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ABSTRACT With the ongoing development of Indoor Location-Based Services, the location information
of users in indoor environments has been a challenging issue in recent years. Due to the widespread use
of WiFi networks, WiFi fingerprinting has become one of the most practical methods of locating mobile
users. In addition to localization accuracy, some other critical factors such as latency, and users’ privacy
should be considered in indoor localization systems. In this study, we propose a light Convolutional Neural
Network-based method for edge devices (e.g. smartphones) to overcome the above issues by eliminating
the need for a cloud/server in the localization system. The proposed method is evaluated for three different
open datasets, i.e., UJIIndoorLoc, Tampere and UTSIndoorLoc, as well as for our collected dataset named
SBUK-D to verify its scalability. We also evaluate performance efficiency of our localization method on an
Android smartphone to demonstrate its applicability to edge devices. For UJIIndoorLoc dataset, our model
obtains approximately 99% building accuracy, over 90% floor accuracy, and 9.5 m positioning mean error
with the model size and inference time of 0.5 MB and 51 µs, respectively, which demonstrate high accuracy
in range of state of the art works as well as amenability to the resource-constrained edge devices.

INDEX TERMS Indoor positioning, deep learning, convolutional neural network, WiFi fingerprinting,
edge-based model.

I. INTRODUCTION
Nowadays, users’ position related information in indoor
environment has received remarkable attention in the major-
ity of applications [1], especially Indoor Location-Based
Services (ILBSs). In the contemporary era, ILBSs can be
used in various areas such as indoor navigation and tracking,
location-based advertising (shopping advertisements),
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location-based information retrieval (tourists guiding
services in a museum, tracking staff and patients in health-
care), and many more [1], [2]. An accurate and low-cost
localization system is an important component of ILBSs,
which has been taken into consideration in academic and
industrial sectors. Generally, in the outdoor environment, this
issue has been solved by GPS technique, but this method
is not a suitable approach for indoor places because of
blockage, attenuation or reflection of satellite signals [1].
Consequently, finding an accurate and low-cost indoor
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localization system is known as an ongoing challenge in this
area.

In recent years, different technologies like Camera [3],
visible Light [4], Bluetooth [5], WiFi [6], Ultra Wide Band
(UWB) [7] and RFID [8] have been used for indoor local-
ization. Among these technologies, WiFi technology has
attracted lots of attention because WiFi networks and their
infrastructures are available in most public buildings, such
as offices and shopping centers. Moreover, most users have
a smartphone with Wifi technology. Therefore, the position
associated information can be obtained by this technology
without any additional hardware and cost.

Traditional localization algorithms, such as trilateration or
triangulation, are based on measured information like dis-
tance or angle from some references node to estimate the
position [9]. These methods need line-of-sight (LOS) com-
munication to measure accurate distances or angles. Hence,
it is clear that these methods are not suitable for indoor envi-
ronments with lots of walls and other types of obstacles [10].
Among different methods, the WiFi fingerprinting method
can easily overcome the mentioned issue without the need for
distance or angle information, so this is a proper method for
non-line-of-sight (NLOS) environments. Actually, in WiFi
fingerprinting methods, just the Received Signal Strength
Indicator (RSSI) ofWiFi signals from eachAccess Point (AP)
is used to calculate users’ location. In these methods, it is
assumed that RSSI of several WiFi signals in one point is
unique; therefore, this pattern (i.e. a WiFi fingerprint) can be
used to estimate the location [11].
Generally, the WiFi fingerprinting localization has two

main phases, including offline and online phases. In the
offline phase, WiFi fingerprint dataset, also known as radio
map, is constructed by collecting RSSI values of accessible
APs at several known points in the interested area (each RSSI
pattern labeled by its location). In the online phase, users
utilize the collected dataset to estimate their position. In this
phase, a user measures the RSSI pattern at his/her place and
sends this data to the system (server or cloud) to find its
position by matching the RSSI pattern with the available
patterns in the dataset. The matching part aims to find the
most similar pattern from the dataset with the measured RSSI
pattern.

