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ABSTRACT This paper proposes a robust sampled-observer-based fault-tolerant min-type switching law
for a class of continuous-time uncertain switched affine systems (SAS) subject to persistent bounded sensor
faults using Luenberger observers to estimate the system state. The switching law is designed to make the
trajectories of the system be attracted to an open ball containing a given equilibrium point, even in the
presence of faults and norm-bounded uncertainties. First, nonlinear matrix conditions are given to obtain
the switching law that guarantee the practical stability of a class of uncertain SAS whenever persistent
bounded sensor faults are present. To reduce the complexity of the nonlinear matrix conditions, we thus
provide LMI-based conditions to obtain the observer gains at the cost of increasing the estimation of the
ball for which the trajectories of the system are attracted. Next, we estimate the radius of the open ball
by solving a minimization problem using the gains obtained by satisfying the LMI conditions. We then
propose an algorithm to search for a set of equilibrium points for a class of uncertain SAS with two system
modes, which can be applied to DC–DC converters such as boost, buck, buck-boost, and Cuk converters.
Finally, experiments using hardware in the loop of a bidirectional buck-boost DC–DC converter illustrate
the efficiency of the fault-tolerant strategy.

INDEX TERMS Switched systems, sampled-data systems, fault-tolerant control, observers, uncertain
systems.

I. INTRODUCTION
Persistent bounded sensor faults always produce measure-
ment errors after their occurrence, and the faults continue
to exist until the faulty component is fixed or replaced [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

For switched systems such as DC microgrids, sensor faults
can also be a result of a typical attack known as a false-data
injection attack. In this event, a malicious entity injects a false
signal in the measurement (sensors) or communicated signal,
which can lead the microgrid to instability [2], [3].

Moreover, the presence of persistent sensor faults together
with uncertainties can adversely affect the performance and
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reliability of a control system, and a desired equilibrium point
may not be achieved, particularly when any output feedback
is applied, including static output feedback and observer-
based strategies.

In the context of generating a min-type switching law to
make the trajectories of a continuous-time switched affine
systems (SAS) be attracted to an equilibrium point when
not all state variables are available for measurement, [4]
proposed an observer-based min-type switching law for a
class of SAS to guarantee the asymptotic stability of a
given equilibrium point in a known family. However, in [4],
uncertainties and sensor faults were not considered in the
observer and switching law design. On the other hand, [5]
and [6], proposed a robust observer-based switching law
strategy for a class of uncertain SAS, whereas in [7] and
recent works [6], [8], an observer-based switching law for
a class of SAS under bounded disturbances in the dynamics
([7], [8]) as well as in the output ([6]) was proposed.

The aforementioned approaches do not consider sensor
faults in the switching law design, although the strategy
proposed in [6] can be adapted to a fault-tolerant switching
law if the output disturbances are considered as persistent
bounded sensor faults. In addition, there are few works in
the literature that propose a fault-tolerant strategy for SAS
or uncertain SAS to accommodate sensor faults if all sensors
are prone to faults and not all state variables are available for
measurement.

For instance, [9] and [10] proposed a fault accommodation
strategy through system reconfiguration. However, fault
detection and isolation were required. In addition, the authors
assumed that not all sensors were simultaneously subject
to a fault, and robustness against uncertainties was not
considered.

Moreover, when fault detection is considered, recent works
such as [11] and [12] proposed data-driven methods to
enhance the reliability of power electronic systems. However,
it is still necessary to provide a fault-tolerant switching law
for a critical scenario in which all sensor faults occur at the
same time.

Furthermore, the frequency limitations of switching
devices in practice can also affect the stability properties of
switched systems when a min-type switching law is consid-
ered. For instance, the switching frequency for silicon-made
IGBT switching devices is approximately 6 to 10 kHz,
whereas for silicon-carbide MOSFET, it is approximately
10 to 35 kHz [13]. Hence, to avoid the chattering/Zeno
phenomenon, the switching frequency generated by the
switching law must not be greater than these frequencies.

A min-type switching law with a finite number of
switchings in a given time interval can be obtained by
guaranteeing dwell-time properties as in [14], [15], [16],
and [17], an average dwell-time (ADT) [18], [19], [20] or
mode-dependent ADT [21], [22], [23], and [6]. In addition,
the practical stability of an uncertain SAS can be achieved
by considering a discrete approximation of the system to
generate the switching law, as presented in [24], [25],

and [26]. Practical stability can also include performance
indices in control design as in [6] and [23].
Another alternative to avoid high-frequency switching is a

sampled-based approach, as in [27] for uncertain SAS under
polytopic uncertainties. However, the presented solution
assumed that the state is available for measurement, and
sensor failures were not considered. On the other hand, [8],
[28], and [6] proposed a switching law strategy considering a
robust sampling-based switching law with robustness against
persistent disturbances for switched affine systems. However,
[28] considered all state variables available for measurement,
and in [6], [8] and [28] the analysis of the matrices of the gain
obtainedwas for a given equilibrium point without addressing
uncertainties and sensor failures.

In [29], two different strategies were provided to obtain
the switching law and observer gains for uncertain SAS.
However, the gains were obtained without considering
the frequency limitation of the switching device (although
the authors mentioned that for practical application, the
switching frequency must be constrained), and fault tolerance
was not taken into consideration. However, Theorems 1 and 2
in [29] guarantee that the trajectories of the uncertain SAS
converge to a region that contains a given equilibrium point
in a family in which the pairs of states and outputs are
observable, which may not be possible in some practical
applications.

In addition, the strategies presented so far guarantee
stability, but most of them do not consider fault tolerance
to sensor faults and do not provide a solution to an
optimization problem. Therefore, the gains obtained cannot
guarantee the smallest possible region of attraction within a
given upper bound under bounded sensor faults. Moreover,
when all sensors are faulty, classical output feedback
strategies such as PI control that are not designed to be
fault-tolerant can produce extremely high or low values in
the state variables that may damage the switched affine
system.

In this paper, we propose a robust sampled-observer-based
fault-tolerant switching law using samples of the estimated
state of a class of uncertain SAS subject to persistent sensor
faults when only the output measurements are available and
all sensors are prone to faults. The faults are considered to
be additive and not state-dependent, representing an offset
signal added to the output. A switched Luenberger observer
generates the estimation of the system state, and the switching
law guarantees that the trajectories of the uncertain SAS are
attracted to an open ball containing a given equilibrium point,
even in the presence of bounded sensor faults and norm-
bounded uncertainties. The observer and switching law gains
are obtained by solving an LMI-based optimization problem.
The main contributions of this paper can be summarized as
follows:
• Design of a switching law for a class of uncertain SAS
subject to persistent bounded sensor faults when all
sensors are prone to faults, and the system state is not
fully available for measurements.
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• The proposed fault-tolerant strategy guarantees practical
stability even if an offset sensor fault is detected in
all sensors as long as the fault magnitudes are within
a bound given by the designer. In addition, practical
stability is not affected by bounded offset sensor faults
caused by cyber-attacks if the fault magnitude is less
than the bound given by the designer.

• Considering the limitation on the switching frequency
of buck-boost DC–DC converters under load variations
and persistent bounded sensor faults, practical stability
is also guaranteed and The observer gains and switching
law are designed to guarantee optimal robustness against
uncertainties and sensor faults.

• For the particular case of DC–DC converters such as
buck, boost, buck-boost, and Cuk converters, an algo-
rithm is developed to search for a subset of equilibrium
points in a given family such that the trajectories of a
class of uncertain SAS are attracted to an open ball with
a radius determined by solving an optimization problem
based on LMIs.

Furthermore, we remark that the fault-tolerant strat-
egy is novel in the literature since we consider a crit-
ical scenario of generating a min-type switching law
with limited switching frequency for a class of uncer-
tain switched affine systems under bounded faults in all
sensors.

