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ABSTRACT Transactive energy (TE) as a market-based mechanism provides a practical framework to fully
manage and control local energy networks with a high penetration of distributed energy resources (DERs).
However, the existing designed TE frameworks can rarely encourage prosumers to participate fairly owing to
neglecting competition and cooperation. This paper proposes a tri-layer hybrid game-based TE framework,
wherein the cooperation of prosumers to trade energy in a peer-to-peer (P2P) fashion is considered in the
first layer using the Nash Bargaining Game (NBG) Theory. The competition among prosumers to trade
with the most affordable aggregator is modeled at the second layer using the evolutionary game (EG).
The third layer also models the competition among aggregators and the competition between aggregators
and the cooperation of prosumers by developing a non-cooperative game. Besides, a scale-independent
distributionally robust optimization (DRO) is developed based on the Wasserstein ambiguity set to allow
prosumers to manage their uncertainty using all potential historical data while ensuring tractability. Finally,
a new adaptive proximal alternative direction method of multipliers (ADMM) is introduced to develop a
distributed-decentralized decision-making scheme for satisfying network constraints and energy trading in
a P2P manner to accelerate the solution procedure and preserve privacy. The tests and implementations
demonstrate that the proposed tri-layer TE framework lowered the overall costs for prosumers by 11 % and
2.85 % compared to the total costs in non-cooperative TE and cooperative TE, respectively.

INDEX TERMS Adaptive proximal ADMM, cooperative game, evolutionary game (EG), Nash bargaining
game (NBG), non-cooperative game, scale-independent DRO, transactive energy framework, tri-layer game.

NOMENCLATURE
MAIN ABBREVIATIONS
ES/DG/D Energy storage/ Distributed generator/

Demand.

The associate editor coordinating the review of this manuscript and

approving it for publication was F. R. Islam.

SETS AND INDICES
h/k/n Index of iterations/Index of aggregators/

Index of nodes.

i, j/t/v Index of prosumers/Index of time/Index of
historical data.

4Net Set of the feasibility area of network
constraints.

� Set of mapping ith prosumer to nth node.
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PARAMETERS AND SCALARS
aBt,k , b

B
t,k Cost and risk coefficients regarding the

purchased power from prosumers by k th

aggregator at time t .

aSt,k , b
S
t,k Cost and risk coefficients regarding the sold

power to prosumers by k th aggregator at
time t .

E i/E i Maximum and minimum boundaries of
energy storage of ith prosumer.

P̂Di,t Desired demand of ith prosumer at time t .
STi Capacity of inverter of ith prosumer.
zht,k Probability of trading with k th aggregator at

time t .
αGi , β

G
i , γ

G
i Cost coefficients regarding DG output

power of ith prosumer.
δESi Degradation cost coefficients of energy

storage of ith prosumer.
ϑcri,t /ϑ

sh
i,t Curtailment/Load shedding cost coefficient

of ith prosumer at time t .
ιBt,k , ι

S
t,k Buying and selling capacity factor of k th

aggregator at time t .
λBt,k ,λ

S
t,k Buying and selling prices of k th aggregator

at time t .
σDi,t Discomfort cost coefficient of ith prosumer

at time t .
ϕi Maximum operating angle on inverter of ith

prosumer.
ℓt , ℓ

B
t , ℓ

S
t Modification factors.

■/■ Maximum/minimum boundaries.

FUNCTIONS
CB/S
i,t,k Buying and selling cost of ith prosumer at

time t due to trading with k th aggregator.
CD
i,t Discomfort cost of ith prosumer at time t .

CES
i,t Degradation cost of energy storage of ith

prosumer at time t .
CG
i,t Generation cost of DG of ith prosumer at

time t .
CP
i,t Penalty cost of ith prosumer at time t .

CT
i,t,k Total cost of ith prosumer at time t due to

trading with k th aggregator.
C
T
t Average total cost at time t .

ČT
i,t,k The value of total cost of ith prosumer at time

t due to trading with k th aggregator.
C̃ (⋆)
i The value of total cost of ith prosumer

without P2P trading.
Ĉ (⋆)
i The value of total cost of ith prosumer with

P2P trading.
PBt,k Total purchased power of k th aggregator at

time t .
PSt,k Total sold power of k th aggregator at time t .
P̄Bt,k Maximum capacity of the purchased power

of k th aggregator at time t .

P̄St,k Maximum capacity of the sold power of k th

aggregator at time t .
UB
t,k Total risk cost of k th aggregator at time t

regarding the purchased power.
US
t,k Total risk cost of k th aggregator at time t

regarding the sold power.

VARIABLE
Ei,t Energy of energy storage of ith prosumer at

time t .
Pchi,t/P

dch
i,t Charging and discharging power of energy

storage of ith prosumer at time t .
PEi,t/P

D
i,t .

/PGi,t
Output power of energy storage/
consumption/DG of ith prosumer at
time t .

PNetn,t /Q
Net
n,t Injected/absorbed active and reactive power

to/from nth node at time t .
PP2Pij,t P2P transaction power from ith prosumer to

jth prosumer at time t .
PTi,t/Q

T
i,t Injected/absorbed power by inverter of ith

prosumer at time t .

Q
T
i,t Inverter maximum capacity of reactive

power of ith prosumer at time t .
r i,t/r i,t Upward and downward reserve capacities of

energy storage of ith prosumer at time t .
1pESi,t /1p

D
i,t .

1pGi,t
Power adjustment of energy
storage/consumption/DG of ith prosumer at
time t .

τESi,t /τ
D
i,t

/τGi,t
Contribution of energy storage/
consumption/DG of ith prosumer at
time t to compensate for the uncertainty of
ith prosumer.

ωi,t Random variable to model the uncertainty of
ith prosumer at time t .

8ij P2P trading cost.

I. INTRODUCTION
The rapid expansion of distributed energy resources (DERs)
within local networks marks a transformative shift towards
prosumption, reshaping the power systems’ landscape [1].
This presents an exciting business opportunity to aggregate
the capacity of local networks, allowing them to participate
in the distribution or transmission-level markets actively [2].
However, establishing a sustainable business model for local
networks is not without significant challenges, as it requires
effectively balancing the interests of both aggregators and
prosumers while ensuring profitability. With this respect,
transactive energy (TE) offers a market-based methodology
that respects prosumers’ preferences and aligns with aggre-
gators’ financial targets [3]. Consequently, the design of a TE
framework to fairly harness the prosumption capacity of local
networks has become a focal point of attention and research.
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In this context, a particular group of studies has focused
on devising an auction-based TE market, where prosumers
and aggregators submit their bids to fulfill their respective
prosumption requirements. For instance, [4] and [5] presents
a double auction-based algorithm for peer-to-peer (P2P)
trading, incorporating aggregators’ roles. Additionally, [6]
proposes a pricing algorithm aimed at maximizing aggre-
gators’ profits and minimizing prosumers’ billing costs.
Two-stage and bi-level TE markets are also suggested
in [7] and [8], respectively. To enhance market stability,
[9] takes into account aggregators’ performance in upper-
level markets, and [10] considers prosumers’ discomfort
cost. However, the primary objective of these markets is
often centered around minimizing total costs or maximizing
overall profits, which may not sufficiently provide a fair
TE framework for local networks due to the disregard
of individual preferences, thereby potentially discouraging
prosumer participation.