There are different methods for matching part of WiFi
fingerprinting to estimate the position, ranging from prob-
abilistic to K-nearest-neighbor (KNN) and Support Vector
Machine (SVM) [12]. These methods require complex fil-
tering and parameter adjustments that are time-consuming
and computationally intensive. In order to reduce the
time-consuming and intensive computation, Deep Neural
Networks (DNN) is recently used in localization [13], [14],
[15]. Although a different number of studies attempt to
decrease intensive computation and time-consuming, the
main issue still remains to be how to effectively optimized
DNN based methods for indoor localization applications.
Towards this, in this paper, we propose a light-weight
CNN-based model to solve the above issues.

FIGURE 1. The overview of our novel contributions, shown in green boxes.

Moreover, most of the state-of-the-art approaches are
cloud-based which gather the data and send them to a
server/cloud or other devices to analyze and compute the
location [16]. This procedure has the following drawbacks
which significantly affect the efficiency of the localization
process.

• Privacy and security concerns by transmitting user’s data
to third-party platforms, such as a cloud or server.

• Increased latency of the localization process because the
data have to be sent to a server for computation followed
by the server sending the location response to the user.

• Increased network traffic and system cost coupled with
a centralized method that needs a server or cloud for
computation.

Recently, edge-based systems are mostly used in differ-
ent applications in which all computations are performed
on edge; so, there is no need to transfer data elsewhere.
Therefore, to address the mentioned drawbacks, an edge-
based indoor localization system is employed to have a better
performance in terms of privacy, latency and cost. However,
the edge devices are not able to execute complex algorithms
such as complex CNN which were recently proposed for
indoor localization. For this purpose, a light CNN-based
model is proposed to run on edge devices with limited
resources. This suggested model can be implemented on edge
devices, such as smartphones, which significantly improves
the localization performance in terms of accuracy, latency,
and cost. The overview of our novel contribution is shown
in Figure 1 and its main contributions of this article are
briefly described in the following.

• A light CNN-basedmodel to run on the edge device with
limited resources in terms of processor, and memory,
such as smartphones for indoor localization applica-
tion. For this purpose, convolutional auto-encoder is
utilized for feature extracting, denoising and dimension
reduction.

• In terms of pre-processing, the region gridding approach
is used to transform the localization from a regression to
a classification task and improve network performance
by enhancing the localization accuracy and decreasing
network size and complexity.

• Evaluate the suggested network model on an android
smartphone and validate the scalability of the proposed
model by evaluating it on three different public datasets
and also our collected dataset named SBUK-D.

Paper Organization: The rest of this paper is organized as
follows: In Section II, an overview of several related works on
indoor localizationmethods is presented. Then, in Section III,
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we describe our proposed model and its structure in three
main subsections. Afterwards, model evaluation and exper-
imental results are reported in Sections IV and V. Eventually,
concluding remarks are drawn in Section VI.

II. RELATED WORK
In the following, some recent indoor localization studies are
briefly discussed with their features and problems. Totally,
indoor positioning methods are categorized into two main
groups named device-free and device-based methods. As is
clear from their names in device-free approaches, the location
is estimated without any special device carrying by users,
for example, using CCTV to detect and locate a person in
indoor environments. Conversely, device-based ways need
some particular attached devices to compute the location of
users [2], for instance, using smartphones WiFi or its other
sensors for user localization.

The majority of device-free localization (DFL) techniques
need some infrastructures to estimate the position. SomeDFL
studies, such as [17] and [18], benefit from wireless sensor
network (WSN) for localization which their main idea is to
place several wireless sensors around the desired area com-
municating with each other. These wireless links are affected
if a person locates or moves in this area. Hence, the position
can be estimated based on these wireless link variations.
For instance, authors in [19] used this method and formu-
lated their DFL problem as an image classification problem.
Afterwards, a three-layer convolutional auto-encoder neu-
ral network suggested extracting features and computing
position by raw data with various patterns associated with
different positions. Besides, in [20], authors suggested a DFL
method by using orthogonal RFID Tags attached on two
adjacent walls and utilized some RFID readers to measure
phase information and RSSI. The gathered information is fed
to a PSO-based algorithm to estimate the position of an object
in a 2D place.