The remainder of this paper is organized as follows.
In Sections II and III, we present the mathematical results
and definitions from the literature that support the results
proposed in this paper. Section IV presents the methodology
used to obtain the observer gains and the gains for the
switching law. In Section V, we present experimental
results for the proposed strategy and its application to a
bidirectional buck-boost DC–DC converter. Finally, Sec-
tion VI presents concluding remarks and directions for future
research.
Notation: The symbol ⋆ denotes the transposed element

in symmetric matrices, and (′) indicates the transpose of
vectors and matrices. Negative and positive definite matrices
are denoted by M ≺ 0 and M ≻ 0, respectively. The
sum of matrices is abbreviated as He(M) :=

(
M + M′

)
.

The maximum and minimum eigenvalues of a symmetric
matrixM are denoted as λmax(M) and λmin(M), respectively.
The set composed of the first M positive integers is denoted
as M, where M is the number of system modes. If M
belongs to a set {M1,M2, · · · ,Mi,MM }, then λmax(M) :=
max
i∈M

(λmax(Mi)) and λmin(M) := min
i∈M

λmin(Mi). The set

of real positive numbers is denoted by R+. The convex
combination of a set of matrices {A1, . . . ,AM } is denoted by
A(κ) =

∑M
i=1 κiAi and the convex combination of a set of

vectors {g1, . . . , gM } is denoted by g(κ) =
∑M

i=1 κigi, where
κ = [κ1 κ2 · · · κM ]′ belongs to set K composed of vectors
with non-negative components κi such that

∑M
j=1 κi = 1.

The set of locally essentially bounded measurable functions
f : R+ → Rn is denoted by L∞, and ∥f ∥ is the Euclidean
norm. The null space (or kernel) ofM is defined as Null(M).

II. PRELIMINARIES
The following properties, definitions, and lemmas are
required for the main results of this paper.
Property 1: For any positive definite matrix P, we have

λmin
(
P
)
I ⪯ P ⪯ λmax

(
P
)
I .

Lemma 1 [30]: For any matrices M , N of appropriate
dimensions and a time-varying matrix F(t) satisfying
F(t)′F(t) ⪯ I, ∀t ≥ 0, there exists a constant ε > 0 such
that M ′F(t)N + N ′F ′(t)M⪯ε−1M ′M + εN ′N .
Lemma 2 (Non-Strict Projection Lemma [31]): Consider

G ∈ Rm×n, H ∈ Rp×n and Hermitian matrix 9 ∈ Rn×n.
Let NG,NH be the right orthogonal complements of G,H,
respectively. If N ′G9NG ⪯ 0 and N ′H9NH ⪯ 0 then, there
exists V ∈ Rp×m such that 9 + G′V ′H+H′VG ⪯ 0.

III. PROBLEM FORMULATION
We consider the following class of continuous-time uncertain
SAS subject to persistent bounded sensor faults and under
norm-bounded uncertainties1:

ẋ = (Aσ +1Aσ )x + bσ , x(0) = x0
y = Cσ x + Fσ fs, (1)

where x ∈ Rn is the state, y ∈ Rp is the output, fs ∈ Lp∞
is the sensors faults vector, with p < n, σ : RM

→ M
is a sampled-data based switching law that selects a known
mode i among M available ones in set M at each sampled
instant 0 = t0 < t1 < · · · < tk < · · · , with limk→∞ tk = ∞.
ThematricesAi ∈ Rn×n, bi ∈n×m,Ci ∈ Rp×n andFi ∈ Rp×p,
i ∈M, represent the state, input, output and fault distribution
matrices, respectively. The uncertainty matrices1Ai have the
following form [32]:

1Ai = δ̃iQi, |δ̃i| ≤ 1, ∀i ∈M, (2)

where Qi := MiNi are given for all i ∈ M, and δ̃i :
R→ [−1, 1] are defined as unknown functions. Thematrices
Mi ∈ Rn×mA ,Ni ∈ RmA×n, with mA = max

i∈M
(rank(Qi)),∀i ∈

M are matrices that represent structured uncertainties and
are obtained using full rank factorization [33]. In addition,
we consider the following assumptions.
Assumption 1: The system state in (1) is not fully available

for measurement.
Assumption 2: All sensors are prone to fault, rank(Fi) =

p,∀i ∈M and for a known parameter βf , we have

∥fs∥ ≤ βf , 0 < βf <∞, ∀t ≥ 0. (3)

Assumption 3: The sampled interval Tk := tk+1 −
tk > 0 can be varying and be less than a known maximum
length of the sampled interval defined as Tmax.

Let xe be an equilibrium point in a family given as follows

Xe =
{
xe ∈ Rn

: A(κ)xe + b(κ) = 0,∀κ ∈ K
}
. (4)

1For some switched power electronic systems representation, the vector
bσ in (1) can be represented as bσ = Bσ u(t), where u ∈ R is an external
input assumed to be constant for all t ≥ 0 and Bσ is an input matrix. Since u
is constant, then bσ is an affine term.
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The stability of (1) is investigated by translating the origin
of system (1) to the equilibrium point. Let ξ := x − xe, and
yξ := y − Cσ xe be the translated state and output vectors,
respectively. Then, system (1) can be rewritten as

ξ̇ = (Aσ +1Aσ )ξ + gσ +1Aσ xe,

yξ = Cσ ξ + Fσ fs, (5)

with gσ = Aσ xe+bσ . An equilibrium point xe in family (4) is
reached if σ (x(t)) is continuous for all t ≥ 0 or if the sampled
interval Tk is very small, considering system (5) without
uncertainties. In addition, from Assumption 1, we must
estimate the state x if a state-feedback switching law is
applied. Hence, let x̂ be an estimative of x in (1) such that
˙̂x = Aσ ξ̂ − Lσ (y − Cσ x̂), x̂(0) = x̂0, where Li, i ∈ M,
are the gains of the observer to be designed. In addition, let
ξ̂ := x̂ − xe be an estimate of ξ in (5), ŷξ := Cσ ξ̂ be
the observer output, and let e = ξ − ξ̂ = x̂ − x be the
estimation error. The estimation error and observer dynamics
are expressed as follows

ė = (Aσ + LσCσ +1Aσ )e+ LσFσ fs +1Aσ (ξ̂ + xe),
˙̂
ξ = Aσ ξ̂ + gσ − Lσ (Cσ e+ Fσ fs). (6)

Next, an augmented system with the observer and estimation
error dynamics is defined as

ζ̇ = Aσ ζ + Fσ fs + Cσ , (7)

with ζ :=
[
e′ ξ̂ ′

]′
, Cσ =

[
(1Aσ xe)′ (Aσ xe + bσ )′

]′
, and

Aσ =
[
Aσ +1Aσ + LσCσ 1Aσ

−LσCσ Aσ

]
, Fσ =

[
LσFσ
−LσFσ

]
.

In this paper, we find the observer gains Li, i ∈ M, and a
positive definite matrix P ∈ Rn×n to guarantee the practical
stability of system (7), and also make the trajectories of
system (1) be attracted to the open ball

B(xe, ω) :=
{
x ∈ Rn

: ∥x − xe∥2 < ω2} (8)

where 0 ≤ ω <∞, when the switching law

σ (ξ̂ k ) = min
i∈M

(
argmin
i∈M

(
ξ̂ ′kP(Aiξ̂k + gi)

))
, (9)

is considered, whenever (2) and (3) hold, where x̂k = x̂(tk ),
ξ̂k := ξ̂ (tk ) and ek := e(tk ). A diagram of the proposed
strategy is shown in Figure 1.
Furthermore, we propose an algorithm to search for a

subset of equilibrium points of the family of points Xe given
by (4) such that x ∈ B(xe, ω) when t →∞ for a special case
when the number of system modesM = 2.
Remark 1: The sampled instants tk in switching law (9)

are related to the maximum switching frequency of the
switching device, where the maximum switching frequency,
denoted as fsw, is given by fsw(tk ) = 1/tk . If the sampled
instants are uniform, such that tk+1 − tk = Tk = T ≤
Tmax,∀k > 0, then the maximum switching frequency
satisfies fsw(tk ) = fsw(T ) = 1/T ,∀k > 0 and the minimum

FIGURE 1. Proposed strategy diagram.

switching frequency is 1/Tmax. Thus, by applying switching
law (9) in system (1) with a given sampled time T ≤ Tmax,
we guarantee that the switching device does not switch more
than once between sampled instants, although the opposite is
not necessarily true. In other words, the switching device may
not switch during a period greater than the sampled period
since index i changes according to the error between the
current state and the desired equilibrium point, according to
the logic given in (9). Thus, the frequency limitation imposed
by the sampling strategy allows the practical application
of switching law (9), in which the switching device has a
limited operational frequency, with the benefit of switching
the system modes according to a desired equilibrium point.