To address this challenge, another set of studies has
introduced a non-cooperative TE framework, treating the
conflict of interest between aggregators and prosumers
as a competitive scenario. Among non-cooperative game
approaches, Stackelberg games (SG) have been widely
employed. In the SG setup, an entity acts as the leader
(e.g., the aggregator), setting prices first, while others act
as followers (e.g., prosumers), adjusting their prosumption
accordingly. For instance, [11] and [12] presents a bi-level
model where aggregators maximize profits at the upper
level, and prosumers minimize costs at the lower level.
Additionally, [13] and [14] develop an SG for voltage
support by prosumers, and [15] formulates an SG-based TE
market to improve network imbalance. To consider multiple
aggregators and their competition, a multi-leader multi-
follower SG is suggested in [16] and [17]. To preserve
prosumers’ privacy in the non-cooperative TE market,
a distributed decision-making scheme is suggested in [18].
Additionally, [19] proposes a non-cooperative game for the
participation of heat ventilation and air conditioning (HVAC)
capacity in the TEmarket. Further, [20] introduces a Bertrand
game to account for competition among prosumers, and [21]
devises a Cournot Nash game to offer a bidding strategy for
prosumers in the TE market.

On the other hand, some studies have demonstrated the
potential efficiency of prosumers in increasing their profits
through cooperation among themselves [22], [23], [24], [25],
[26], [27], [28], [29], [30]. Consequently, the coalitional
game, as a cooperative game approach, has been employed
in [22] and [23] to encourage prosumers towards P2P trading,
albeit at the expense of neglecting network constraints.
However, the coalition game TE framework often fails to
divide profits fairly as it utilizes the Sharply method for profit
propagation [24]. To overcome this challenge, a TE market
based on the Nash Bargaining Game (NBG) is developed
in [25], wherein profits are distributed based on each
prosumer’s contribution to cost reduction. Nevertheless, this

NBG-based model comes with a considerable computational
burden. In response, [26] and [27] presents an exact
decomposition method specifically designed to alleviate the
computational complexity associated with the NBG-based
TE market. Furthermore, [28] and [29] investigations empha-
size the significance of prioritizing NBG-based P2P trading
for operators, not only due to the financial advantages it
offers but also to avoid transferring the complexity and
uncertainty of local networks to higher levels. To foster viable
cooperation among prosumers, [30] addresses a bi-level
model, encompassing network constraints at the upper level
and NBG at the lower level. However, a notable limitation
of these studies lies in their oversight of the competition
dynamics between prosumers and aggregators within the
suggested TE market.

From the reviewed literature, The following gaps are
identified to the best of the authors’ knowledge: 1) Finding
a comprehensive TE framework that can effectively opti-
mize individual preferences while considering both existing
cooperations and competitions in local networks is chal-
lenging. Non-cooperative TE frameworks often overlook the
bargaining potential of prosumers, leading to higher costs and
lower profits for them [27]. On the other hand, cooperative
TE frameworks that neglect competition between prosumers
and aggregators may produce optimistic solutions that are
difficult to sustain in practice [31]. Moreover, aggregators
utilizing available cooperative TE frameworks can wield
market power, as the clearing prices of prosumer cooperation
become influenced by the aggregators’ bids [32]. To address
these limitations, only a limited number of studies have
presented hybrid forms of cooperative and non-cooperative
TE markets. For instance, [31] and [32] introduce a bi-level
TE market where the upper level incorporates a multi-
leader multi-follower Stackelberg game, accounting for
competition between aggregators and prosumers, while the
lower level considers prosumer bargaining power. How-
ever, this approach neglects competition among prosumers,
and achieving the Nash point using this model remains
controversial due to its mixed-integer linear programming
(MILP) nature. 2) Uncertainties in prosumptions are often
overlooked in many studies, which results in avoiding the
TE framework to reach the Nash point. Although stochastic
programming (SP) is utilized in [1] to address uncertainty,
it requires access to exact probability density functions
(PDFs). On the other hand, the suggested robust optimization
(RO) in [33] tends to be excessively conservative, resulting
in significant cost increases and questionable achievement
of the Nash point. Consequently, motivating prosumers to
participate in such designed TE frameworks becomes diffi-
cult. To overcome these issues, a data-driven distributionally
robust optimization (DRO) approach is addressed in [34]
and [35], although its performance can vary significantly
depending on the scale of the historical data. Large datasets
become computationally intractable, while small-scale data
compromise accuracy. Thus, achieving the Nash point in this
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context remains uncertain, further complicating prosumer
engagement in the designed TE framework. 3) Preserving
the privacy of prosumers presents another challenge in the
TE framework. Although the alternating direction method
of multipliers (ADMM) is used in [36] for preserving
prosumer privacy, its convergence speed and scalability raise
concerns, particularly when dealing with a considerable
number of prosumers [37]. Additionally, initializing the
penalty factor in the regular ADMM is highly challenging
since it can significantly affect convergence speed and
accuracy [10].
To remedy the aforementioned shortcomings, This paper

proposes the following contributions:
• Proposing a hybrid tri-layer TE framework. Propos-

ing the tri-layer TE framework, including all cooperations and
competitions, contributes to fairly encouraging prosumers to
participate. In the first layer, prosumers’ cooperation and
bargaining power are considered using NBG. The second
layer introduces competition among prosumers as they buy
and sell their prosumptions to aggregators at the most
affordable prices, modeled through an evolutionary game
(EG). In the third layer, the modeling encompasses the
competition between aggregators and the cooperation among
prosumers, alongside considering the competition among
aggregators. This layer is represented as a developed non-
cooperative game, taking into account the performance of
aggregators in the upper-level market. The hybrid tri-layer
TE framework has been addressed in this study for the first
time.
• Developing a scale-independent DRO based on

Wasserstein ambiguity set for uncertainty management
of this problem. Having a scale-independent DRO is crucial
because it removes the dependence of the proposed TE
framework on the number of samples. However, the DRO
method presented in [9] and [38] shows a high sensitivity to
changes in the number of samples.
• Developing a new adaptive proximal ADMM. The

proposed model demonstrates lower sensitivity to ini-
tialization and significantly faster convergence compared
to other available algorithms. Furthermore, a distributed-
decentralized algorithm is developed based on the pro-
posed adaptive proximal ADMM. This algorithm efficiently
oversees network security constraints by the operator in
a distributed fashion, while also facilitating decentral-
ized P2P trading among prosumers in a decentralized
manner.