It is observed that device-free methods need several extra
infrastructures that increase the localization cost. Also, they
are not suitable for large buildings, and in most cases, they
need LOS communication and can be used for one-floor
buildings.

Conversely, device-based localization methods attempt to
estimate the position by a device carrying with users. These
portable devices utilize various types of modules, such as
Bluetooth or Inertial Sensors, to estimate the user location
in indoor environments. Nowadays, most people use smart
mobile phones with different types of equipment, such as
WiFi, Bluetooth and Inertial Sensors; hence, researchers
recently attract to benefit from user’s smartphones for local-
ization.WiFi-basedmethods have attracted enormous interest
in indoor positioning among various technologies because of
their wide availability in most buildings [2]. In WiFi-based
methods, some studies like [21] use Time Of Arrival (TOA)
technique to estimate the position, while the main disad-
vantage of TOA is synchronization among all transceivers.
In addition, several studies estimate the position based on

Angle of Arrival (AOA) approach that requires APs with
multiple antennas known as their drawbacks. Besides, some
studies locate the user based on WiFi fingerprinting method.
The main idea of fingerprinting is to estimate the location
by matching the collected RSSI set from surrounding APs
named fingerprint with prebuilt WiFi fingerprint dataset [22].
In [23], authors proposed DeepFi for WiFi fingerprint-

ing localization which is a Deep Learning based approach.
This method uses Channel State Information (CSI) from all
antennas and their all subcarriers which are analyzed with
four hidden layers deep network. Generally, CSI-based meth-
ods are more accurate than RSS-based ones because they
use amplitude and phase of the signal. However, it must be
considered that modern smartphones cannot extract CSI; so,
it seems that CSI-based methods are not suitable approaches
for ILBS.

Unlike CSI-basedmethods, today’s smartphones can easily
calculate RSS; hence most prior studies focus on RSS-based
WiFi fingerprinting. In this regard, authors in [24] improve
the accuracy of WiFi fingerprinting localization by using
Weighted K-Nearest Neighbor (WKNN) based on RSSI sim-
ilarity and spatial position while other KNN-based methods,
such as [25], are based on Euclidean distance. In recent
years, deep learning methods were used for WiFi finger-
printing. In [23] a deep learning model was suggested for
WiFi fingerprinting localization. Moreover, several studies
use Auto-encoder (AE) with their DNN model to improve
the localization accuracy. For instance, in [26], authors pro-
posed a DNN system for building and floor classification and
employ stacked auto-encoders (SAE) to reduce feature space
and improve accuracy. Also, a different DNN architecture
with SAE was proposed in [27] for multilabel classification
of building ID, floor ID and position. Generally, DNNmodels
achieve higher accuracy by increasing their hidden layers.
However, a deeper DNN model increases the computational
complexity and also computation time. To overcome afore-
said issues, a convolutional neural network (CNN) based
structure was proposed in [28] for building and floor clas-
sification, which decreases the complexity and reduces the
sensitivity of the model to the signal variations. Addition-
ally, CNNLoc method was proposed for WiFi fingerprinting
in [13], a CNN-based model including an SAE and one-
dimensional CNN. These methods are cloud/server based
which all data processing are done on third-party platforms.
Hence, the data transmission between user and cloud leads to
privacy and security concerns and significant time overhead.
A summary of the related works is presented in Table 1.
In summary, the main focus of most studies is to achieve

the highest possible accuracy that needs high computation
and memory requirements which are mostly based on the
cloud/server platform. So, these cloud/server-based models
are not suitable and efficient to directly run on edge devices
with limited power, memory and computational resources.
In addition, there are some other critical factors for indoor
localization, such as cost, latency and privacy/security con-
cerns, which must be considered during system designing.
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TABLE 1. A summary of the related works.