IV. MAIN RESULTS
This section presents sufficient conditions in terms of LMIs to
obtain a switching law that guarantees the practical stability
of (7), whereas the trajectories of (1) are attracted to B(xe, ω)
in (8) for a given xe ∈ Xe and for βf that satisfies (3).
In the sequence, we present an algorithm to obtain a set of
equilibrium points in family (4) that satisfy (8).

Inspired by [8], to address the problem of determining the
observer gains and switching law matrices, we propose the
following optimization problem.
Theorem 1: Given κ ∈ K, xe ∈ Xe satisfying (4), η > 0

and a maximum sample time Tmax > 0, if there exist positive
definite matrices P ∈ Rn×n, Ui ∈ Rn×n, matrices Li ∈
Rn×p and positive parameters ε̃i, εi, ϑi, γi, α, solution to the
optimization problem (11)-(14), for all (σ (tk ) = i, σ (t−k ) =
j) ∈ M×M, i ̸= j, then, the practical stability of system (7)
under the sampled observer-based switching law given in (9)
is guaranteed, and the trajectories are attracted to

� = {ζ ∈ R2n
: ζ ′Pζ < αTmax} (10)

where P := diag([P P ]). Furthermore, the trajectories
of (1) are attracted to (8) with the minimum radius ω.

min
P,Li,Ui,γi,ε̃i,εi,ϑi,α

α, (11)

subject to:Mi(0, 0) ⪯ 0 (12)

Mi(Tmax,T 2
max) ⪯ 0 (13)

αηTmax − ϑiTmax − γiβf
2 > 0 (14)
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where Mi(0, 0),Mi(Tmax,T 2
max) are defined by making

τ = 0 in (15), as shown at the bottom of the next page, and
τ = Tmax in (16), as shown at the bottom of the next page,
respectively.

Proof: Assume that σ (ξ̂k ) = i and choose a Lyapunov-
Krasowskii functional given as follows

Ṽ (ζ (t),w(t)) = V (ζ (t))+ w(t) (17)

where

V (ζ (t)) = ζ ′Pζ = e′Pe+ ξ̂ ′Pξ̂ (18)

w(t) = (tk+1 − t)
∫ t

tk
e−η(t−s)ė(s)′Uiė(s)ds

+ (tk+1 − t)
∫ t

tk
e−η(t−s) ˙̂ξ (s)′Ui

˙̂
ξ (s)ds (19)

We aim to show that the following inequality holds:

˙̃V + ηṼ = V̇ + ηV + ẇ+ ηw ≤ αηTmax. (20)

We denote ϕ̂(t) = (ξ̂ (t)−ξ̂ k )τ (t)−1, ϕ(t) = (e(t)−ek )τ (t)−1,
where τ (t) := t − tk for all t ∈ [tk , tk+1). Using the Jensen
inequality in (20) with tk+1− t = Tk−τ and 0 < Tk ≤ Tmax,
we obtain ẇ+ ηwi ≤ (Tmax − τ )(

˙̂
ξ ′Ui
˙̂
ξ )− τ ϕ̂′Uiϕ̂e−ηTmax +

(Tmax − τ )ė′Uiė− τϕ′Uiϕe−ηTmax , which corresponds to

ẇ ≤ −ηw− τ (ϕ̂′Uiϕ̂ + ϕ′Uiϕ )e−ηTmax

+ (Tmax − τ )
(
ξ̂ ′A′iUiAiξ̂ + 2ξ̂ ′A′iUigi

− 2ξ̂ ′A′iUiLiCie− 2ξ̂ ′A′iUiLiFifs + g
′
iUigi

− 2g′iUiLiCie− 2g′iUiLiFifs + 4e′C ′iL
′
iUiLiFifs

+ 2fs′F ′iL
′
iUiLiFifs + 2fs′F ′iL

′
iUi1Ai(ξ̂ + xe)

+ e′
(
He

(
Ai + LiCi)′Ui(Ai + LiCi +1Ai))

)
e

+ 2e′((Ai +1Ai)′UiLiFi)fs + e′(1AiUi1Ai)e

+ 2e′(1AiUi1Ai)ξ + 2e′(1AiUi1Ai)xe

+ 2e′((A′i + C
′
iL
′
i )Ui1Ai)(ξ̂ + xe)

)
(21)

= −ηw− τ (ϕ̂′Uiϕ̂ + ϕ′Uiϕ )e−ηTmax

+ (Tmax − τ )
(
ξ̂ ′A′iUiAiξ̂ + 2ξ̂ ′A′iUigi

− 2ξ̂ ′A′iUiLiCie− 2ξ̂ ′A′iUiLiFifs + g
′
iUigi

− 2g′iUiLiCie− 2g′iUiLiFifs + 4e′C ′iL
′
iUiLiFifs

+ 2fs′F ′iL
′
iUiLiFifs + 2fs′F ′iL

′
iUi1Ai(ξ̂ + xe)

+ e′
(
He

(
Ai + LiCi)′Ui(Ai + LiCi +1Ai))

)
e

+ 2e′((Ai +1Ai)′UiLiFi)fs + ζ ′1δ̃
2
i Q̃iζ1

+ 2e′((A′i + C
′
iL
′
i )Ui1Ai)(ξ̂ + xe)

)
(22)

where the equality in (22) is obtained by considering the
definition of 1Ai in (2), with ζ ′1 :=

[
e′ ξ̂ ′ x ′e

]
, and

Q̃i =

Q′iUiQi Q′iUiQi Q′iUiQi
⋆ Q′iUiQi Q′iUiQi
⋆ ⋆ Q′iUiQi

.

Since |δ̃i| ≤ 1, we obtain ζ ′1δ̃
2
i Q̄iζ1 ≤ ζ ′1Q̄iζ1,∀i ∈ M.

Applying Lemma 1 in the remaining uncertain terms of (22),
the following inequality is satisfied

0 ≥ −ζ̃
(
Ui(τ )+ (Tmax − τ )(ε

−1
i M̃ ′i M̃i + εiÑ ′i Ñi)

)
ζ̃

+ ẇ+ ηw− ϑiTmax (23)

where ζ̃ :=
[
e′ ξ̂ ′ 1 fs′ ϕ̂′ ϕ′

]′
, Ñi = [Ni Ni Nixe 0 0 0],

M̃i =
[
M ′iUi(Ai + LiCi) 0 0 M ′iUiLiFi 0 0

]
and U(τ ) is

given by

Ui(τ ) =



U i11(τ ) U
i
12(τ ) U

i
13(τ ) U

i
14(τ ) 0 0

⋆ U i22(τ ) U
i
23(τ ) U

i
24(τ ) 0 0

⋆ ⋆ U i33(τ ) U
i
34(τ ) 0 0

⋆ ⋆ ⋆ U i44(τ ) 0 0
⋆ ⋆ ⋆ ⋆ U i55(τ ) 0
⋆ ⋆ ⋆ ⋆ ⋆ U i66(τ )

 ,

with U i55(τ ) = −τUie
−ηTmax , U i66(τ ) = −τUie

−ηTmax , and

U i11(τ ) = (Tmax − τ )
(
(A′i + C

′
iL
′
i )UiAi + A

′
iUiLiCi

+ 2C ′iL
′
iUiLiCi + Q

′
iUiQi

)
U i12(τ ) = (Tmax − τ )

(
− C ′iL

′
iUiAi + Q

′
iUiQi

)
U i13(τ ) = (Tmax − τ )

(
− C ′iL

′
iUigi + Q

′
iUiQixe

)
U i14(τ ) = (Tmax − τ )

(
2C ′iL

′
iUiLiFi + A

′
iUiLiFi

)
U i22(τ ) = (Tmax − τ )

(
A′iUiAi + Q

′
iUiQi

)
U i23(τ ) = (Tmax − τ )

(
A′iUigi + Q

′
iUiQixe

)
U i24(τ ) = (Tmax − τ )(−A′iUiLiFi)

U i33(τ ) = −ϑiTmax + (Tmax − τ )
(
g′iUigi

+ x ′eQiUiQixe
)

U i34(τ ) = (Tmax − τ )
(
− g′iUiLiFi

)
U i44(τ ) = (Tmax − τ )

(
2F ′iLiUiLiFi

)
.