II. ILLUSTRATION EXAMPLE OF THE PROPOSED HYBRID
TRI-LAYER GAME
To illustrate the tri-layer game, Fig. 1 presents a scenario
with three prosumers and two aggregators. Let’s consider
a specific time instance: Prosumer 1 generates 150 kW,
while Prosumers 2 and 3 consume 100 kW and 50 kW,
respectively. In this situation, a dynamic emerges with
prosumers possessing bargaining power, as Prosumer 1 can
sell its power at a premium (e.g., 9 $/kWh) compared to the

aggregators’ buying price (i.e., 8 $/kWh). Simultaneously,
the consumers have the opportunity to purchase power at
a more economical rate than the aggregator selling prices,
a phenomenon well-documented in various papers [27]. Now,
let’s consider another scenario: Prosumer 1 generates 100 kW,
while Prosumers 2 and 3 consume 250 kW and 300 kW. This
introduces an additional layer to the dynamics. Beyond the
bargaining power among prosumers, there arises competition
between Prosumers 2 and 3. Both prosumers aim to trade with
Aggregator 1, which proves more lucrative considering its
capacity compared to Aggregator 2. This competition among
prosumers adds complexity to the interplay. Moreover,
there is another layer of competition in play. Aggregators
vie for superiority based on their expected profit and the
overall performance of both other aggregators and prosumers
in the system. Thus, the tri-layer game unfolds as follows:
the cooperation among prosumers forms the first layer,
the competition among prosumers constitutes the second
layer, and the competition among aggregators shapes the
third layer. To develop the hybrid tri-layer game, the model
of prosumer is presented in the next section. Meanwhile,
the formulation of the tri-layer game is presented in
Section IV.

FIGURE 1. Illustrative Example of tri-layer game.

III. PROSUMER PROBLEM FORMULATION
Prosumers can be equipped with distributed generators
(DGs), energy storages (ESs), and demands. All of these
resources can have uncertainties; hence, Prosumers need to
take their uncertainties by allocating sufficient flexibilities
similar to [34]. To simplify the understanding, the formula-
tions are classified into separate parts below:
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A. DG CONSTRAINTS
The constraints of DGs can be considered for ith prosumer at
t th time as follows:

PGi,t − r
G
i,t ≥ P

G
i , ∀i, t (1a)

PGi,t + r
G
i,t ≤ P

G
i , ∀i, t (1b)

rGi,t , r
G
i,t ≥ 0, ∀i, t (1c)

CG
i,t = α

G
i × (PGi,t +1p

G
i,t )

2

+ βGi × (PGi,t +1p
G
i,t )+ γ

G
i , ∀i, t (1d)

(1a)-(1c) model the minimum and maximum boundaries for
DGs with respect to adjustments (i.e., rGi,t and r

G
i,t ) [34]. The

cost of DGs is also modeled in (1d) as a quadratic function
considering adjustments [1].

B. ES CONSTRAINTS
The constraints of ESs are presented in (2a)-(2i). As ESs can
work either in charging mode or in discharging mode, the
convexmodel of ES is utilized here [34], rather than theMILP
one.

PESi,t = Pdchi,t − P
ch
i,t , ∀i, t (2a)

Pchi,t + r
ES
i,t ≤ P

ch
i , ∀i, t (2b)

rESi,t ≤ P
ch
i + P

dch
i,t , ∀i, t (2c)

Pdchi,t + r
ES
i,t ≤ P

dch
i , ∀i, t (2d)

rESi,t ≤ P
dch
i + P

ch
i,t , ∀i, t (2e)

Ei,t = Ei,t−1 + (ηchi × P
ch
i,t − P

dch
i,t /η

dch), ∀i, t (2f)

E i,t ≤ Ei,t ≤ E i,t , ∀i, t (2g)

Pchi,t ,P
dch
i,t , r

ES
i,t , r

ES
i,t ≥ 0, ∀i, t (2h)

CES
i,t = δ

ES
i × (PESi,t +1p

ES
i,t )

2, ∀i, t (2i)

where PESi,t is the output of ESs that is equal to the subtraction
of discharging power (i.e., Pdchi,t ) and charging power (i.e.,
Pchi,t ) in (2a) [1]. In (2b)-(2e), the boundaries of Pchi,t /P

dch
i,t

are presented with respect to adjustment (i.e., rESi,t and rESi,t )
to compensate for uncertainties [34]. The energy capacity
of ESs (i.e., Ei,t ) and the boundaries are contemplated
in (2f)-(2g). The degradation cost of ESs is presented in (2i)
to avoid over-utilization [1].

C. DEMAND CONSTRAINTS
The constraints of demand and its flexibilities are presented
as follows [34]:

PDi,t − r
D
i,t ≥ P

D
i , ∀i, t (3a)

PDi,t + r
D
i,t ≤ P

D
i , ∀i, t (3b)∑

t

PDi,t = EDi , ∀i (3c)

rDi,t , r
D
i,t ≥ 0, ∀i, t (3d)

CD
i,t = σ

D
i,t × (PDi,t −1p

D
i,t − P̂

D
i,t )

2, ∀i (3e)

The boundaries of demands are considered in (3a)-(3b)
with respect to demand adjustments (i.e., rDi,t and r

D
i,t ). (3c)

indicates that the required energy of prosumers should be
satisfied. (3e) also models the discomfort cost for prosumers,
which is presented in [28].

D. AFFINE ADJUSTMENT ALLOCATION CONSTRAINTS
To accurately specify adjustments, the rescheduling pow-
ers of DGs (1pGi,t ), ESs (1pDGi,t ), and demands (1pDi,t )
should compensate for uncertainties based on affine for-
mulation [34]. Uncertainties, in this paper, are defined as
errors in the predicted output of renewables (i.e., PREi,t +
ωi,t ). ωi,t is a random variable representing uncertain-
ties. The rescheduling powers can be determined based
on (4a)-(4c), wherein τGi,t , τ

ES
i,t , and τDi,t are participation

factors [34].

1pGi,t = τ
G
i,t × ωi,t , ∀i, t (4a)

1pESi,t = τ
ES
i,t × ωi,t , ∀i, t (4b)

1pDi,t = τ
D
i,t × ωi,t , ∀i, t (4c)

− rGi,t ≤ 1p
G
i,t ≤ r

G
i,t , ∀i, t (4d)

− rESi,t ≤ 1p
ES
i,t ≤ r

ES
i,t , ∀i, t (4e)

− rDi,t ≤ 1p
D
i,t ≤ r

D
i,t , ∀i, t (4f)

τGi,t + τ
ES
i,t + τ

D
i,t = 1, ∀i, t (4g)

0 ≤ τGi,t , τ
ES
i,t , τ

D
i,t ≤ 1, ∀i, t (4h)

(4d)-(4f) declare that the rescheduling powers should be
supported by allocated adjustments. (4g) also states that
the summation of participation factors must be equal to
one [34].