FIGURE 2. Our localization system diagram.

Hence, this study proposes a new edge-based WiFi finger-
printing approach to address these issues along with the
highest possible accuracy needed for ILBS in multi-building
and multi-floor places.

III. PROPOSED METHOD
This section presents a new WiFi fingerprinting system to
estimate a person’s location in an indoor environment. The
proposed architecture is based on CNN classifier that iden-
tifies the position of an individual in indoor places. The
system diagram of the proposed method is shown in Figure 2.
As shown in this figure, the localization system consists of
threemain phases, including pre-processing, network training
and post-training optimization. The details of each part are
elaborated in the following.

A. DATA PRE-PROCESSING AND DATASET PREPARATION
The first step is to modify raw input data, such that the data is
fed into the proposed network in an appropriate format, and
only the relevant data is fed. There are three main phases to
prepare data for our network as follow:

1) REGION GRIDING
Generally, users’ exact position is not required in the majority
of ILBS applications and only the zone or region where the
user is located is sufficient [1].

This is a fact that led us to look at the indoor localization
problem from a different perspective. And by using this fact
we aim to improve the performance of indoor localization in
terms of not only accuracy but other important metrics such
as latency, privacy and others mentioned earlier.

Therefore, to improve the localization performance,
we benefit from gridding technique [22] and divided the
location area into some square cells with the length of L.More
importantly, by region gridding we divide the desire area into
several regions thus the localization problem is transformed
from a regression problem (exact location) to a classification
problem (regions).

This significantly simplifies the localization process mean-
ing that it can be implemented with simpler hardware in
comparison to exact localization.

2) DATASET AND INPUT PREPARATION
Generally, WiFi fingerprinting datasets were collected based
on the exact location. Asmentioned in this study we benefited
from region gridding to improve the localization perfor-
mance. Thus, it is needed to transform the exact location to the
region-based form. For this aim, we first divided the dataset
area into several zones with the length of L and considered
a unique coordinate for each cell representing each point
location in the given region.
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FIGURE 3. Region Gridding of UJIIndoorLoc dataset (train set) by L = 20.

FIGURE 4. Input preparation for UJIIndoorLoc dataset [25]. Reframe 1D
array of data included the dummy data to a 2-D array.

This procedure for UJIIndoorLoc dataset with L = 20 is
shown in Figure 3. As is evident from this figure, each cell
has several samples in which the cell coordinate is assumed
for their position. For each cell, this unique coordinate is
calculated by averaging all samples’ positions inside it. The
black points in Figure 3 are the exact location and the red
point is the calculated location for each cell. Therefore, all
the points in each zone have the same coordination which is
the location of the red point.

It must be noted that, in the results section we calculate
the distance error between the exact location of each point
(black points) and the predicted one which is the location of
corresponding cell (red point).

Moreover, in this study, a CNN-based model is suggested
forWiFi fingerprinting localization so the model input should
be an image. In the WiFi fingerprinting problem, the input is
an array of RSSI values, thus we need to reframe this 1-D
array to a 2-D array (image) to be compatible with the sug-
gested CNN-based model. Hence, for UJIIndoorLoc dataset,
we create a 2-D array from the input, which is a vector with
520 elements. For this purpose, we first add 9 zero elements at
the end of each input to have a vector with 529 elements and
then reshape the input array to 23×23.2-D array as shown in
Figure 4.

3) NORMALIZATION
The normalization technique aims at decreasing the input
distribution without losing information and facilitates model
training. In this paper, input data are Received Signal Strength
Indicator (RSSI) value of neighboring access points which
are normalized and mapped into [0,1] by the following

FIGURE 5. Convolutional auto-encoder.

equation:

RSSI inew =

 0, RSS i > 0 (nosignal)
RSSI i − RSSImin

−RSSImin
, otherwise

(1)

where RSSmin is the lowest value in the dataset. For example,
in UJIIndoorLoc dataset, RSSI values are between−104 dbm
to 0 dbm; hence for this dataset RSSmin = −104.