The derivative V̇ in (18) satisfies

V̇ = e′(He(P(Ai + LiCi)))e+ 2e′(PLiFi)fs + 2e′(P1Ai)e

+ 2e′P1Aiξ̂ + 2e′(P1Ai)xe + ξ̂ ′(He(PAi))ξ̂

− 2ξ̂ ′(PLiCi)e− 2ξ̂ ′(PLiFi)fs + 2ξ̂ ′(Pgi).

By applying Lemma 1 in 2e′(P1Ai)e, 2e′(P1Ai)ξ̂ , and
2e′(P1Ai)xe, the following inequality is satisfied

0 ≥ −ζ̃ ′Qiζ̃ − γi∥fs∥2 + V + ηV (24)

with Qi, i ∈M defined as

Qi =


Qi

11 −C ′iL
′
iP 0 PLiFi 0 0

⋆ Qi
22 Pgi −PLiFi 0 0

⋆ ⋆ Qi
33 0 0 0

⋆ ⋆ ⋆ −γciI 0 0
⋆ ⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ ⋆ 0

 ,

whereQi
11 = He(P(Ai+LiCi))+ηP+ε̃iN ′iNi+3ε̃

−1
i PMiM ′iP,

Qi
22 = He(PAi)+ ηP+ ε̃iN ′iNi, and Q

i
33 = ε̃ix

′
eN
′
iNixe.
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Considering switching law (9), we obtain σ = i,∀t ∈
[tk , tk+1) whenever

2ξ̂ ′kP(Ajξ̂k + gj)− 2ξ̂ ′kP(Aiξ̂k + gi) ≥ 0, ∀j ∈M. (25)

Multiplying (25) by κj and summing (25) for all j ∈M, after
algebraic manipulation we obtain

0 ≤ 2ξ̂ ′k
(
ψi(κ)ξ̂k + P(g(κ)− gi)

)
= ζ̃ ′4i(τ, τ 2)ζ̃ , (26)

where ψi = He(P(A(κ)− Ai)) and

4i(τ, τ 2) =


0 0 0 0 0 0
⋆ ψi(κ) −Pgi 0 τψi(κ) 0
⋆ ⋆ 0 0 τg′iP 0
⋆ ⋆ ⋆ 0 0 0
⋆ ⋆ ⋆ ⋆ τ 2ψi(κ) 0
⋆ ⋆ ⋆ ⋆ ⋆ 0


Summing the right-hand sides of (23) and (26), in (24) using
the S-procedure we obtain

0 ≥ −ζ̃ ′4i(τ, τ 2)ζ̃ − γi∥fs∥2 − ϑiTmax

+ V̇ + ẇ+ η(V + w)

which is equivalent to

˙̃V ≤ ζ̃ ′Ni(τ, τ 2)ζ̃ − ηṼ + γi∥fs∥2 + ϑiTmax (27)

where Ni(τ, τ 2) = Qi + Ui(τ ) + 4i(τ, τ 2) + (Tmax − τ )
(ε−1i M̃ ′i M̃i + εiÑ ′i Ñi). Observe that Ni(τ, τ 2) ∈ co{Ni(0, 0),

Ni(0,Tmax),Ni(Tmax,T 2
max)},∀τ ∈ [0,Tmax], and we obtain

ζ̃Ni(τ, τ 2)ζ̃ < 0 if

ζ̃ ′Ni(0, 0)ζ̃ ≤ 0 (28)

ζ̃ ′Ni(0,Tmax)ζ̃ ≤ 0 (29)

ζ̃ ′Ni(Tmax,T 2
max)ζ̃ ≤ 0. (30)

When τ = 0, we have t = tk and ξ̂ (t) = ξ̂k , e(t) = ek , thus
ϕ̂(t) = ϕ(t) = 0, and inequality (28) is satisfied whenever

ζ
′Ñi(0, 0)ζ ≤ 0 (31)

where ζ :=
[
e′ ξ̂ ′ 1 fs′

]′
and Ñi(0, 0) with compatible

dimensions is obtained by removing the last columns and
rows of Ni(0, 0). Applying Schur’s complement in Ñi(0, 0)
and Ni(Tmax,T 2

max) we obtain (15) and (16), respectively,
If there exist matrices P,Ui,Li and parameters ε̃i, εi, ϑi, γi
that satisfies the problem of minimizing α subject to
inequalities (12), (13) and (14) than the inequalities (28)-(30)
hold2 and the derivative in (27) satisfies

˙̃V ≤ −ηṼ + γi∥fs∥2 + ϑiTmax. (32)

≤ −ηṼ + γiβ2f + ϑiTmax (33)

< −ηṼ + αηTmax (34)

2Note that (30) implies (29) and (28) is satisfied when (31) holds.

Mi(0, 0) =



Mi
11(0) Mi

12(0) Mi
13(0) PLiFi + Tmax

(
(2C ′iL

′
i + A

′
iUi)LiFi

)
PMi (Ai + LiCi)′UiMi

⋆ Mi
22(0) Mi

23(0) −PLiFi − Tmax(A′iUiLiFi) 0 0
⋆ ⋆ Mi

33(0) −Tmax
(
g′iUiLiFi

)
0 0

⋆ ⋆ ⋆ −γiI + Tmax
(
2F ′iLiUiLiFi

)
0 F ′iL

′
iUiMi

⋆ ⋆ ⋆ ⋆ −3ε̃iI 0
⋆ ⋆ ⋆ ⋆ ⋆ −εi(Tmax)−1I


(15)

Mi(Tmax,T 2
max) =



Mi
11(Tmax) −C ′iL

′
iP 0 PLiFi 0 0 PMi

⋆ Mi
22(Tmax) 0 −PLiFi −Tmaxψi(κ) 0 0

⋆ ⋆ Mi
33(Tmax) 0 Tmaxg′iP 0 0

⋆ ⋆ ⋆ −γiI 0 0 0
⋆ ⋆ ⋆ ⋆ Mi

55(Tmax,T 2
max) 0 0

⋆ ⋆ ⋆ ⋆ ⋆ Mi
66(Tmax) 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −3ε̃iI


(16)

withMi
55(τ, τ

2) = −τUie−ηTmax + τ 2ψi(κ),Mi
66(τ ) = −τUie

−ηTmax and

Mi
11(τ ) = He(P(Ai + LiCi))+ ηP+ ε̃iN ′iNi + ψi(κ)+ (Tmax − τ )

(
(A′i + C

′
iL
′
i )UiAi + A

′
iUiLiCi + 2C ′iL

′
iUiLiCi

+ Q′iUiQi + εiN
′
iNi

)
,

Mi
12(τ ) = −C

′
iL
′
iP+ (Tmax − τ )

(
− C ′iL

′
iUiAi + Q

′
iUiQi + εiN

′
iNi

)
,

Mi
13(τ ) = (Tmax − τ )

(
− C ′iL

′
iUigi + Q

′
iUiQixe + εiN

′
iNixe

)
,

Mi
22(τ ) = He(PAi)+ ηP+ ε̃iN ′iNi + ψi(κ)+ (Tmax − τ )

(
A′iUiAi + Q

′
iUiQi + εiN

′
iNi

)
,

Mi
23(τ ) = (Tmax − τ )

(
A′iUigi + Q

′
iUiQixe + εiN

′
iNixe

)
,

Mi
33(τ ) = −ϑiTmax + x ′eε̃iN

′
iNixe + (Tmax − τ )