CP
i,t =

[
ϑcri,t ×

(
[τGi,t × ωi,t − r

G
i,t ]
+

+ [τESi,t × ωi,t − r
ES
i,t ]
+
+ [τDi,t × ωi,t − r

D
i,t ]
+

)
+ ϑ shi,t ×

(
[−τGi,t × ωi,t − r

G
i,t ]
+

+ [−τESi,t × ωi,t − r
ES
i,t ]
+
+ [−τDi,t × ωi,t − r

D
i,t ]
+

)]
(4i)

To facilitate modeling uncertainty, (4a)-(4c) can be replaced
in (4d)-(4f), and then they can be transferred as a penalty
cost presented in (4i). This penalty cost expresses that
the curtailment cost, in which ϑcri,t is the curtailment
coefficient, should be considered when more rescheduling
capacity is considered than the adjustment capacity (i.e.,
the predicted error is more than the real error). Reversely,
load shedding cost, in which ϑ shi,t is the load shedding
coefficient, should be applied to (4i) when the allocated
rescheduling capacity is less than the adjustment capacity
similar to [34] (i.e., the predicted error is less than the real
error).
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E. INTERNAL SETTINGS
The internal settings of prosumers in the connection point to
the network are presented here.

PTi,t = PREi,t + P
G
i,t + P

ES
i,t − P

D
i,t , ∀i, t (5a)

−Q
T
i,t ≤ Q

T
i,t ≤ Q

T
i,t , ∀i, t (5b)

Q
T
i,t

2
≤ STi,t

2
− PTi,t

2
, ∀i, t (5c)

Q
T
i,t ≤ P

T
i,t × tan(ϕi), ∀i, t (5d)

Q
T
i,t ≥ 0, ∀i, t (5e)

(5a) declares that the injected/absorbed active power to/from
the network is the summation of all resources, wherein PRESi,t
is the predicted output of renewables. In this paper, it is
assumed that prosumers are connected to the network through
an inverter. The inverter can provide reactive power based on
its capacity. (5a)-(5e) model this capacity [28].

F. COSTS MODELING
Buying and selling costs and the total cost are presented here.

CB/S
i,t,k

=

[
[PDi,t − P

G
i,t − P

RE
i,t − P

ES
i,t +

∑
j

PP2Pij,t ]
+
× λSt,k

− [PGi,t + P
RE
i,t + P

ES
i,t − P

D
i,t −

∑
j

PP2Pij,t ]
+
× λBt,k

]
(6a)

CB/S
i,t,k is the buying and selling costs including two terms

in (6a). The first term states that prosumers should buy
their demanded power based on selling prices of aggregators
when PDi,t − PGi,t − PREi,t − PESi,t +

∑
j P

P2P
ij,t is positive. The

positive valuemeans that prosumers need the power for which
they need to purchase. The second term declares that in the
case that this value is negative (i.e., prosumers have extra
power), they should sell their extra power based on the buying
prices of aggregators. It is worth mentioning that [†]+ means
max{0, †}, and a convex model for it is presented in [39].

CT
i,t,k = CG

i,t + C
ES
i,t + C

D
i + C

B/S
i,t,k + sup

P∈P̂V

EP[CP
i,t (r, ω)]

(6b)

The total cost of prosumers includes DG generation costs,
ES degradation costs, discomfort costs, buying/selling costs,
and the expected penalty cost on the worst distribution in the
Wasserstein ambiguity set.

IV. THE PROPOSED HYBRID TRI-LAYER TE FRAMEWORK
The proposed TE framework consists of three layers,
namely, NBG for modeling cooperation among prosumers,
evolutionary game (EG) for modeling competition among
prosumers, and non-cooperative game (NCG) for modeling
competition among aggregators and between aggregators and
the created cooperation.

A. FIRST LAYER: NASH BARGAINING GAME (NBG)
The NBG is utilized in the first layer to encourage prosumers
to P2P trading. To decrease the computational burden of
NBG, it can be exactly decomposed into two problems:
power scheduling problem and payment problem [28]. The
power scheduling problem is formulated in (7) to minimize
costs subject to the balance of P2P trading and coupling
injected/absorbed powers on the prosumer and network
sides [28]. PNetn,t and QNetn,t are active and reactive power
on the network side and 4Net is the conic DistFlow set,
presented in [40]. The optimization in (7) is over 2 =

{P,Q,Q, r, r, τ, ω}.

Min
2

C (⋆)
i =

∑
t,k

CT
i,t,k

s.t. (1)− (3), (4d)− (4i), (5), (6)

PP2Pij,t + P
P2P
ji,t = 0 : (µP2Pij,t ), ∀i, j, t

PTi,t =
∑
n∈�

PNetn,t : (µPi,t ), ∀i, t

QTi,t =
∑
n∈�

QNetn,t : (µQi,t ), ∀i, t

PNetn,t ,Q
Net
n,t ∈ 4

Net (7)

The payment problem is also can be formulated based
on (8), C̃ (⋆)

i |PP2P=0 is the value of the objective function (7)
without P2P trading. Ĉ (⋆)

i is also the value of the objective
function of (7) with P2P trading. 8ij means the P2P
trading fee between prosumers i and j. The constraint of
this problem is the balance of P2P trading fees among
prosumers.

Max
8

∏
i

(C̃ (⋆)
i |PP2P=0 − Ĉ

(⋆)
i −

∑
j

8ij)

s.t. 8ij +8ji = 0 (8)

B. SECOND LAYER: EVOLUTIONARY GAME (EG)
The EG is utilized here to model the competition among pro-
sumers to buy/sell their energy from/to the most affordable
aggregator. EG is utilized since prosumers behave similarly
to each other in their buying/selling to minimize their costs.
Hence, their behavior is like the behavior of a population. The
EG is developed to model the behavior of a population with
various strategies [41]. The basics of EG is presented in [42].
In EG, three factors are critical: the probability of tradingwith
k th aggregator (i.e., zht,k ), the average cost (i.e., C̄

T
t ), and the

replicator.
∑

k z
h
t,k = 1 is a crucial condition in EG. In EG,

The first step is to solve the problem (7) and then calculate
the selling power (i.e., PSt,k ) and the buying power (i.e., PBt,k )
of each aggregator based on (9a)-(9b), wherein ˇ[⋆] means the
determined optimal value of variables by solving (7).

PSt,k = zht,k ×
∑
i

[P̌Di,t − P̌
G
i,t − P̌

RE
i,t − P̌

ES
i,t +

∑
j

P̌P2Pij,t ]
+

(9a)
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PBt,k = zht,k ×
∑
i

[P̌Gi,t + P̌
RE
i,t + P̌

ES
i,t − P̌

D
i,t −

∑
j

P̌P2Pij,t ]
+

(9b)

Meanwhile, the capacity factors should be calculated as ιSt,k =
P̄St,k/P

S
t,k and ι

B
t,k = P̄Bt,k/P

B
t,k in which P̄St,k and P̄

B
t,k are the

buying and selling capacity of aggregator k . In the case that
these factors are greater or equal to one for k th aggregator,
it can satisfy buying and selling requests. Otherwise, The
trading capacity of prosumers with this aggregator should
be fixed on its capacity multiplied by its capacity factor,
followed by recalculating the total cost by prosumers. After
calculating the total cost by prosumers, the average cost can
be calculated using (10).