B. NETWORK ARCHITECTURE
In this paper, a Convolutional Neural Network (CNN) is
used as the base of the network and a Convolutional Auto-
encoder (CAE) is deployed to enhance the performance of
the network. In the following, we elaborate the proposed
network, which is shown in Figure 6.

1) CONVOLUTIONAL NEURAL NETWORK
As mentioned above, this paper proposes a light network
for WiFi fingerprinting localization with the highest possible
accuracy that can be run on user devices. We leverage a
Convolutional Neural Network (CNN) to reduce the input
size that is also easier to process without losing important
features. Moreover, compared with other machine learning
methods, such as SVM and KNN, CNN networks are more
robust to the sensitivity of input data variation [28]. This is
a critical property in WiFi fingerprinting localization since
signal strengths can easily be changed in indoor environments
by different factors ranging from multipath effect (as a major
factor) or electromagnetic interference to temporary obstacles
blocking the WiFi signal [29], [30].

As mentioned in sub-section III-A-II, we reshape input
data from a vector to a 2D form, so the input can be consid-
ered a grayscale image represented radio map in which each
pixel is equal to RSSI value from different APs. Hence, the
proposed CNN-based network can learn from RSSI values
(pixel value) and also the radio maps (pattern) of surrounding
APs [28].

2) CONVOLUTIONAL AUTO-ENCODER
Convolutional Auto-encoder (CAE) benefits from both
CNNs and Auto-encoders (AEs) features. AEs are unsu-
pervised learning methods which are generally used for
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FIGURE 6. Proposed network architecture.

denoising, dimension reduction and feature extraction by
reconstructing the input data in the output.

Therefore, in WiFi fingerprinting localization, this is a
suitable way to shrink the RSSI value fluctuation caused
by different noise sources in indoor environments, such as
multipath effect and other sources mentioned before.

Unlike general AE with some fully connected layers,
CAE uses some convolution layers which decrease net-
work parameters that subsequently reduce network size.
As shown in Figure 5, a CAE has two main parts: a convo-
lutional encoder with some convolution and pooling layers
and the complementary deconvolutional decoder with sev-
eral deconvolutions (transposed convolution) and unpooling
(upsampling) layers.

3) NETWORK DESIGN
The proposed network architecture is shown in Figure 6. The
network comprises Input, CAE and Classifier parts. Input is a
grayscale radio map image fed to CAE layer which is indeed
the encoding part of CAE that compresses and extracts the
main features of the input. Then, the classifier is used to
identify the building, floor and location of a user. To enhance
the performance of this networkwe use some layers as follow:

• Dropout layer: Dropout is generally used to overcome
the over-fitting problem and themain idea is to randomly
omit some units in each training iteration; therefore, the
network will not train too accurately for the training set
which leads to preventing over-fitting. In our proposed
network we use this technique before the last layer to
avoid over-fitting.

• Batch Normalization (BN): This layer is utilized to
address the Internal Covariance Shift problem by mod-
ification of input distribution in various layers for each
mini-batch; hence the convergence rate of the network
will be increased by using batch normalization [31].
In the proposed method, BN is used after each convo-
lutional layer, as shown in Figure 6.

C. POST-TRAINING OPTIMIZATION
In this phase, the proposed model is optimized because it
should be implemented on smart mobile phones or other

TABLE 2. General network parameters.

embedded devices with limited memory and computational
power. A model with a smaller size not only occupies less
storage on the phone but also utilizes less RAM when it
runs. Hence, there is more memory for other applications
that improves performance and stability. Besides, a model
with lower latency is faster and also has a direct impact on
power consumption. It must be noted that generally, post-
training optimization decreases model accuracy; thus, there is
a trade-off between accuracy and model size or latency which
must be considered during the designing process.