(
g′iUigi + x

′
eQ
′
iUiQixe + εix

′
eN
′
iNixe

)
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where (32) is obtained by considering inequality (3), and
inequality (34) is obtained using (14). From (34), inequal-
ity (20) holds, and by the comparison principle, from (34) we
obtain

Ṽ (ζ (t)) < e−ηt Ṽ (0)+ αTmax

∫ t

0
e−η(t−s)ηds (35)

= e−η(t)(Ṽ (0)− αTmax)+ αTmax. (36)

When (20) is satisfied, then ˙̃V = V̇ (t) + ẇ(t) < 0 whenever
V (t) ≥ αTmax − w(t), where the latter inequalities hold for
any ζ /∈ �, since w(t) ≥ 0,∀t ≥ 0, implying that � is
an attractor set for augmented system (7). Now we prove
by contradiction that if ζ (tk ) ∈ � for some k ∈ N, then
ζ (t) ∈ �,∀t ≥ tk . Let ζ (tk ) ∈ � and assume that for
some tl ∈ (tk , tk+1) we have V (ζ (tl)) = αTmax − w(tl) and
that V (ζ (s)) ≥ αTmax−w(s),∀s ∈ (tl, t] ⊂ (tk , tk+1). Then
V̇ (ζ (s))+ ẇ(s) < 0 for all s ∈ (tl, t], which after integration
leads to V (ζ (t))+w(t) < V (ζ (tl))+w(tl) = αTmax. We then
obtain V (ζ (t)) < αTmax − w(t),∀t ∈ [tk , tk+1) which is a
contradiction. Therefore, the trajectories of (7) are attracted
to (10) as t → ∞, and the solution cannot exit � between
sampling instants. Moreover, ζ in (7) satisfies ∥ζ∥2 = ∥e∥2+
∥ξ̂∥2 = ∥x − x̂∥2 + ∥x̂ − xe∥2. Therefore, ∥x − xe∥2 ≤
(∥e∥ + ∥ξ̂∥)2 ≤ 2(∥e∥2 + ∥ξ̂∥2) = 2∥ζ∥2. Hence, from (10),
we obtain the ball in (8) where ω =

√
2αTmax/λmin(P) is the

minimum radius for a given P obtained by minimizing α. □
Remark 2: The Lyapunov-Krasowskii functional (17) in

Theorem 1 was considered instead of the classical Lyapunov
function since switching law (9) is sampled-based, which
makes the switching between system modes be time-delayed
by τ (t) = t − tk . Therefore, the solution of the switched
system in (7) obtained by applying a sampled-data-based
switching is also time-delayed. For more details of this
approach, see [27].
Theorem 1 yields the conditions to verify if the

observer-based strategy makes the trajectories of (7) be
attracted to the ball B(xe, ω), defined in (8), with the smallest
radius ω. However, conditions (12)-(14) are not LMIs and
have complex numerical solutions. Thus, in the next theorem,
we propose LMI-based conditions to obtain an approximate
solution of the optimization problem in Theorem 1 at the cost
of increasing the ball for which the trajectories of system (7)
are attracted to the ball which is defined by

B(xe, ω) :=
{
x ∈ Rn

: ∥x − xe∥2 < ω2}, (37)

for a given κ ∈ K, xe ∈ Xe and all ∥fs∥ ≤ βf . The value of ω
is given in terms of LMIs.
Theorem 2: Given κ ∈ K, xe ∈ Xe satisfying (4), αi > 0,
∀i ∈ M, η > 0 and a maximum sample Tmax > 0, if there
exist positive definite matrices P ∈ Rn×n, Ui ∈ Rn×n,
negative definite matrices Vi ∈ Rn×n, general matrices Li ∈
Rn×p and positive parameters ε̃i, εi, ϑi, γi solution of the
optimization problem (38)-(41), for all (σ (tk ) = i, σ (t−k ) =
j) ∈ M × M, i ̸= j, then, practical stability of system (7)
is guaranteed and the trajectories are attracted to ball (37),

with ω =
√
2αTmax/λmin(P) and α = max

i∈M
(αi), when

t → ∞. Moreover, the observer gains are obtained as
Li = (V ′i )

−1Yi,∀i ∈M.

min
P,Ui,γi,ε̃i,εi,ϑi

− ln(det (P)), (38)

subject to: 9i(0, 0)+ He((Gi0)
′ViHi

0)) ⪯ 0 (39)

9i(Tmax,T 2
max)+ He((GiTmax

)′ViHi
Tmax

) ⪯ 0,

(40)

αiηTmax − ϑiTmax − γiβf
2 > 0 (41)

where matrices 9i(0, 0), 9i(Tmax,T 2
max) are defined in (48)

and (49), as shown at the bottom of the next page,
respectively, with Yi = V ′i Li and

Gi0 = [ I LiCi − LiCi 0.5gi − LiFi 0 0]

GiTmax
= [ I LiCi − LiCi 0 − LiFi 0 0 0]

Hi
0 = [ I 0 0 0 0 0 0] , Hi

Tmax
= [ I 0 0 0 0 0 0 0] ,

proof: Considering functional (20), derivative ˙̃V sat-
isfies (32). Applying Schur’s complement to Ni(τ, τ 2)
and from the convexity properties we obtain the matrices
Mi(0, 0) in (15) and Mi(Tmax,T 2

max) in (16). In addition,
inequalities (12) and (13) can be expressed as follows:

(N i
G0 )
′9i(0, 0)N i

G0 ⪯ 0 (42)

(N i
GTmax

)′9i(Tmax,T 2
max)N

i
GTmax

⪯ 0 (43)

with

N i
G0 =

 LiCi
I

0 −0.5gi LiFi 0 0
−I 0 0 0 0

0(3n+p+1)×n I(3n+p+1)×(3n+p+1)


N i
GTmax

=

 LiCi
I

0 0 LiFi 0 0
−I 0 0 0 0

0(4n+p+1)×n I(4n+p+1)×(4n+p+1)


Also, we have that −γiI ≺ 0,∀i ∈ M, since γi is assumed

to be positive for all i ∈M, which corresponds to

(N i
H0

)′9i(0, 0)N i
H0
⪯ 0 (44)

(N i
HTmax

)′9i(Tmax,T 2
max)N

i
HTmax

⪯ 0 (45)

with

N i
H0
=

 0(3n+1)×(2n+1) 0(3n+1)×p 0(3n+1)×(2n+1)
0p×(2n+1) Ip×p 0p×(2n+1)
02n×(2n+1) 02n×p 02n×(2n+1)


N i
HTmax

=

 0(3n+1)×(2n+1) 0(3n+1)×p 0(3n+1)×(3n+1)
0p×(2n+1) Ip×p 0p×(3n+1)
03n×(2n+1) 02n×p 03n×(3n+1).


Consider Gi(0) ∈ Null(N i

G(0)), Gi(Tmax) ∈ Null(N i
G(Tmax)),

Hi(0) ∈ Null(N i
H(0)), Gi(Tmax) ∈ Null(N i

H(Tmax)).
From Lemma 2, there exists a matrix Vi that satis-
fies (39) and (40) if (42)-(45) hold. Thus, by solving (39)
and (40) we guarantee that (42)-(45) hold, and consequently,
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LMIs (12)-(13) in Theorem 1 are also satisfied. Hence, the
following inequalities hold:

˙̃V ≤ −ηṼ + γi∥fs∥2 + ϑiTmax. (46)

< −ηṼ + αηTmax (47)

where (46) is obtained by considering the bound in Assump-
tion 2 and inequality (47) is obtained by solving (41). Note
that (47) is the same as (34) in Theorem 1 by taking α = α.
By following the same steps as those in the proof of
Theorem 1, we can show that the trajectories of (7) are
attracted to (37). In addition, by maximizing ln(det (P)), the
eigenvalues of P−1 are minimized, which minimizes ω. □

A. ESTIMATION OF THE REGION OF ATTRACTION
The radius ω of (37) obtained by Theorem 2 is a conservative
estimation of the region of attraction B(xe, ω) from (8), since
the values of αi are given. A simple way to improve the
estimation of the region B(xe, ω) is to use the solution of
Theorem 2 (matrices P and Li) to convert (12) and (13),
from Theorem 1, into LMIs. The next theorem formalizes this
strategy.
Theorem 3: For given κ ∈ K, xe ∈ Xe satisfying (4),

η > 0, αi > 0,∀i ∈ M, a maximum sample time
Tmax > 0, and P, Li solutions of Theorem 2, if there exist
positive definite matrices Ui ∈ Rn×n and positive parameters
ε̃i, εi, ϑi, γi, α, satisfying the optimization problem (11)-(14),
for all (σ (tk ) = i, σ (t−k ) = j) ∈ M × M, i ̸= j, then,
the practical stability of system (7) is guaranteed and the
trajectories are attracted to (10), for the switching law given
in (9), with P := diag([P,P]). Furthermore, the trajectories

of (1) are attracted to (8) with a minimum radius denoted
by ω.