C̄T
t =

∑
k

zht,k ×
∑
i

ČT
i,t,k (10)

The replicator of EG by which the dynamic of EG can
be managed is modeled in (11). This replicator has a
stable dynamic, resulting in convergence to the Evolutionary
Nash Equilibrium (ENE) for which proof is presented in
Appendix A. It is worth noting that h is the iteration index.

∂zht,k
∂h
= zht,k × (

∑
i

ČT
i,t,k − C̄

T
t ) (11)

(11) can be simplified to (12), wherein ℓt is the modification
factor. The iterative process is stopped when the condition
in (13) is satisfied.

zh+1t,k = zht,k + ℓt × z
h
t,k × (

∑
i

ČT
i,t,k − C̄

T
t ) (12)

|

∑
i

ČT
i,t,k − C̄

T
t | < ε (13)

The proposed explanations are summarized in Algorithm 1.

C. THIRD LAYER: NON-COOPERATIVE GAME (NCG)
The utility function of aggregators can be modeled
as (14a)-(14b), which includes two items. The first term is the
cost and revenue of buying and selling power to prosumers
(i.e.,−λBt,k× P̄

B
t,k and λSt,k× P̄

S
t,k ). The second term is the risk

of selling the purchased power and buying the sold power in
the upper-level market. This risk is modeled as a quadratic
cost function meaning that the risk of selling P̄Bt,k /buying
P̄St,k to/from the wholesale market to cover prosumers using
historical data. aBt,k and b

B
t,k are risk coefficients of selling P̄

B
t,k

to the wholesale market, and aSt,k and b
S
t,k are risk coefficients

of buying P̄St,k from the market. The objective of aggregators
is to minimize costs and maximize revenue.

UB
t,k = −λBt,k × P̄

B
t,k − a

B
t,k × (P̄Bt,k )

2
+ bBt,k × P̄

B
t,k (14a)

US
t,k = λSt,k × P̄

S
t,k − a

S
t,k × (P̄St,k )

2
− bSt,k × P̄

S
t,k (14b)

Based on the objective function of aggregators, the update
method of prices and capacities can be extracted using
(15a)-(15d).

(λBt,k )
new
− (λBt,k )

old
= ℓBk × (ιBt,k − 1) (15a)

Algorithm 1 Pseudocode for the Proposed Evolutionary
Game
1: k = 1 and h = 1
2: while k ≤ K do
3: while (13) is not satisfied do
4: Solve Problem (7)→ (Algorithm 3)
5: Calculate PSt,k and P

B
t,k based on (9a)-(9b)

6: Calculate ιSt,k = P̄St,k/P
S
t,k and ι

B
t,k = P̄Bt,k/P

B
t,k

7: if ιSt,k ≥ 1 then
8: Keep CT

i,t,k
9: else
10: Multiply ιSt,k in P

S
t,k and recalculate CT

i,t,k
11: end if
12: if ιBt,k ≥ 1 then
13: Keep CT

i,t,k
14: else
15: Multiply ιBt,k in P

B
t,k and recalculate CT

i,t,k
16: end if
17: Calculate

∑
i
ČT
i,t,k and C̄

T
t based on (10)

18: Update zht,k based on (12)
19: k ← k + 1 and h← h+ 1
20: end while
21: end while

(λSt,k )
new
− (λSt,k )

old
= ℓSk × (ιSt,k − 1) (15b)

P̄Bt,k =
−(λBt,k )

new
+ bBt,k

2× aBt,k
(15c)

P̄St,k =
−(λSt,k )

new
+ bSt,k

2× aSt,k
(15d)

In (15a)-(15b), new prices are determined based on the
request of prosumers, which is a function of their cooperation.
In (15c)-(15d), new capacities are calculated based on prices
and risk factors. The stopping criteria for this iterative process
is the equality of the capacities to one, which means that the
ordered capacity from themarket and the traded capacity with
prosumers are equal for each aggregator.

|ιBt,k − 1| < ε, |ιSt,k − 1| < ε (16)

The designed NCG has a non-empty core and it converges
to the Nash equilibrium for which proof is presented in
Appendix B. The algorithm of the proposedNCG is presented
in Algorithm 2.

V. SCALE-INDEPENDENT DRO REFORMULATION BASED
ON WASSERSTEIN AMBIGUITY SET
Wasserstein ambiguity set can be defined as (17) to find
the infimum distance between historical samples (ω̂v) on an
empirical distribution (P̂V) and the random samples (ω) on
a worst-case distribution (P). P̂V also satisfies

∑
v ω̂v × ϒv,

wherein ϒv is Diac function.

W (P, P̂V) = inf
ψ

{ ∫
ψ

d(ω, ω̂v)9(dω, dω̂v)
}

(17)
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Algorithm 2 Pseudocode for NCG in the third layer

1: Publish initial λBt,k ,λ
S
t,k , P̄

B
t,k , P̄

S
t,k by Aggregators

2: while (16) is not satisfied do
3: Run Algorithm 1
4: Extract ιSt,k and ι

B
t,k

5: Update λBt,k and λSt,k based on (15a) and (15b)
6: Update P̄Bt,k and P̄

S
t,k based on (15c) and (15d)

7: Publish new λBt,k ,λ
S
t,k , P̄

B
t,k , P̄

S
t,k by Aggregators

8: end while
9: Solve problem (8) by the operator

The ambiguity set can be defined in (18) based on the radius
of the Wasserstein ball (ϵ).

ς := {P ∈ R|W (P, P̂V) ≤ ϵ} (18)

ϵ can be determined based on (19) if there is a set on ω as
||ω||∞ ≤ π . π̂ is also the average of historical data. χ is
known as the confidence factor [43]. To determineD, a useful
discussion can be found in [43].

ϵ = Min{π − π̂ , π + π̂ ,D×

√
2
V

ln
1

1− χ
} (19)

Finally, DRO reformulation using dual theory can be
developed in (20) [43].

sup
P∈P̂V

EP[CP
i,t (r, ω)] = inf

κ≥0
{κ × ϵ

+
1
V

V∑
v=1

sup
ω
(CP

i,t (r, ω)− κ × ||ω − ω̂v||)} (20)

The reformulation can be simplified by defining an auxiliary
variable (ϱv) in (21).

