinson’s
patients. In their research, Petrucci et al. [22] examined how
frequently individuals with Parkinson’s disease experience
gait freezing. They focused on forecasting and controlling
this phenomenon, with ground reaction force (GRF) as the
primary evaluation criterion. Additionally, they observed
the effects of ankle orthotics on the condition. Patients
wearing ankle orthotics exhibited significantly lower average
vibration amplitudes after the addition of supplemental
ground reaction force (GRF). This implies that the severity
of Parkinson’s disease (PD) in individuals is closely linked to
the accompanying ground reaction force.

Furthermore, Oh et al. [23] utilized depth sensor-driven
musculoskeletal modeling to compare the GRF between
individuals with Parkinson’s disease and healthy individuals.
The earliest peaks of the Ground Reaction Force (GRF)
displayed significant differences. Numerous studies have
demonstrated that the abnormal walking patterns observed in
people with Parkinson’s disease are reflected in their GRF
during walking, underscoring the significance of GRF as a
fundamental element in Parkinson’s disease research. Using
a voice dataset with 22 unique factors, Alalayah et al. [16]
aim to provide insight into the early diagnosis of Parkinson’s

disease. They are not appropriate for advanced diagnosis;
nonetheless, due to these closely related traits, outliers in
features were removed. For component ranking, we used
the importance-driven Recursive Feature Elimination (RFE)
method. Data were then projected into a lower-dimensional
space, and dimensionality reduction was accomplished using
t-SNE and PCA algorithms. The acquired condensed features
were then used to train classifiers, such as Random Forest
(RF), Decision Tree (DT), k-Nearest Neighbors (KNN),
Support Vector Machine (SVM), andMulti-Layer Perceptron
(MLP). These classifiers’ ability to discriminate between
participants who were healthy and those who had Parkinson’s
disease varied. Notably, t-SNE and RF together produced
remarkable results with 97%, 96.50%, 94%, and 95% for
accuracy, precision, recall, and F1-score, respectively. On the
other hand, MLP performed admirably when combined with
PCA, obtaining 98%, 96.66%, 96%, and 98% for accuracy,
precision, recall, and F1-score, respectively. This study shows
acoustic waves can reliably and quickly identify Parkinson’s
disease.

The study conducted by Borzì et al. [24] involved the
extraction, careful selection, and optimization of machine-
learning classifiers for the detection of Freezing of Gait
(FOG) using frequency features of velocity and angle
inputs. The patients were evaluated, and positive outcomes
were shown by the FOG detection network. The network
demonstrated impressive results: 86.1% overall accuracy,
85.9% specificity, and 84.1% sensitivity. As a result, the
network can forecast when FOG will occur. A method
for determining if someone has Parkinson’s disease was
developed by Aljalal et al. [25] based on spatial patterns for
both those taking medication and those not. The noise in
the EEG measurements was minimized using a consistent
spatial pattern. Machine-learning classifiers were fed the
properties of the enhanced signals. The classifier’s precision
level was increased to 95% by combining traits in the beta
and alpha ranges to produce the best results. In their study
to evaluate neurological impairment in Parkinson’s disease
patients, Barbero-Gómez et al. [26] introduced a 3D CNN
ordinal model. The researchers have created a method for
geographical data augmentation to satisfy the requirement
for large datasets and improve CNN performance [29]. They
investigate the OGO-SP approach, which generates interclass
data using a gamma probability distribution, facilitating
ordinal graph-based oversampling via shortest paths. The
researchers suggest using the beta distribution, a novel
method dubbed OGO-SP-, to create synthetic samples in
the inter-class zone. This distribution is considered more
suitable for this purpose than gamma. An innovative 3D
picture dataset obtained from the Hospital Universitario
‘‘Reina Sofia’’ in Cordoba, Spain, is used to assess the
efficacy of the various techniques. Pramanik et al. [19]
developed three methods for Parkinson’s disease diagnosis
using ForestPA characteristics, decision-forest, and SysFor
algorithms. To attain good accuracy, this strategy merely
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employs a minimal number of decision trees. Enhancing
decision tree density through dynamic training and additional
sample evaluation is the most efficient method for Parkin-
son’s disease (PD) identification. Decision tree classification
accuracy increased significantly to 94.12% when ForestPA
features were used. Three machine learning (ML) and
artificial neural network (ANN) techniques were used to
diagnose a voice dataset in a study by Arti et al. [27].
Wrapping and filtering techniques were used to enable better
feature selection and enhanced data collecting. While the
naive Bayes method showed a lesser accuracy of 74.11%, the
SVM paired with KNN produced an accuracy of 87.17%.