For post-training optimization, quantization technique is
used [32]. In quantization, the precision of numbers in the
model (weights) are reduced to decrease the model size and
also computation time. The default type of numbers is float32.
In this paper, float16 and int8 quantization are used, and their
impact on model performance in terms of model size and
latency are evaluated.

IV. MODEL EVALUATION AND EXPERIMENTAL RESULTS
In this section, the superiority of the proposed CAE-CNNLoc
is evaluated in comparison with state-of-the-art methods.
To examine the performance of the proposed method,
we apply CAE-CNNLoc on UJIIndoorLoc dataset [25].
Moreover, we use the proposed model for indoor localiza-
tion in our department by collecting its WiFi fingerprinting
dataset named SBUK-D as a case study. Additionally, the
CAE-CNNLoc network model is implemented with Tensor-
flow 2.4.0 framework on Google Collaboratory Cloud with
Tesla 4 GPU and then its performance is tested on an android
smartphone. The network parameters are considered as fol-
lows (Table 2).
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TABLE 3. Suggested network model structure.

In this study, three various public datasets are used which
their details are explained as follows.
UJIIndoorLoc: This is the most common dataset for WiFi

fingerprinting localization that includes 3 buildings with 4 or
5 floors and covers 108,703 m2 region at the University of
Jaume I in Spain. This dataset has training and testing sets
with 19,938 and 1,111 samples respectively and each sample
has 529 features. The first 520 features show the RSSI value
from different APs between -104 dBm to 0 dBm and the null
value is shown by 100 that represents inaccessible AP. The
location information of each sample consists of Building ID,
Floor ID and Longitude - Latitude values in meters [25].
TAMPERE: This dataset was collected at a university

building in Tampere, Finland. The building covers approxi-
mately 22,750 m2 area with five floors, but just four floors
were used to create this dataset. Totally, there are 991 APs
in the building; hence in each point, the RSSI value was
recorded from these APs. The location in Tampere dataset
contains X, Y and Z, which the Z represents the floor [33].
UTSIndoorLoc: This dataset was gathered in the FEIT

Building at the University of Technology Sydney (UTS).
This building covers nearly 44,000 m2 region and includes
18 floors of which 16 floors were used to create UTSIndoor-
Loc dataset. The position information consists of X, Y and
Floor Id, and also each sample has 590 RSSI values from
different APs [13].

A. CAE AND CNN OPTIMIZATION
First, various structures of the proposed model are investi-
gated to find the best possible model for our application. For
this aim, different layers such as convolutional and pooling
layers with different parameters are tested to achieve the best
structure. It must be noted that we only investigate small
structures because our goal is to have a light network. The
suggested structure is shown in Table 3, this model only has
one convolutional layer with 16 channels followed by a Max
pooling layer in CAE part and the classifier part composes
two convolutional layers with 32 and 64 channels.

B. IMPACT OF REGION GRIDDING ON LOCALIZATION
PERFORMANCE
In this sub-section, the effect of region gridding on local-
ization performance is examined. The region gridding has
a parameter L which shows the length of each square in

TABLE 4. Region gridding effects on localization performance.

TABLE 5. CAE-CNNLoc in comparison with other methods.

the localization area. The CAE-CNNLoc results for different
amounts of L are reported in Table 4 in which the localization
accuracy and model size are compared. Based on the given
data, a model with L = 7 has the lowest error in location
prediction and also the model parameters and size show a
considerable reduction. It is reasonable because by increasing
L the number of classes is decreased which leads to a reduc-
tion in model parameters and consequently it reduces the
model size. Additionally, longer L generates a bigger square
covering more points that their position is actually considered
the unique coordinate of the square; hence it increases the
localization error. Therefore, it reveals a trade-off between
localization accuracy and model size, so based on the appli-
cation we can adjust L to achieve the best performance.