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. sup
ω
(CP

i,t (r, ω)− κ × ||ω − ω̂v||) ≤ ϱv (21)

(21) is further simplified in [34] considering this point that
the extreme points of (21) are boundaries of ω and ω̂v. Hence,
if we assume ω ≤ ω ≤ ω, (21) can be simplified as follows:

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. (CP
i,t (r, ω)− κ × ||ω − ω̂v||) ≤ ϱv; ∀v

(CP
i,t (r, ω)− κ × ||ω − ω̂v||) ≤ ϱv; ∀v

CP
i,t (r, ω̂v) ≤ ϱv; ∀v (22)

It is observable that (22) is intractable when a significant
amount of historical data is available. However, CP

i,t (r, ω) is
a piece-wise function (q is the index of pieces) for which the
following formulation can be proposed:∑

i,t

CP
i,t (r, ω) =

∑
i,t

∑
q

(yq(ϑi,t , τi,t )× ω + oq(ri,t )) (23)

Algorithm 3 Pseudocode for Adaptive Proximal ADMM
1: Keep decisions at the previous time as initialization
2: while 0pri > ε and 0dul > ε do
3: Update X using (26) by prosumers
4: Update ρ regarding P2P trading using (28) by

prosumers
5: Update µ regarding P2P trading using (29) by

prosumers
6: Update Y using (27) by the operator
7: Update ρ regarding network constraints using (28)

by the operator
8: Update µ regarding network constraints using (29)

by the operator
9: end while

Based on (23), (22) can be exactly reformulated to (24) for
which proof is presented in Appendix C.

inf
κ,ζ,ξ≥0

{κ × ϵ + ξ × ω − ζ × ω

+
1
V

V∑
v=1

(
∑
i,t

CP
i,t (r, ω̂v))+ (ξ − ζ )× ω̂v}

s.t. ||ξ − ζ − yq||∗ ≤ κ; ∀q (24)

(24) is a scale-independent DRO since the index of samples
is transferred from constraints to the objective.

VI. DISTRIBUTED-DECENTRALIZED ALGORITHM BASED
ON ADAPTIVE PROXIMAL ADMM
In this paper, the operator oversees network security con-
straints in a distributed fashion and prosumers can handle
their P2P trading using a decentralized manner. To keep the
generality, the compact format is utilized here. Problem (7)
is written in a compact format in (25), wherein 3 is the
feasibility set of (7).

Min
2∈3

C⋆(X )

s.t. X = Y : (µ) (25)

Using consensus ADMM the above problem can be refor-
mulated to the following problems in which proximal terms
( 1
2ρr ||X − X̌ r ||22 and 1

2ρr ||Y − Y̌ r ||22) are considered to

accelerate the convergence [44]. To update X, which is a set
of variables under prosumers’ control, the following problem
would be solved:

Min
2∈3

C⋆(X )+ µr × X +
ρr

2
||X − Y̌ r ||22 +

1
2ρr
||X − X̌ r ||22

(26)

To update Y, which is a set of variables under the operator’s
control, the following problem should be solved in which
4Net is the set of network constraints:

Min
2∈4Net

− µr × Y +
ρr

2
||X̌ r+1 − Y ||22 +

1
2ρr
||Y − Y̌ r ||22

(27)
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FIGURE 2. Average convergence results of the tri-layer TE framework for (a) probabilities (zh
t,k ), (b) prices (λB

t,k , λS
t,k ), (c) capacities (P̄B

t,k , P̄S
t,k ),

(d) average cost (C̄T
t ), (e) selling ratio (ιSt,k ), and (f) buying ratio (ιBt,k ).

To decrease the sensitivity of initialization and improve the
convergence speed, the penalty factor (ρ) has a dynamic
based on dual (0dul = |µr+1 − µr |) and primal (0pri =
|X̌ r+1−X̌ r |) residuals. This dynamic is presented below [10]:

ρr+1 =


ρr × e 0pri × l ≥ 0dul
ρr/e 0pri/l < 0dul

ρr otherwise

(28)

Finally, the control signals can be updated as follows:

µr+1 = µr + ρr+1 × (X̌ r+1 − Y̌ r+1) (29)

The stopping criteria for the proposed adaptive proximal
ADMM is reaching small values for dual and optimal
residuals. Algorithm 3 illustrates the iterative process and the
extensive format of these formulations is presented in [45].

TABLE 1. Input data for aggregators [27].

VII. PERFORMANCE EVALUATION AND DISCUSSIONS
In this section, a modified IEEE 15-bus system is utilized to
confirm the performance of the proposed TE framework and
the developed DRO for which data is elaborated in [45]. This
approach also considers two aggregators, with corresponding
data presented in Table 1. Also, a modified IEEE 123-bus
system is utilized to confirm the scalability of the proposed
framework for which data can be found in [45].

TABLE 2. Comparison between the extracted results of the proposed
tri-layer game-based TE and the literature.

A. CONVERGENCE OF THE PROPOSED TE FRAMEWORK
The convergence procedure of the proposed tri-layer game
is demonstrated in Fig. 2. The convergence procedure
includes the convergences of probabilities (Fig. 2 (a)), prices
(Fig.2 (b)), capacities (Fig. 2 (c)), the average cost (Fig. 2 (d)),
and capacity to the traded prosumption ratios (Fig. 2 (e) and
Fig. 2 (f)). It was assumed that the probability of trading
with two aggregators is equal to 0.5 in the first iteration.
However, the probability of trading with the first aggregator
increased after convergence since trading with this aggregator
is more affordable for prosumers. Moreover, it was observed
that the buying and selling prices of aggregators converged
to the same value, representing the competition between
aggregators and prosumers. In fact, it was observed that
aggregators adjusted their prices and the ordered capacities
from the upstream market to maximize their profit. The
proof of this statement is observable in the convergence
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of the ordered capacities to the traded capacities ratios,
which illustrates that aggregators try to create a balance
between the ordered capacities and the traded capacities. This
framework, hence, is significantly beneficial for aggregators,
while they should offer a constant price based on the proposed
framework in [28]. The calculations demonstrated that the
profits of aggregators in the proposed model are equal to
14,501.48 $ 12,191.41 $, while it is equal to 10,304.53 $ and
9,836.24 $ using [28] for the first and second aggregators,
respectively.

FIGURE 3. Total cost and P2P clearing price of prosumers with respect to
the price change of aggregators.

B. COMPARISON OF THE PROPOSED TE FRAMEWORK
In this subsection, the proposed tri-layer hybrid game is
compared to the four existing TE frameworks, namely,
optimizing the total preferences [9], [10] (Case I), non-
cooperative Stackalberg game [11], [12] (Case II), the
suggested hybrid bi-level [31] (Case III), and the suggested
cooperative game [28] (Case IV). Three factors are compared
here: the average P2P clearing price, the average offered
prices of aggregators, and the total cost of prosumers. It was
observed that the total cost of prosumers using the suggested
method in Case II is the highest. The reason is ignoring the
bargaining power of prosumers and increasing the prices of
aggregators considering the high demand for trading with
them. Also, the price inCase I is not affordable for prosumers
since the bargaining power is ignored, while the prices of
aggregators are assumed to be constant. It was observed
that the total cost decreased in Case III due to considering
the impact of bargaining power on the aggregators’ prices,
while the P2P trading is neglected. Using the cooperative
game in Case IV, the total cost is reduced significantly
due to considering P2P trading and providing a cooperative
scheme to determine its price by which P2P clearing
prices are more attractive for prosumers than the prices of

TABLE 3. A comparison between the proposed scale-independent DRO
and the exiting methods.

aggregators, resulting in a substantial cost reduction. This
even improved in the proposed TE framework by considering
both cooperative P2P trading and Non-cooperative price
adjustment of aggregators. The summary of these results
is presented in Table 2. The problem with the suggested
cooperative TE in [28] is not limited to the higher total
cost. It, indeed, can contribute to the power market for
aggregators. Fig. 3 illustrates this statement, where changing
the prices of aggregators significantly impacts the P2P
clearing price and the total cost of prosumers. Nevertheless,
aggregators cannot create market power in the proposed TE
since they have to adjust their prices to maximize their
profit.