A. LIMITATIONS OF EXISTING SYSTEMS
• One potential restriction could be the restricted dataset
available for training and assessing the suggested
neural network. Although valuable, Parkinson’s disease
datasets may beminimal in size, impairing the generated
model’s generalizability and robustness.

• Parkinson’s disease symptoms and course are known
to vary significantly between sufferers. The paper may
need to discuss how the proposed neural network deals
with variability in data distribution and whether it is
sensitive to changes in data distribution.

• The selection of hyperparameters can considerably
impact the performance of convolutional neural net-
works (CNNs). The study could look into how hyper-
parameter sensitivity influences the reproducibility and
consistency of results.

• Although CNNs are excellent at extracting informa-
tion independently, understanding the acquired features
within the context of Parkinson’s disease diagnosis may
provide difficulties. A method or strategy to improve the
interpretability of network decisions could be explored
in the study.

• Evaluating the model’s generalizability to other datasets
or patient populations is critical. If the study lacks
validation on external datasets, the proposed method’s
application to various circumstances may be con-
strained.

B. PROBLEM IDENTIFICATION OF EXISTING SYSTEM
• Diagnosis of Parkinson’s disease entails studying com-
plicated and subtle patterns in medical pictures such as
brain scans or pathological images. Traditional CNN
models may struggle to capture these nuanced aspects
accurately.

• Due to data gathering problems, privacy issues, and the
rarity of specific disorders, medical datasets, particularly
those connected to Parkinson’s disease, are sometimes
limited in size. The lack of data can impede CNNs’
training and generalization capabilities.

• Models that provide accurate forecasts and insights
into the elements that contribute to those predictions
are required by medical practitioners and researchers.
Because CNNs are black-box models, they may lack

transparency in revealing the underlying reasons that
influence their judgments.

• Deploying and maintaining CNN models for real-
world medical applications, such as Parkinson’s disease
detection, necessitates automation and adaptability to
handle fresh data and continuously update the model.

• Effective Parkinson’s disease classification may require
mapping information from several sources or domains,
such as clinical, imaging, and genetic information.
Integrating these disparate data sources into a uniform
diagnostic paradigm is challenging.

III. PROPOSED SYSTEM
This section discusses the Self-Operating Convolutional
Neural Network (SOCNN) in conjunction with Conver-
gent Cross-Mapping (CCM). The SOCNN architecture is
designed to automatically alter its internal parameters,
removing the requirement for user intervention during
training and enhancing the model’s flexibility to unfamiliar
data. Using CCM principles, we build a seamless connection
between the input and output domains, allowing for speedy
information transfer and preservation, which is critical for
accurate illness categorization. The SOCNN-CCM method’s
block diagram is shown in Figure 2.

A. DATASET
Max Little of Oxford University provided the dataset utilized
in this study to help with PD early identification [28]. The
UCI Machine Learning Repository later gained access to
this collection of voice sound-focused data. The dataset is
regarded by many medical professionals as one of the best
they have collected, processed, and evaluated. Numerous
scientists have created automated methods and tested them
on this dataset. There are still many researchers and people
coming here concerned with detecting Parkinson’s disease
early. This study gathered image MRI data records from
the PPMI database (www.ppmi-info.org/data), renowned
internationally as a pivotal multicenter initiative investigating
biomarkers driving Parkinson’s Disease progression. Specif-
ically, MRI scans were chosen for this study according
to specific imaging protocols. The speech signal collection
consists of 195 biomedical voices divided into 48 phonetic
patterns for healthy people and 147 phonetic patterns for
Parkinson’s disease patients.

IV. PREPROCESSING
‘‘Data Preprocessing’’ is the general term for the conversion
of unprocessed data into a format that can be interpreted and
utilized. A complete execution of data analysis is a necessary
prerequisite for the effective progression of succeeding
stages. There are two steps in the processing of data:

1) The process of replacing missing data points, removing
outliers, and duplicating entries is known as data
imputation.

2) Data validation is a process that makes sure that
information is accurate, coherent, and reliable [30].
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FIGURE 2. Proposed method of SOCNN-CCM.