C. COMPARISON WITH THE EXISTING METHODS
Now, to evaluate the performance efficiency of CAE-
CNNLoc method, we compare it with some recent studies.
Some of the existing studies just focus on the building and
floor accuracy, but in this study in addition to the build-
ing and floor accuracy, the positioning mean error has also
been investigated. Table 5 reports the localization accu-
racy of CAE-CNNLoc and some related methods. It can be
observed that the proposed method achieves accuracy in a
range of other methods. Note that we investigate lightweight
networks. Also, the floor hitrate of CAE-CNNLoc is 0.90,
the positioning mean error is 9.52 and finally, like some
of the other methods, building accuracy is approximately
100%.
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FIGURE 7. Effects of noise on CAE-CNNLoc performance.

FIGURE 8. Effects of region gridding on localization inference time and
model size.

D. NOISE RESISTANCE OF CAE-CNNLoc
WiFi signals in indoor environments are really vulnerable to
noise; hence the RSSI value changes easily based on different
conditions mentioned in sub-section III-B-I. Therefore, for
indoor localizationmethods, it is critical to resist noise. In this
sub-section, we check out the performance of our model by
adding noise to the data. For this aim, we randomly add 3, 5,
7 and 10 dBm noise to the test data and evaluate the model’s
accuracy. As is shown in Figure 7, the localization accuracy is
declined by adding noise to signals which is reasonable; see
➊ and ➋, but it must be noted that in the worst case with
10 dBm noise, CAE-CNNLoc model shows 12.4 meter of
error showing about 3 meters increase in error compared to
the noise of 0 dBm. Therefore, these results properly verify
the denoising feature of the convolution auto-encoder part of
CAE-CNNLoc model.

E. CAE-CNNLoc PERFORMANCE ON ANDROID
SMARTPHONE
Asmentioned before, the main purpose of this paper is to pro-
pose an on-device indoor localizationmodel which can be run
on the user’s device. Thus, we examined the performance of
CAE-CNNLoc model in the real world on an android smart-
phone. In this regard, the proposed CAE-CNNLoc model
was tested on Redmi Note 8 and the results were reported.
As two critical factors in on-device implementation, inference
time (latency) and model size were taken into consideration
and the impact of different techniques were reported. The

FIGURE 9. Effects of quantization on localization error, latency and model
size.

Redmi Note 8 was powered by the Qualcomm Snapdragon
665 chipset, which featured an octa-core CPU clocked at up
to 2.0 GHz. It came equipped with 4GB of RAM.

1) REGION GRIDDING
First, the effect of region gridding method was examined; in
this regard, the results of the proposed method with different
amounts of L are depicted in Figure 8. From sub-section IV-B,
it is clear that by increasing L, the number of classes is
decreased, leading to a remarkable reduction in network
parameters which consequently declines the latency and net-
work size as shown in Figure 8. For example, by set L =

10, we can decrease the latency by about 2 times (50 µs)
and reduce the network size over 2 times (460 KB) while
based on Table 4, the localization accuracy declines just
nearly 2m compared with L = 1. Hence, the region gridding
method is a suitable way for on-device WiFi fingerprinting
localization.

2) QUANTIZATION
In this paper, we utilize float16 and int8 quantization which
their results are shown in Figure 9. First, by using float16
quantization, weights type change from float32 to float16.
As is clear from Figure 9, for float16 quantization, although
the network size reduces about 2 times, it does not affect
localization accuracy and inference time. Moreover, Int8
quantization has the ability to decline the network size over
3.9 times and improve the latency by nearly 2 times without
any effective reduction in localization accuracy.
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TABLE 6. Scalability of CAE-CNNLoc model.

TABLE 7. Suggested network model structure.

F. CAE-CNNLoc SCALABILITY
In this sub-section, CAE-CNNLoc model is applied on two
other public WiFi fingerprinting datasets to evaluate the scal-
ability of the proposed model. Table 6 shows the performance
of CAE-CNNLoc on Tampere and UTSIndoorLoc datasets
compared with recent studies. As is clear from this table, our
model has a good performance and is close to the best of other
DNN-based studies for the mentioned datasets, proving the
scalability of CAE-CNNLoc.