Proof: The proof is immediate, considering matrices P
and Li as known, and following the same steps as those in the
proof of Theorem 1. □
Remark 3: The region B(xe, ω) obtained using Theorem 2

can be reduced in Theorem 3 by minimizing α for the given
matrices P and Li. In this case, we obtain region (8), such
that ω ≤ ω, and α ≤ α. Moreover, from Lemma 2,
inequalities (12) and (13) are satisfied whenever all the
conditions in Theorem 2 hold, which means that in the worst
case of the solution of Theorem 3, we obtain α = α, and
ω = ω.

B. OBTAINING THE OBSERVER AND SWITCHING LAW
MATRICES SYSTEMATICALLY
For the feasibility of (39) and (40) in Theorem 2, the
real part of the eigenvalues of (A(κ) + (η/2)I ) must be
negative, implying that A(κ) must be Hurwitz. Furthermore,
inequalities (39) and (40) hold if the real part of the
eigenvalues of (A(κ) + 1Ai + (η/2)I ) is negative for all
δ̃i ∈ [−1, 1] , i ∈M. Thus η must satisfy

0 < η < −2λmax(A(κ)+ δaiQi), ∀δai ∈ [−1, 1], i ∈M.
(50)

In addition, by applying switching law (9) in the augmented
system in (7) it is not necessary to guarantee that the pairs
(Ai,Ci) are observable for all i ∈M to solve the optimization
problems (11)-(14) and (38)-(41), for all (σ (tk ) = i, σ (t−k ) =
j) ∈ M × M, i ̸= j. On the other hand, we need to

9i(0, 0) =



2TmaxUi (P+ TmaxUiAi) 0 0 0 0 UiMi
⋆ 9 i

22(0) 9 i
23(0) 9 i

24(0) 0 PMi A′iUiMi
⋆ ⋆ 9 i

33(0) Tmax(A′iUigi) 0 −PMi −A′iUiMi
⋆ ⋆ ⋆ 9 i

44(0) 0 0 0.5g′iUiMi
⋆ ⋆ ⋆ ⋆ −γiI 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −3ε̃iI 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −T−1maxεiI


(48)

9i(Tmax,T 2
max) =



0 P 0 0 0 0 0 0
⋆ 9 i

22(Tmax) 9 i
23(Tmax) 0 0 0 0 PMi

⋆ ⋆ 9 i
33(Tmax) 0 0 −Tmaxψi(κ) 0 −PMi

⋆ ⋆ ⋆ 9 i
44(Tmax) 0 Tmaxg′iP 0 0

⋆ ⋆ ⋆ ⋆ −γiI 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ 9 i

66(Tmax) 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −TmaxUie−ηTmax 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −3ε̃iI


(49)

with 9 i
33(τ ) = 9

i
23(τ )+9

i
23(τ )

′, 9 i
55(τ, τ

2) = −τUie−ηTmax + τ 2ψi(κ) and

9 i
22(τ ) = He(PAi)+ ψi(κ)+ ηP+ ε̃iN ′iNi + (Tmax − τ )(A′iUiAi + Q

′
iUiQi + εiN

′
iNi)

9 i
23(τ ) = 9

i
22(τ )+ (Tmax − τ )(Q′iUiQi + εiN

′
iNi)

9 i
24(τ ) = 0.5(P+ TmaxA′iUi)gi + Tmax(QiUiQixe + εiN ′iNixe)

9 i
44(τ ) = −ϑiTmax + ε̃ix ′eN

′
iNixe + (Tmax − τ )(x ′eQ

′
iUiQixe + εix

′
eN
′
iNixe + 0.5g′iUigi)
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guarantee that the eigenvalues of the matrices in the diagonals
ofMi(0, 0) in (12) andMi(Tmax,T 2

max) in (13) are negative
to satisfy (12) and (13). Moreover, (39) and (40) are satisfied
only if there exist matrices and parameters that satisfy (12)
and (13). Thus, to find a solution to (12), (13), (39)
and (49), it is necessary to ensure that there exists κ,P and
Li satisfying

He(P(A(κ)+ LiCi)) ≺ 0 ∀i ∈M, (51)

and η satisfying (50). Therefore, the pairs (A(κ),Ci) must
be observable for all i ∈ M. Furthermore, to obtain the
gain matrices Li and switching law matrix P, consider the
following algorithm.

Algorithm 1 Obtaining the Observer and Switching Law
Matrices
Require: κ ∈ K such that the pairs (A(κ),Ci) are observable

for all i ∈M
Require: η satisfying (50),
Require: Tmax = 1/fsw where fsw is the minimum switching

frequency as in Remark 1.
Require: αi > 0,∀i ∈M

if A solver for nonlinear matrix inequalities is available
then
Solve the optimization problem (11)-(14), for all
(σ (tk ) = i, σ (t−k ) = j) ∈M×M, i ̸= j in Theorem 1.

Return observer and switching law matrices Li and P
for all i ∈M.
Return radius ω, with ω =

√
2αTmax/λmin(P)

else
Solve the optimization problem (38)-(41) for all
(σ (tk ) = i, σ (t−k ) = j) ∈M×M, i ̸= j in Theorem 2.

Return observer and switching law matrices Li and P
for all i ∈M.
Return radius ω with ω =

√
2αTmax/λmin(P) and α =

max
i∈M

(αi)

With Li and P, solve the optimization problem (11)-
(14), for all (σ (tk ) = i, σ (t−k ) = j) ∈M×M, i ̸= j as
in Theorem 3
Return radius ω, with ω =

√
2αTmax/λmin(P)

end if

The matrices obtained by solving the optimization prob-
lems in Theorem 1 or 2 guarantee that the trajectory of
system (1) is attracted to (8) for a fixed equilibrium point
xe ∈ Xe when switching law (9) is considered. Moreover, if is
not possible to solve the optimization problem in Theorem 1,
then the estimation of the region of attraction is obtained
using Theorem 3. Otherwise, Theorem 1 provides the gains
and the estimation of the the region of attraction. In the
next section, we propose an algorithm to determine a set of
equilibrium points where x is attracted to (8) with the same
radius ω obtained in Theorem 3, considering the same gain

matrix P and observer matrices Li for a special case in which
the number of system modesM = 2.

C. SEARCH FOR EQUILIBRIUM POINTS
Define a set of equilibrium points �xe as

�xe = {xe ∈ Xe : xe ∈ B(xe, ω)} (52)

which means that�xe ⊆ Xe. For two modes, any equilibrium
point xe ∈ Xe can be obtained by a proper choice of κ
that satisfies 0 < κ < 1, such that xe = −((κA1 +
(1 − κ)A2)−1((κb1 + (1 − κ)b2). Consider now �xe ⊆ �xe .
By applying Algorithm 2, we obtain �xe for known matrices
P and Li, where κsteps ∈ R, 0 < κsteps < 1 is the increment
in κ .