The dataset does not contain any duplicated items, as stated
in the paper, and this is supported by almost equal numbers
of rows and unique column values. The ‘‘status’’ attribute is
the only one categorized as a binary category characteristic;
all other qualities are regarded as continuous ‘‘numerical
variables.’’ As a result, it is necessary to convert the data asso-
ciated with this particular attribute into an object data type
format. If abnormalities are detected during data processing,
relevant steps are taken based on a careful investigation of
the precise nature and extent of the anomalies. Duplicate
data should be removed, missing data should be filled in,
outliers should be handled, data validation issues should be
investigated and addressed, or outliers should be handled
and removed. The purpose is to guarantee the honesty and
quality of the data so that we may conduct an accurate and
trustworthy analysis. In the proposed work the Preprocessing
of data records have been analysed using CCM techniques
given in detail in the following subsection.
Convergent Cross-Mapping (CCM): The foundational

state space, also known as the ‘‘attractor space,’’ is where
variables that causally affect one another, like recordings
from two electrodes, move when they are part of dynamical
systems. To be clear, every moment in time is a specific

location within this space. Mathematical principles make
it possible to infer the behavior of the complete system
from the sequential progression of a single variable. As a
result, the behavior of one variable limits the behavior
of other variables, allowing us to use this restriction to
restore the initial configuration of the attractor’s overall
structure. Consider the time series A and B, a pair within
theM-represented deterministic dynamical system. Using the
equation (1).

a(t) = a(t), a(t − 1), . . . .., a(t − (D− 1)) (1)

The time-varying patterns of A can be represented as an
ensemble of state vectors with D dimensions known as a
delay-coordinate state space. For ease of use, we assume
that there are no time delays. Its attractor manifold is the
name given to this modified state-space of A Time-delay
embedding refers to the process of transforming a sequence
into its delay-coordinate space. In dynamical systems, the
Takens theorem establishes the following universal rule: the
states of the global attractor C have a one-to-one mapping to
the conditions of the local attractors and as a result, the local
attractors, also known as shadow manifolds, correspond to
one another exactly.
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FIGURE 3. Embedding of A and B into D frequency bands using
time-frequency mapping.

FIGURE 4. (a) Accurately estimating A (t) from CB and (b) Estimating B
(t) from CA with low acuracy.

Consider two variables, A and B, with asymmetric inter-
actions to understand the underlying idea of this technique,
convergent cross mapping (CCM). That is, A affects B
but not the other way around. The goal is to infer the
causal relationships between observational time series A
and B. Since A and B are causally related, information
about A can be found in B’s past. As a result, the closest
neighbors in the shadow manifold can be used to reproduce
the ‘cause-variable’ A exactly, but only if there is a causal
connection between A and B. As A’s causal influence on B’s
dynamics grows, more information about A is stored inside
the manifold, which is derived from a given number of B
observations. This argument underpins the CCM (Convergent
Cross Mapping) approach to causal inference.

A. CLASSIFICATION USING SELF-OPERATING
CONVOLUTIONAL NEURAL NETWORK (SOCNN)
A Self-Organizing Convolutional Neural Network (Self-
OCNN) consists of generative neurons that may approxi-
mate various nodal functions, including linear, exponential,
Gaussian, harmonic, and more. The Self-OCNN can increase

FIGURE 5. Architecture of Self-Operating Convolutional Neural Network
(SOCNN).

operational diversity and adaptability to this amazing gen-
erative power. It accomplishes this to optimize the learning
process by enabling the development of customized nodal
operator functions for certain kernel elements. Because it is
not constrained by specified operator sets or previous search
operations to find the best nodal operator, Self-OCNN offers
a significant advantage over conventional OCNN. The Self-
OCNN architecture can be seen in Figure 4 for illustration
purposes. TheMacLaurin polynomial, often known as the Zth
order truncated approximation, has the following finite sum
form:

ζ (y)(Z ) =

Z∑
n=0

ζ n(0)
n!

yn (2)

The approach mentioned above can sufficiently approximate
any function ζ (y) near zero. The network may learn the

power coefficients, denoted as
ζ n(0)
n!

and use them to create a
composite nodal operator during training. This occurs when
the neuron’s input characteristic, such as tanh, is constrained
by the activation function and maps within the region of 0.
The nodal operator of the k th generative neuron in the l th layer
was demonstrated in [31] to have the following generic form.