C. COMPARISON OF THE DEVELOPED
SCALE-INDEPENDENT DRO
In this subsection, the performance of the proposed
scale-independent DRO is evaluated. To do so, the pro-
posed scale-independent DRO is compared to the suggested
stochastic programming (SP) in [1], the suggested robust
optimization (RO) in [33], and the suggested DRO in [34].
Sample extraction in this subsection is explained in [45] for
these methods based on Weibull distribution. According to
the achieved results, the calculated expected cost in SP is
less than its value in other methods. However, the calculated
cost based on SP is hazardous to be utilized by prosumers.
To illustrate this, the average and expected penalty costs
using SP are equal to 12.403 $ × 103 and 36.931 $ × 103.
This significant difference between these values declares that
prosumers are exposed to high penalty costs if they cannot
estimate an exact PDF from their uncertainties. On the other
hand, RO provides a robust solution with the highest cost.
This high cost is expected since the worst-case scenario is
considered in RO. Also, the solution procedure of RO is
time-independent, as the boundary of uncertainties is critical
in RO, not the number of samples. However, this time is
substantial (36.12 sec) compared to the running time of other
algorithms due to the iterative solution. In contrast to RO
and SP, DRO provides a point between them considering
the nature of samples and confidence factor [34]. Hence, the
calculated total cost by DRO is higher than SP and less than
RO. More specifically, the calculated total cost using DRO
is 8.9 % more than the calculated total cost by SP, and it is
14.4% less than the calculated total cost by RO.
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FIGURE 4. The total cost with respect to increasing samples.

FIGURE 5. A runtime comparison between available DRO and the
proposed scale-independent DRO.

Nonetheless, the performance of DRO significantly
depends on the number of samples. It was observed that
increasing the number of samples helps the Westrerien ambi-
guity set to improve the accuracy of estimation of the worst-
case PDF. For instance, increasing samples from 500 to 5,000
(ten times) decreases the total cost by 4.34%. However,
the suggested DRO in [34] is not capable of considering
a large number of samples. More specifically, there is no
output of the suggested DRO in [34] when the number
of samples is higher than 5,000 due to the memory error.
Nevertheless, the proposed DRO does not have this flaw
due to the independence of the number of samples. The
simulations illustrated that improving the number of samples
from 500 to 100,000 decreases the total cost by 7.05%.
Please note that there is a saturation in considering a high
number of samples. In other words, increasing the number of
samples cannot tangibly improve the accuracy after a specific
number. For example, the difference between the total costs
of 100,000 and 200,000 consideration is only 0.11%. Hence,
the performance of increasing samples should be tasted
by prosumers which is possible by the proposed scale-
independent DRO. The results and comparisons are presented
in Table 3 and the saturation is demonstrated in Fig. 4.
Moreover, the runtimes of the proposed scale-independent
DRO and the suggested DRO in [34] are depicted in Fig. 5.
Accordingly, it is observable that increasing the number of
samples does not have a significant impact on the proposed
scale-independent DRO since the dimensions of samples are
transferred to the objective. On the other hand, the runtime of

the suggested DRO in [34] highly changes when the number
of samples increases.

D. ANALYSIS OF THE PROPOSED ADAPTIVE PROXIMAL
ADMM

FIGURE 6. (a) The operator’s control signals using different algorithms for
prosumer 112 [45], (b) The P2P trading control signals using different
algorithms for transaction between prosumers 112 and 114 [45].

In this subsection, IEEE 123-bus is utilized to test
the proposed adaptive proximal ADMM. To evaluate the
performance of the proposed adaptive ADMM, it is compared
to regular ADMM [1], fast ADMM (F-ADMM) [38], and
adaptive ADMM (A-ADMM) [10]. One of the defects of
the regular ADMM is its slow convergence rate in large
systems as is visible in Table 4. However, this challenge
is appropriately tackled by F-ADMM. Nonetheless, there is
still a serious problem regarding both regular ADMM and
F-ADMM which is the sensitivity of their convergence and
accuracy to the value of the penalty factor as is observable
in Table 4. Hence, it is challenging for the operator to
optimize the value of the penalty factor in practice. Therefore,
A-ADMM is proposed to tackle the sensitivity challenge,
while the convergence issue remains a challenge. On the
other hand, the proposed adaptive proximal ADMM can
improve both sensitivity and convergence rate. It is faster than
F-ADMM since there are two-step updates of control signals
in F-ADMM to accelerate the algorithm, which contributes to
a higher computational burden in large systems. However, the
proposed adaptive proximal ADMMonly has one step update
and its proximal term accelerates the algorithm without
posing a computational burden. Besides, its accuracy is
similar to A-ADMM since it is equipped with the adaptive
penalty factor to remove the sensitivity on initialization and
improve convergence. An example of the operator’s control
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signals for satisfying system constraints and P2P trading
control signals for P2P transactions is presented in Fig. 6.

TABLE 4. A comparison among the proposed adaptive proximal ADMM
and the existing algorithms.

VIII. CONCLUSION
This paper proposed a tri-layer hybrid game-based transactive
energy (TE) framework, including a distributed-decentralized
optimization for satisfying network constraints and energy
trading in a peer-to-peer (P2P) fashion along with a
scale-independent distributional robust optimization (DRO)
for uncertainty management. It was evaluated that the
proposed tri-layer hybrid game-based TE framework is
more effective than other existing frameworks since the
cooperation among prosumers for P2P energy trading is
considered using Nash Bargaining Game (first layer), the
competition among prosumers to trade energy with the most
affordable aggregator is considered using Evolutionary Game
(second layer), and the competitions among aggregators and
between aggregators and prosumers are contemplated using
a non-cooperative game (third layer). This demonstrated that
utilizing the proposed hybrid tri-layer game-based TE not
only can improve the profit of aggregators and reduce the
costs of prosumers but also can avoid the market power
of aggregators for controlling P2P transactions in local
markets. Besides, an adaptive proximal alternative direction
method of multipliers (ADMM) was proposed, which has a
higher convergence rate and accuracy compared to available
algorithms. A scale-independent DRO is also developed
for this problem to remove the limitations of utilizing all
potential data. The outcomes of this research are highlighted
below:

1) The proposed tri-layer TE framework reduced the total
costs of prosumers by 11% and 2.85% compared to the
total cost in non-cooperative TE and cooperative TE,
respectively.