Algorithm 2 Search for the Equilibrium Points
Require: Matrices P, Li and a number α > 0 obtained in

Theorem 3.
κ ← κsteps
�xe is empty
while κ < 1 do
xe←−((κA1 + (1− κ)A2)−1(κb1 + (1− κ)b2)
if (12)-(14) are satisfied, ∀σ = i, i ∈M, then
�xe ← �xe ∪ xe

end if
κ ← κ + κsteps

end while

Remark 4: For observer matrices Li, i ∈M and switching
law gain in (9) given by Theorem 2, a given radius ω is
obtained in Theorem 3 and for any equilibrium point in �xe ,
Algorithm 2 provides a condition to guarantee that, the
trajectories of (7) are attracted to B(xe, ω), for any initial
condition. However, if an equilibrium point xc ∈ Xe does not
belong to �xe , it does not necessarily mean that system (7)
is unstable when applying the switching law (9) with the
matrix P and the observer gains Li, instead, xc may belong
to a set where the radius of the ball is greater than the
optimum radius ω obtained in Theorem 3. Moreover, using
Algorithm 2, we cannot obtain all the elements of set (52),
but it is possible to obtain a greater number of elements for
small values of κsteps.

V. EXPERIMENTAL RESULTS
To illustrate the fault-tolerant switching law strategy pro-
posed in this paper, we considered a bidirectional buck-
boost DC–DC converter with a battery as the input voltage
source. The converter is shown in Figure 2, where iL is the
inductor current, vC is the output capacitor voltage, Lin is the
inductance with a loss rL , rS is the switching device loss,Cv is
the capacitance, Ro is the load resistance and vbat is the input
voltage source with an internal resistance rbat . The converter,
subject to persistent bounded sensor faults, was modeled as
system (1) with x = [ iL vC ]′ for σ = i,∀i ∈ {1, 2},
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FIGURE 2. Bidirectional buck-boost DC–DC converter. The subtraction in
the switching signal corresponds to the modes 1 and 0, representing the
‘on’ and ‘off’ states of the switching device, respectively. Note that when
the switching device S1 is active, the switching S2 is inactive.

B1 = B2 = [ 1/Lin 0]′, u = vbat , b1 = b2 = B1u =
[ vbat/Lin 0]′ , C1 = C2 = [ 0 1] ,F1 = F2 = 1 and:

Aσ=1 =

−
req
Lin

0

0 −
1

RoCv

 , Aσ=2 =

−
req
Lin
−

1
Lin

1
Cv

−1

RoCv


where req = rbat + rL + rS and indices 1 and 2 correspond
to the on and off state of switching devices S1 and S2,
respectively, activated in a complementary manner.

Considering a variation of 50% in the load resistance, the
uncertainties 1A1 and 1A2 are described according to (2) as
follows:

Q1 = Q2 =

[
0 0
0 δRo

(1+δRo)RoCv

]
, δ = 0.5

M1 = M2 =

[
0 0
δRo

(1+δRo)RoCv
0

]
, N1 = N2 =

[
0 1
0 0

]
.

Next, considering that switching law (9) is applied to the
proposed bidirectional buck-boost converter, we present the
design of the observer gain in (7) and matrix P in (9),
along with the experimental results for different scenarios,
considering changes in equilibrium points, load variations
and sensor faults.

A. DESIGN OF THE OBSERVER GAINS AND SWITCHING
LAW
First, denoting iLe and vCe as the inductor current and voltage
sensor in equilibrium, respectively, an equilibrium point xe ∈
Xe is chosen to be xe = [ iLe vCe ]′ = [ 38.462 384.615]′,
for κ = [ 0.50 0.50], where iLe = 38.462A and vCe =
348.615V

Moreover, we considered persistent bounded sensor faults
with a maximummagnitude of βf = 192.308V, representing
a maximum offset of 0.5vCe, which means that we aim to
design observer gains to guarantee a fault tolerance of the
converter against any absolute value for fault magnitude
below or equal to βf under the sampled-observer based
switching law (9). Additionally, practical stability of (7) is
guaranteed when a switching frequency of at least 10 kHz

is applied.3 Hence, we defined a fixed sample time Tk =
Tmax = 10−4 s,∀k ∈ N for system (1).

Once we have established all the requirements for the
switching law design, the observer gains and switching law
can be obtained by solving the optimization problem in
Theorem 2, whereas the radius of (8) can be obtained by
solving the optimization problem in Theorem 3, considering
matrices Ai, bi,Ci,Fi,Mi,Ni and Qi for all i ∈ M obtained
for the uncertain DC–DC converter.

However, to cope with large numerical values in the system
matrices and to avoid ill-conditioned matrix inequalities,
we considered a time scale change in system (7), such that
the system of the form (7) is obtained with Ãi = ϵ−1Ai, M̃i =

ϵ−1F i, C̃i = ϵ−1C i and T̃max = ϵTmax, where ϵ = 104 is
the time scaling constant, as considered in [27]. Observe
that the switching law obtained considering the time scale
change is equivalent to switching law4 (9), since σ (ξ̂k ) =
argmin
i∈M

(ξ̂ ′kP(Aiξ̂k + gi)) = argmin
i∈M

(ξ̂ ′kP(ϵAiξ̂k + ϵgi)),∀i ∈

M. Then, by solving the optimization problem proposed in
Theorem 2, with η = 16.67 × 10−4 satisfying (50), α1 =
α2 = 104, and βf = 192.308V, we obtain the following
matrices:

P =
[
0.0212 −0.0001
−0.0001 0.0067

]
, L1 =

[
0.0033
−0.0011

]
,

L2 = 10−3 ×
[
−0.06157
0.2022

]
,

and the radius of (37) is obtained as ω = 1.723 × 103.
It can be verified that ω represents a very high value for the
radius of the ball where the trajectories of (1) converge under
uncertainties and sensor faults. Nonetheless, by applying
P and Li in Theorem 3, for all i ∈ M, we obtain the
minimum radius of (8), which corresponds to ω = 184.796.
In general, most of the parameters obtained as a solution
for the optimization problem proposed in Theorem 3 yield
smaller attraction region than the obtained in Theorem 2,
since αi < α,∀i ∈M, as we can see in Table 1.

TABLE 1. Parameters obtained applying theorems 2 and 3.

In addition, by applying Algorithm 2 with κsteps = 0.050,
we obtained the set of all equilibrium points that satisfy (52),
the elements of which are listed in Tables 2 and 3, where each
column composed of iLe and vCe for a given κ is an element
of �xe .

3This value corresponds to a common operational frequency for power
electronic switching devices, as mentioned in the introduction.

4The value of the minimum obtained after the time scaling is not the same.
However, since ϵ multiplies ξ̂ ′kP(Aiξ̂k + gi) for all i ∈M, then the argument
i remains the same.
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TABLE 2. Equilibrium points for 0.05 ≤ κ ≤ 0.25.

TABLE 3. Equilibrium points for 0.30 ≤ κ ≤ 0.50.

FIGURE 3. HIL experimental setup. The converter circuit is presented in
Figure 2.

Furthermore, for practical application purposes, the
switching law σ (ξ̂k ) in (9) is implemented as follows5

σ (ξ̂k ) =

{
1, if (ξ̂ ′kP((A1 − A2)ξ̂k + (g1 − g2)) ≤ 0
2, if (ξ̂ ′kP((A1 − A2)ξ̂k + (g1 − g2)) > 0.

(53)

In addition, to validate the efficacy of the strategy,
we included a current sensor to measure iL and a redundant
fault-free sensor to measure the output voltage vC , in order
to obtain the system state in real-time during the experiment.
Still, we remark that for the observer-based strategy, we only
consider fault-prone voltage sensors.

B. PERFORMANCE UNDER DIFFERENT SCENARIOS
To illustrate the performance of the proposed approach, five
different scenarios were tested using a hardware-in-the-loop
(HIL) experimental platform. As shown in Figure 3, the
bidirectional buck-boost DC–DC converter was implemented
in Speedgoat™, while the proposed strategy was implemented
in dSPACE™. The characteristics of each scenario are
described in Table 4, whereas Figure 4 shows the change in
the equilibrium point (see Fig. 4(a)), the uncertainties in the
resistance load (see Fig. 4(b)) and the fault signal inserted in
the voltage sensor (see Fig. 4(c)). The sensor fault is given by
a sinusoidal function fs(t) = βf sin (2π t) and can be used to
represent an injection attack in the measurement signal.