V. DISCUSSION
As mentioned, in this study we transformed the localization
problem from a regression to a classification task and bene-
fited from region gridding to define the classes. It means that
each cell (generated by the gridding technique) is considered
as a class and all the points in that cell have the same coordi-
nation since the exact location is not really needed for most
of the location-based services.

To this end, we applied region gridding on the training sets.
However, our analysis revealed that there are lots of points
in the test set that are not placed on the defined cell during
the region gridding. This means that these points belong to
some classes that are not seen by the model during training,
and this is a reason that increases the localization error in
our proposed classification-based method. This is depicted in
Figure 10, as it is obvious there are lots of points from test
set (red points) that are in separate cells without any points
from train set to cover (blue/black points); meaning that these
cells are not considered as a separate class for the model
during training phase. Since in this study we transformed
the localization from a regression to a classification task,
we need to have a dataset which aligns with classification
problem criteria. Thus, we have made some modifications to
the dataset to better fit the requirements of the classification

FIGURE 10. There are several isolated points (red points) in the test set
that are not covered by the train set points (black points).

task. To this end, in the Dataset and Input Preparation phase
(sub-section III-A), we first combine the training and testing
sets; then the combined sets were randomly divided into
training, validation and testing and then gridding method was
used to define cells. By doing so, we can ensure that all the
possible classes (cells) are seen by the model and have can-
didates during training, leading to a significant reduction in
localization error as reported in Table 7. As is obvious, from
the table, for UJIIndoorLoc the floor hitrate increased to 99%,
the building hitrate is almost 100% and more importantly, the
Euclidean error decreased to 2.36m.

A. EXPERIMENTS ON OUR DATASET (SBUK-D DATASET)
In this sub-section, we evaluate the performance of the pro-
posed network model for localization in our department. For
this aim, we generated the WiFi fingerprinting dataset named
SBUK-D. The details of this dataset are as follows:
SBUK-D Dataset: The authors gathered this dataset in the

Engineering department at the Shahid Bahonar University of
Kerman (SBUK). This building includes 3 floors that cover
nearly 11,500 m2 region. The position information consists
of Floor Id, X and Y, and there are 198 different APs in
the building used to record the RSSI value in each location.
The recorded RSSI are between −100 dBm to 0 dBm, and
like other datasets, inaccessible APs are set to 100. The
dataset has 2292 samples for 70 different locations collected
with 4 Android smartphones.

Table 7 also reports the results of the CAE-CNNLoc on the
SBUK-D dataset in comparison with three different datasets.
As is clear from this table, CAE-CNNLoc achieved just
1.73 m error with over 98 percent accuracy in predicting the
floor of SBUK-D dataset. Moreover, the model size for our
dataset is about 103 KB and the inference time on an Android
phone is 198 µs.

VI. CONCLUSION
This paper proposed a light WiFi fingerprinting localiza-
tion method named CAE-CNNLoc to estimate user position
in indoor environments. CAE-CNNLoc is made-up the
Convolutional Neural Network (CNN) network joined Con-
volutional Auto-encoder (CAE) that leads to a significant
reduction in the input dimension and the model sensitivity to
the input fluctuation. The proposed model can be easily run
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on edge devices e.g. smartphones, leading to a remarkable
improvement in localization performance in terms of latency,
and user’ privacy. The experimental results illustrate that the
proposed model outperforms other studies considering that
it is an edge-based method. In this regard, for UJIIndoorLoc
dataset, the model with int8 quantization is just 0.5 MB in
size and obtains about 51 µs in inference time with 9.5m
positioning error. Although localization performance is in the
range of other studies, this is an edge-based system meaning
that eliminates cloud/server disadvantages from the localiza-
tion process. Besides, the proposed model shows significant
performance on our new dataset named SBUK-Dwith 1.73 m
positioning error, 98% accuracy of floor detection, inference
time of 198 µs and the model size of 103 KB.
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