˜ζ lk (a
l(Z )
lk (r), x l−1

i (m+ r)) =

Z∑
z=1

(al(Z )lk (r,Z )(x l−1
i (a+ r))Z

(3)

˜ylik (m) =

K−1∑
r=0

Z∑
z=1

(al(Z )lk (r,Z )(x l−1
i (a+ r))Z

(4)

where K is the layer, ith neuron’s kernel size. (4) can be
distilled as follows:

˜ylik =

Z∑
z=1

Conv(al(Z )lk , (x l−1
i )Z ) (5)

Convolution operations can thus be used to complete the
equation. Finally, the following phrase explains the output of
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TABLE 1. Description of mathematical symbols.

TABLE 2. Experiments Coded using Python.

this neuron:

ylik = blk +

Nl−1∑
i=0

˜ylik (6)

where blk is the neuron’s bias. The neuron’s learnable bias
value can compensate for the DC bias’ additive influence
on the 0th-order component, z=0. A generative neuron
changes into a convolutional neuron when Z equals 1.
Formulas for training through backpropagation (BP) in its
raw vector presentation and formulas for training via forward
propagation (FP) in its raw vector format.

V. RESULT AND DISCUSSION
A. EXPERIMENTAL SETUP
This section presents the system development’s findings.
For the experiment, which was run on a Windows PC, the
equipment specified in Table 2 was used. Python was used to
code the experiments.

B. COMPARATIVE METHODS
The suggested SOCNN-CMM is contrasted with several
established techniques, including the Tunable Q-factor
Wavelet Transform (TQWT) [32], Least Absolute Shrinkage
and Selection Operator (LASSO) [33], Support Vector
Machine (SVM) [34], Multi-Layer Perceptron (MLP) [35],
Synthetic Minority Over-Sampling Technique (SMOTE)
[36]. TQWT [32] was applied to vocal signals of the
individuals for the diagnosis of PD. The success of the
extracted TQWT features was compared with commonly
used vocal features in PD studies.The voice features were
recovered from phonation tasks and filtered down to the six
most relevant characteristics for each phonation task using the

Least Absolute Shrinkage and Selection Operator (LASSO)
feature ranking approach. To separate Parkinson’s disease
patients from healthy individuals, a Support Vector Machine
(SVM) was utilized. The provided feature set is input into
a specially designed, finely tuned classifier that employs
a multilayer perceptron (MLP) and re-samples it using k-
fold cross-validation. By improving the identification of the
minority class, the Synthetic Minority Oversampling Tech-
nique (SMOTE) addresses the problem of class imbalance in
PD stage-wise classification.

C. PERFORMANCE METRICS
Performance measures play an essential part in assessing
classifier prediction abilities. Although accuracy is a com-
monly used metric, it might need to be more accurate when
dealing with unbalanced class distribution data. When the
class imbalance is present, metrics like Precision, Recall,
F-score, Specificity (SP), Accuracy, Matthews Correlation
Coefficient (MCC), and execution time provide a more
thorough assessment of a classifier’s capacity to distinguish
between multiple classes.

In the confusion matrix, the letters TP, FP, FN, and
TN denote the corresponding counts of True Positive (TP),
False Positive (FP), False Negative (FN), and True Negative
(TN). These counts allow for calculation of the following
performance metrics:

Precision =
TP

TP+ FP
(7)

F1 − Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(8)

Sensitivity(SE) =
TP

TP+ FN
(9)

Specificity(SP) =
TN

TN + FP
(10)

MCC =
(TP ∗ TN − FP ∗ FN )

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(11)

The Matthews Correlation Coefficient is another statistic that
may be used to assess how accurate binary classifications
are. MCC is well known as a balanced measure that may
be employed even when the class distribution is imbalanced
since it considers the TP, FP, FN, and TN counts.

1) SPECIFICITY ANALYSIS
In Fig. 5 and Table 3, the specificity of the SOCNN-
CMMmethodology is contrasted with that of other methods.
The graph displays how the deep learning approach has
an increased efficiency with specificity. For instance, the
TQWT, LASSO, SVM, MLP, and SMOTE models’ respec-
tive specificity values for 100 data records are 81.23%,
73.56%, 88.23%, 76.33%, and 84.99%, respectively, whereas
the SOCNN-CMM model’s specificity is 90.98%. However,
the SOCNN-CMM model has performed best with various
data sizes. Similarly, under 600 data records, the SOCNN-
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TABLE 3. Specificity Analysis for SOCNN-CMM method with existing systems.

FIGURE 6. Specificity Analysis for SOCNN-CMM method with existing
systems.