All the scenarios presented in this paper were obtained by
considering T−1max = 10 kHz and T−1max = 30 kHz, in order

5The new representation presents the same behavior as the one obtained
in (9), but the ‘‘smaller than’’ operation is computationally faster than finding
the minimum in real-time.

TABLE 4. Scenarios characteristics according to uncertainties, sensor
faults, duty cycle, and resistance load.

FIGURE 4. Events in the converter operation: (a) change in equilibrium
point where from 0 ≤ t ≤ 2s the reference is equal to
xe = [ 38.462 384.615 ]. From t > 2s, the reference is switched to
[ 20 280 ]′ , which is equivalent to the equilibrium point when κ = 0.30
(b) load resistance and (c) sensor fault signal, with ∥fs∥ ≤ βf = 192.308 V.
The equilibrium inductor current and capacitor voltage are iLe and vCe,
respectively.

to represent the use of switching devices with different
switching frequencies. Moreover, for the first four scenarios,
we assumed that the capacitor is initially charged at 200V,
whereas in the fifth scenario, the capacitor is completely
discharged before the experiment. Thus, when the capacitor
is discharged, then ∥x(0) − xe∥ > ω, which means that the
trajectories of the converter begin outside B(xe, ω).
In the first scenario, the nominal operation of the bidirec-

tional buck-boost DC–DC converter is tested, that is, without
uncertainties and sensor faults. The inductor current and
capacitor voltage under this scenario are shown in Figure 5.
It can be observed that for both values of Tmax, the current and
voltage are maintained close to their reference values. It is
important to highlight that the current and voltage errors are
not zero due to frequency limitations imposed by the sample
time Tmax. Furthermore, although the dynamic response is
similar considering the values of Tmax, for T−1max = 30 kHz,
the state variables are closer to the equilibrium point.

In the second scenario, the converter operation with
uncertainties in the resistance load and without sensor faults
was analyzed. The inductor current and the capacitor voltage
are shown in Figure 6. As the controller is designed for
the nominal condition, the uncertainties (variation of the
load around R̄o) cause a large deviation from the references
for 0.5 s ≤ t ≤ 1.5 s and 2.5 s ≤ t ≤ 3.5 s.
Furthermore, the maximum deviation from the reference
(worst performance) is obtained for the second equilibrium
point once the controller is designed for the first one xe.

In the third scenario, the effect of sensor faults was ana-
lyzed without considering uncertainties in the load resistance.
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FIGURE 5. Scenario 1: inductor current iL and capacitor voltage vC
considering operation without uncertainties and without sensor faults for
different values of Tmax and a change in the equilibrium point.

FIGURE 6. Scenario 2: inductor current iL and capacitor voltage vC
considering operation with uncertainties on the load resistance and
without sensor faults, considering different values of Tmax and a change
in the equilibrium point.

FIGURE 7. Scenario 3: inductor current iL and capacitor voltage vC
considering operation without uncertainties and with sensor faults
considering different values of Tmax and a change in the equilibrium
point.

As shown in Figure 7, the state variables are controlled close
to the equilibrium points, even with a sinusoidal false-data
injection attack in the sensor measurement. Compared with
the second scenario, in which uncertainty in the resistance
load is present, the deviation is reduced. The error between
the state and the reference is lower when T−1max = 30 kHz.
Finally, in the fourth and fifth scenarios, the effects

of sensor faults and uncertainties were analyzed. The
capacitor is initially charged in the fourth scenario, as in

FIGURE 8. Scenarios 4 and 5: Inductor current iL and capacitor voltage vC
considering operation with uncertainties on the load resistance and with
sensor faults for different values of Tmax and a change in the equilibrium
point. (a) capacitor initially charged in scenario 4 and (b) capacitor
initially discharged in scenario 5.

scenarios 1-3, whereas in the fifth scenario, the capacitor
was initially discharged. The inductor current and capacitor
voltage for both conditions are shown in Figure 8, considering
two values of Tmax. As can be seen, the state variable is
controlled around the reference even under uncertainties in
the resistance load and when the sensor is under a false-data
injection attack at t = 2 s. On the other hand, when
the capacitor is initially charged (see Fig. 8(a)), the current
and voltage overshoot are lower than when the capacitor is
initially discharged (see Fig. 8(b)). This shows that by apply-
ing the switching law in (9), the bidirectional buck-boost
converter is under more stress when the initial condition is
null, which can be dangerous for most practical applications.

We remark that in the fourth and fifth scenarios, we aimed
to obtain the maximum deviation from the equilibrium point
for the worst-case scenario considered in Theorem 2, when
system (1) is under uncertainties, sensor faults, and change
in the equilibrium points. In the fifth scenario, we obtained
the trajectories of the converter when ∥x(0) − xe∥ > ω.
The phase plane for the fifth scenario is shown in Figure 9.
As the initial condition is null, the trajectory starts outside the
green ball of radiusω = 184.796, calculated according to (8),
until it reaches the red ball of radius ωE ≈ 119, which is an
approximation of the experimental attraction region, defined
as B(xe, ωE ). Once the trajectory is inside the ball B (xe, ω),
it is maintained there for all time, as stated by Theorem 1.
In the zoomed regions, it is possible to see that the current
and voltage errors are not null but limited.
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FIGURE 9. Experimental phase plane for scenario 5. The green ball
represents the theoretical attraction region calculated in (8), while the red
ball represents an approximation to the experimental attraction region.

FIGURE 10. Performance index for all scenarios considering different
values of Tmax: (a) global maximum relative error (GMRE) and (b) mean
relative error (MRE).

To mathematically analyze the performance of the pro-
posed strategy under the four scenarios and for both values
of Tmax, the global maximum relative error (GMRE) and
mean relative error (MRE) were evaluated as follows:

MRE (%) =
100%
N

N∑
z=1

∥x[z]− xe[z]∥
∥xe[z]∥

(54)

GMRE (%) = 100% max
z=1···N

(
∥x[z]− xe[z]∥
∥xe[z]∥

)
(55)

where z is the index for the signal samples and N is the
total number of samples. The errors for all the scenarios are
shown in Figure 10. It can be observed that in scenario 5,
the errors are the largest due to the fact that the converter
has a null initial condition, which implies large initial errors.
Furthermore, in relation to the values of Tmax, the errors in all
scenarios were larger considering T−1max = 10 kHz.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS
We provided a method to obtain a switching law and observer
gains to guarantee fault tolerance against bounded sensor
faults and robustness against norm-bounded uncertainties,
where all gains are a solution to an optimization problem
that guarantees the smallest region of attraction within the
given upper bounds αi in (41), by solving (38) in Theorem 2.
Theorem 1 provides a more realistic approximation of the
radius to which the trajectories of the uncertain switched

affine system are attracted. The proposed strategy offers
enhanced reliability in the presence of sensor faults and
uncertainties, making it a valuable tool for real-world
applications in control systems, particularly when not all state
variables are available for measurement.

Moreover, we considered the frequency limitations of
switching devices by setting two different sample times,
showing that the gains obtained in Theorem 2 are sufficient
to guarantee the practical stability of DC–DC bidirectional
buck-boost converters for switching frequencies greater than
10 kHZ, which allows the application of the strategy for
different switching devices, without the need to update the
gain matrices. Furthermore, using Algorithm 2, we also
showed that the observer gains and switching law obtained
guarantee the practical stability of the switched system for
a range of equilibrium points instead of only one, which
can be a valuable result in a practical scenario. In addition,
the experiments showed that stability is guaranteed under
norm-bounded uncertainties even if all sensors are faulty with
amaximum relative error of 6.63% in theworst-case scenario.

In future works, a sliding-mode observer-based strategy
or data-driven-based methods will be considered to obtain
improved state estimation. Additionally, component faults,
disturbances, and uncertainties in the bi matrices in (1)
are issues of interest to be addressed with sampled-
based switching. In addition, the proposed strategy can be
applied to DC–DC converters with more complex topologies.
Furthermore, heuristic methods can be applied to obtain a
better estimation of the region of attraction ω in Theorem 3
considering different parameters η and αi in Theorem 2. Also,
Algorithm 2 can be improved to find more equilibrium points
using the same observer and switching law matrices obtained
in Theorem 2.
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