2) The proposed adaptive proximal ADMM is 52% faster
than the regular ADMM, while its accuracy is higher
and its sensitivity to the penalty factor is lower.

3) Considering a huge number of historical data helps to
decrease the total cost by increasing the accuracy of
estimating worst-case distribution, which is possible by
the developed scale-independent DRO.

APPENDIX A
CONVERGENCE PROOF OF EVOLUTIONARY GAME
Consider an error function as eht,k = z∗t,k − z

h
t,k , wherein z

∗
t,k

is the final value of probability. Accordingly, the Lyapunov
function can be defined as 9(t) = (eht,k )

2/2 [46]. According
to the Lyapunov function, the EG problem converges to EGE
if the Lyapunov function satisfies three conditions [47]: 1)
9(t) is positive, 2) 9̇(t) is negative, and 3) 9(t) → ∞ if
eht,k → ∞. Based on the Lyapunov function, the first and
third conditions can be simply satisfied. Hence, we need to
prove the third condition as follows:

9̇(t) =
∂(eht,k )

2/2

∂t
= eht,k ×

∂eht,k
∂t
= −eht,k ×

∂zht,k
∂t

= −zht,k × (z∗t,k − z
h
t,k )(

∑
i

ČT
i,t,k − C̄

T
t )

= −zht,k × (z∗t,k − z
h
t,k )(

∑
i

ČT
i,t,k −

∑
k

zht,k ×
∑
i

ČT
i,t,k )

(30)

For affordable aggregators, we always have z∗t,k ≥ z
h
t,k . Also,

the second term of the above equation for affordable aggre-
gators is always positive. Hence, 9̇(t) is negative. Hence,
the replicator has convergence for the affordable aggregators.
Thus, the replicator has also convergence for non-affordable
aggregators since their convergence completely depends
on the convergence of other aggregators. As a result, the
proposed replicator converges to the EGE. ■

APPENDIX B
PROOF OF NONEMPTY CORE OF NON-COOPERATIVE
GAME
A non-cooperative game has a nonempty core and Nash
equilibrium if it has the following conditions [48]: 1) The
player set is finite. 2) The strategy sets are bounded and
convex. 3) The profit functions/ cost functions are quasi-
concave.
Here, it is clear that the first two conditions are valid

in this problem since the feasibility area is convex and the
number of aggregators is pre-defined for the algorithm. Thus,
we only need to prove the third condition. For simplicity,
US
t,k is chosen to prove that it is quasi-concave throughout

the feasible strategies. It is worth noting that the same proof
can be inspired forUB

t,k . When ιSt,k is less or equal to 1 (i.e., all
available capacity has been sold and demand is greater than
the available capacity), US

t,k can be modified as follows:

US
t,k =

(λSt,k − b
S
t,k )

2

4aSt,k
(31)

dUS
t,k

dλSt,k
then, can be calculated as follows:

dUS
t,k

dλSt,k
=

λSt,k − b
S
t,k

2aSt,k
(32)
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Since theUS
t,k at least should be zero, the following statement

is true: λSt,k ≥ b
S
t,k . Therefore,

dUS
t,k

dλSt,k
is positive in this case.

On the other hand, if ιSt,k is greater or equal to 1 (i.e.,

capacity is greater than the demand),
dUS

t,k

dλSt,k
can be calculated

as follows after some simplifications with DSt,k demand level
for k th aggregator:

dUS
t,k

dλSt,k
= λSt,k

dDSt,k
dλSt,k

− bSt,k + D
S
t,k − P̄

S
t,k (33)

From (6a), it is clear that the value ofDSt,k is a non-increasing

with respect to λSt,k . This means
dDSt,k
dλSt,k

< 0. Also, we know

thatDSt,k ≤ P̄
S
t,k . Therefore, we can say

dUS
t,k

dλSt,k
< 0. As a result,

US
t,k is quasi-concave and the same proof can be proposed

for UB
t,k . Thus, the proposed non-cooperative game has a

nonempty core and Nash Equilibrium. ■

APPENDIX C
PROOF OF SCALE-INDEPENDENT DRO REFORMULATION
In the first step, the proof of reformulation is proposed. (6b)
can be reformulated as [49],

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

sup
ω
{CP

i,t (r, ω)− κ × ||ω − ω̂v||} (34)

The above reformulation can be expressed as follows:

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. sup
ω
{CP

i,t (r, ω)− κ × ||ω − ω̂v||} ≤ ϱv (35)

The above reformulation also can be expressed as
follows [49]:

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. sup
ω
{CP

i,t (r, ω)q − max
||zv,q||≤κ

zv,q × (ω − ω̂v)} ≤ ϱv (36)

where CP
i,t (r, ω)q can be defined as

∑
i,t
CP
i,t (r, ω) =∑

i,t

∑
q
(yq(ϑi,t , τi,t ) × ω + oq(ri,t )). The upper bound refor-

mulation for the above reformulation can be defined as
follows [50]:

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. sup
ω
{CP

i,t (r, ω)q − max
||zq||≤κ

zq × (ω − ω̂v)} ≤ ϱv (37)

By applying conjugation of CP
i,t (r, ω), the above upper level

can be re-expressed as follows [49]:

inf
κ≥0

κ × ϵ +
1
V

V∑
v=1

ϱv

s.t. [−CP
i,t (r, ω)q]

∗(zq − wq)+2(wq)− zq × ω̂v ≤ ϱv
(38)

Considering the above reformulation, we can say that,

[−CP
i,t (r, ω)q]

∗(zq − wq)

=

{
0 zq − wq = −yq
∞ otherwise

(39)

2(wq) =

 sup
ω

wq × ω

s.t. ω ≤ ω ≤ ω
(40)

After writing the dual form of (40), which is the definition of
the support function [49], it can be presented as follows:

2(wq) =

 sup
ξ,ζ

ξ × ω − ζ × ω

s.t. ξ − ζ = wq
(41)

After replacing (41) and (39) in (38), we can achieve:

inf
κ,ζ,ξ≥0

{κ × ϵ + ξ × ω − ζ × ω

+
1
V

V∑
v=1

(
∑
i,t

CP
i,t (r, ω̂v))+ (ξ − ζ )× ω̂v}

s.t. ||ξ − ζ − yq||∗ ≤ κ; ∀q (42)

Please note that ||.||∗ is dual norm. Now, we need to prove
that the solution of the upper band reformulation is equal to
the solution of (37) to illustrate the exactness. Considering
this point that the maximum value of ϵ is less or equal to
{π − π̂ , π + π̂} based on the defined ambiguity set in (19)
in the manuscript, there is a proof in [51] to demonstrate the
result of (42) for zv,q is −yq, which is independent to v. The
solution of (37) for zv,q is −yq [51]. Hence, the solution of
upper-bound reformulation is exact. ■
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