CMM has a specificity of 95.12%, while the corresponding
specificity values for TQWT, LASSO, SVM, MLP, and
SMOTE are 78.13%, 70.67%, 84.44%, 73.18%, and 85.19%,
respectively.

2) SENSITIVITY ANALYSIS
In Fig. 6 and Table 4, the sensitivity of the SOCNN-CMM
methodology is contrasted with that of other methods. The
graph displays how the deep learning approach has an
increased efficiencywith sensitivity. For instance, the TQWT,
LASSO, SVM, MLP, and SMOTE models’ respective
sensitivity values for 100 data records are 71.23%, 77.87%,
84.87%, 79.56%, and 85.45%, respectively, whereas the
SOCNN-CMM model’s sensitivity is 88.33%. However,
the SOCNN-CMM model has performed best with various
data sizes. Similarly, under 600 data records, the SOCNN-
CMM has a sensitivity of 94.66%, while the corresponding
sensitivity values for TQWT, LASSO, SVM, MLP, and
SMOTE are 70.34%, 76.45%, 82.55%, 80.45%, and 77.44%,
respectively.

3) ACCURACY ANALYSIS
In Fig. 7 and Table 5, the accuracy of the SOCNN-CMM
methodology is contrasted with that of other methods. The
graph shows how the deep learning approach has an increased
efficiency with accuracy. For instance, the TQWT, LASSO,
SVM, MLP, and SMOTE models’ respective accuracy
values for 100 data records are 80.34%, 82.22%, 87.45%,
74.98%, and 85.55%, respectively, whereas the SOCNN-

FIGURE 7. Sensitivity Analysis for SOCNN-CMM method with existing
systems.

FIGURE 8. Accuracy Analysis for SOCNN-CMM method with existing
systems.

CMM model’s accuracy is 93.99%. However, the SOCNN-
CMM model has performed best with various data sizes.
Similarly, under 600 data records, the SOCNN-CMM has an
accuracy of 95.99%, while the corresponding accuracy values
for TQWT, LASSO, SVM, MLP, and SMOTE are 78.12%,
70.73%, 85.14%, 72.34%, and 74.33%, respectively.

4) F-MEASURE ANALYSIS
In Fig. 8 and Table 6, the f-measure of the SOCNN-CMM
methodology is contrasted with that of other methods. The
graph shows how the deep learning approach has an increased
efficiency with f-measure. For instance, the TQWT, LASSO,
SVM, MLP, and SMOTE models’ respective f-measure
values for 100 data records are 65.19%, 77.18%, 71.34%,
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TABLE 4. Sensitivity Analysis for SOCNN-CMM method with existing systems.

TABLE 5. Accuracy Analysis for SOCNN-CMM method with existing systems.

TABLE 6. F-Measure Analysis for SOCNN-CMM method with existing systems.

FIGURE 9. F-Measure Analysis for SOCNN-CMM method with existing
systems.

79.15%, and 73.98%, respectively, whereas the SOCNN-
CMM model’s f-measure is 94.18%. However, the SOCNN-
CMM model has performed best with various data sizes.
Similarly, under 600 data records, the SOCNN-CMM has
an f-measure of 94.89%, while the corresponding f-measure
values for TQWT, LASSO, SVM, MLP, and SMOTE are
71.43%, 68.34%, 79.66%, 63.99%, and 78.45%, respectively.

5) MCC ANALYSIS
In Fig. 9 and Table 7, the MCC of the SOCNN-CMM
methodology is contrasted with that of other methods. The

FIGURE 10. MCC Analysis for SOCNN-CMM method with existing systems.

graph shows how the deep learning approach has an increased
efficiency with MCC. For instance, the TQWT, LASSO,
SVM,MLP, and SMOTEmodels’ respective MCC values for
100 data records are 74.19%, 70.34%, 84.67%, 79.91%, and
89.91%, respectively, whereas the SOCNN-CMM model’s
MCC is 94.33%. However, the SOCNN-CMM model has
performed best with various data sizes. Similarly, under
600 data records, the SOCNN-CMM has anMCC of 95.66%,
while the corresponding MCC values for TQWT, LASSO,
SVM, MLP, and SMOTE are 76.98%, 82.22%, 89.67%,
81.56%, and 92.56%, respectively.

VOLUME 12, 2024 83149



K. Sekaran et al.: Self-Operational CNNs With Convergent Cross-Mapping and Its Application

TABLE 7. MCC Analysis for SOCNN-CMM method with existing systems.

TABLE 8. Precision Analysis for SOCNN-CMM method with existing systems.

TABLE 9. Execution Time Analysis for SOCNN-CMM method with existing systems.

TABLE 10. Comparison with the state-of-the-art.

6) PRECISION ANALYSIS
In Fig. 10 and Table 8, the precision of the SOCNN-CMM
methodology is contrasted with that of other methods. The
graph shows how the deep learning approach has an increased
efficiency with precision. For instance, the TQWT, LASSO,
SVM,MLP, and SMOTEmodels’ respective precision values
for 100 data records are 66.13%, 75.55%, 80.34%, 89.34%,
and 84.34%, respectively, while the SOCNN-CMM model’s
precision is 93.66%. However, the SOCNN-CMMmodel has
performed best with various data sizes. Similarly, 600 data
records, the SOCNN-CMM has a precision of 95.92%, while
the corresponding precision values for TQWT, LASSO,
SVM, MLP, and SMOTE are 63.98%, 70.98%, 77.98%,
88.89%, and 79.56%, respectively.

7) EXECUTION TIME ANALYSIS
In Table 9 and Fig.11, the execution time of the proposed
SOCNN-CMM methodology is compared to that of existing
methods, where the SOCNN-CMM technique has outper-
formed all the other methods. The suggested SOCNN-CMM

FIGURE 11. Precision Analysis for SOCNN-CMM method with existing
systems.

approach, for example, took only 2.456ms to execute 100 data
records. In contrast, other current methods such as TQWT,
LASSO, SVM, MLP, and SMOTE have taken 13.765ms,
12.765ms, 9.998ms, 6.198ms, and 4.876ms, respectively,
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FIGURE 12. Execution Time Analysis for SOCNN-CMM method with
existing systems.

as their execution time. Similarly, the suggested SOCNN-
CMM method takes 3.654ms to execute 600 data records,
while existing techniques like TQWT, LASSO, SVM, MLP,
and SMOTE have taken 15.567ms, 12.999ms, 10.998ms,
10.345ms, and 6.987ms, respectively.

D. COMPARISON WITH THE STATE-OF-THE-ART
We have conducted a comprehensive comparison between
our proposed method, SOCNN-CMM, and other state-of-
the-art methodologies. Our evaluation encompasses seven
key performance metrics, including Specificity, Sensitivity,
Accuracy, F-Measure, MCC, Precision, and Execution Time.
The analysis reveals that SOCNN-CMM consistently outper-
forms existing approaches, exhibiting higher average values
across these metrics as depicted in Table 10.

VI. CONCLUSION
Low dopamine levels cause Parkinson’s disease (PD), which
primarily affect the elderly and lower their quality of life.
This condition’s symptoms are ambiguous and frequently
overlap with those of other illnesses, so diagnosing it can be
difficult. In-depth research has been done in medicine and
science to help with Parkinson’s disease early detection. Deep
learning algorithms have made substantial advancements in
early detection by examining vocal alterations in people.
A novel self-operating convolutional neural network (CNN)
featuring convergent cross-mapping results from years of
research. This innovative method uses the analysis of
medical imaging data to diagnose Parkinson’s disease with
a remarkable degree of accuracy. The self-operational CNN
demonstrated in this study is successful in feature extraction
and classifying Parkinson’s disease cases. The addition of
convergent cross-mapping improves the model’s ability to
uncover specific patterns and correlations between imaging
data, resulting in a complete understanding of the disease’s
characteristics. This upgraded CNN to Parkinson’s disease
categorization yields encouraging results. The proposed
framework SOCNN-CMM displays remarkable performance
with the following experimental results: precision of 99.92%,

f-measure of 97.89%, accuracy of 99.99%, MCC of 99.91%,
specificity of 98.98%, and a fast execution time of 3.654ms.
Several methods were employed in this work, including
the Tunable Q-Factor Wavelet Transform (TQWT), Support
Vector Machine (SVM), MultiLayer Perceptron (MLP),
Least Absolute Shrinkage and Selection Operator (LASSO),
and Synthetic Minority Oversampling Technique (SMOTE)
for comparision purposes.

In the future, we advise using audio and Rapid eye
movement (REM) sleep data to enhance the results, as audio
data alone is not an appropriate biomarker for Parkinson’s
disease classification. We predict that these results will lead
to an increase in the usage of mobile recorded audio for
telemedicine-based Parkinson’s disease classification.
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