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ABSTRACT Efficient data movement between nodes in a data center is essential for optimal performance
of distributed workloads. With advancements in computing interconnection and memory, new opportunities
have emerged.We propose a novel inter-node architecture and protocol called FlexibleMemoryUnits (FMU)
that uses optically disaggregated memory. FMUs can be dynamically allocated to different nodes during
runtime using optical switches. The primary objective of FMUs is to use the disaggregated memory as
temporary buffers during inter-node communication. We have implemented Simplecomm, an open-source
simulator, to evaluate real MPI benchmarks using FMU. Our evaluation demonstrates significant speedups
of up to 5.18× in communication-bound applications and 1.22× on computing-intensive applications,
compared to a 100 Gbps InfiniBand interconnect.

INDEX TERMS Inter-node message passing, MPI, message passing, optical interconnection, photonic,
disaggregated memory.

I. INTRODUCTION
Memory is a complex resource to manage in a data center.
For example, users might not know exactly the memory
requirement for a job, making memory overprovision a
common practice [1], [2]. Furthermore, the memory space
available to a process is limited to a single node’s memory
space, as the process cannot require memory space that
resides on other nodes. Memory disaggregation [3] appears
as a solution to flexible allocation of memory resources in
the cluster. Optical interconnects are the leading candidate
for the implementation of scalable memory disaggregation
in data centers due to their inherent high bandwidth and
low energy consumption [4], [5], [6], [7]. Some memory
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disaggregation works proposed the creation of a memory
pool that is accessible by multiple nodes [8], [9], [10],
[11], [12], [13]. Such nodes can request additional memory
from this pool to increase their memory space and reduce
overprovisioning.

Message Passing Interface (MPI) [14] is a standard
programming model that simplifies data sharing between
inter-node processes and increases software portability. Inter-
node communication performance on a computer cluster
directly impacts the execution of distributed programs
because a program can have a relevant portion of its execution
time spent on communication, and therefore several proposals
aim to reduce this communication overhead. Previous
works [15], [16], [17], [18], [19], [20], [21] considered
the conventional architecture of a computer cluster where
the Network Interface Card (NIC) is the only option
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FIGURE 1. Inter-node communication through FMU: TXnode writes data
on the FMU, that is read afterwards by the RXnode.

to perform inter-node communication. The primary and
foremost solution is to use RDMA [15], [16] while increasing
bandwidth and reducing communication latency from net-
work specifications, such as Ethernet and InfiniBand. Other
MPI-related solutions include refining theMPI standard [17],
improving the communication algorithms for better overlap
of concurrent communications [18], developing specific
accelerators for it [20], [22], or even relying on a hybrid
approach (e.g., MPI+OpenMP [19]) aiming to improve the
performance of intra-node communication and reduce the
occurrences of inter-node communication.

Our goal in this work is to accelerate MPI inter-node
communication by utilizing an optically connected memory
pool as a shared memory space among nodes. We divide
the memory pool into units, referred to as Flexible Memory
Units (FMUs), and use FMUs as an intermediate buffer
in the inter-node communication process. We named this
novel inter-node communication scheme the FMU protocol.
Figure 1 illustrates the operation of our novel method, which
consists of two steps. First, the node that wants to send data
(TXnode) writes them in the FMU. Notice that the FMU selec-
tion is done through an optically reconfigurable path (see
Section III-C). Second, the target node (RXnode) reads it from
the FMU, completing the inter-node communication process.
During its design, we identified three main challenges in
using the FMU protocol.
Challenge 1: For efficient memory access, access to

FMU must have a performance similar to that of the
DDR protocol. The main memory channel with the DDR
interface performs better than the network protocols. Figure 2
compares DDR channels and InfiniBand, where the peak
bandwidth performance from the DDR interface is at least
twice the performance of an InfiniBand link. FMU accesses
are made through Optically Connected Memory (OCM) [6],
which is a custom optical point-to-point interconnect.

As depicted in Figure 2, OCM has two main char-
acteristics: i) achieves Tbps per optical link (similar
to DDR channels) outperforming commercial intercon-
nects such as InfiniBand, and ii) enables interconnection
in the order of meters, an order of magnitude higher

FIGURE 2. Bandwidth comparison between DDR [23], [24], [25],
Infiniband [26] and OCM [6].

FIGURE 3. NPB benchmark characterization with class D input. (Left)
Exec. time. (Right) Speedup comparing intra-node and inter-node
execution using 4 ranks and FDR Infiniband.

(meters, rack-to-rack) than traditional memory channels (few
centimeters, on board).
Challenge 2: We need to evaluate the FMU protocol on

the execution of point-to-point communication and collective
operations, as both are presented in MPI programs [27], [28].
Additionally, we needed to consider the computation and
communication overlap on these kinds of workloads. Figure 3
(left) shows the total execution time of eightMPI applications
from the NPB benchmark with the class D input. We observe
that the applications spent 39%on average in communication.
The highest communication times are 50% from FT and
50% from EP, both with collective routines. The lowest
communication time is 25% from LU using point-to-point
directives.
Challenge 3: The performance gap between the inter-node

and intra-node execution caused by the communication
overhead can increase by the optical devices overhead.
Figure 3 (right) presents the speedup of six MPI applications
from the NPB benchmark. Intra-node execution used four
ranks in the same node, while inter-node used four ranks
on four different nodes. The baseline is a single-rank
execution on a single node. We observe that the inter-node
communication causes a slowdown. In addition, we need to
consider the intrinsic overhead of the optical devices (such as
electro-optical conversion). This raises the fact that the FMU
protocol requires low switching times (up to microseconds)
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and high port number capacity, allowing the nodes to connect
to a higher number of FMUs.

Our novel optical FMU architecture aims to reduce the
performance gap between the MPI intra- and inter-node
communication. We focus on improving the inter-node
scenario using reconfigurable optical interconnects. This
work makes the following major contributions:

• We introduce the FMU architecture and its protocol.
To our knowledge, this is the first work to use opti-
cally disaggregated memory as a buffer for inter-node
message passing.

• Our FMU protocol allows the MPI runtime to select
between conventional network interconnects (i.e.,
Infiniband) for small messages (in KB order) or our
FMU interconnect for large messages (in MB order).

• We implemented the FMU timing and system model on
our in-house simulator SimpleComm to study MPI sys-
tems with real workloads. To our knowledge, no open-
source MPI simulator incorporates models of optically
disaggregated memory to buffer MPI messages. Our
simulator is available as open-source in [29].

• We extensively evaluated and compared our FMU archi-
tecture with current 100 Gbps Infiniband interconnects.
FMU can achieve a speedup of 3× on messages larger
than 8 MB. Communication-bound workloads show a
speedup up to 5.18×; while workloads that present a
relevant computation part show speedup up to 1.22×.

This paper is organized into nine main sections. Section II
presents fundamental concepts on memory disaggregation,
photonics, and MPI. Section III overviews the FMU
architecture, while Section IV presents its timing model.
On Section V we present details of our in-house simulator
SimpleComm. On Section VI we present the experimental
setup, and on Section VII we evaluate a cluster with
our proposed architecture showing our results. Finally,
in Section VIII we analyze related works, and on Section IX
we discuss our final remarks.

II. BACKGROUND
This section briefly introduces three background topics for
our work: memory disaggregation, optical switching, and
MPI protocols. For further information on these topics, refer
to [30], [31], and [32].

A. MEMORY DISAGGREGATION
Main memory disaggregation allows a computer node to
obtain more memory space than initially assigned [3]. This
is performed with two goals: 1) increasing the amount
of memory that a node can use, as it can access mem-
ory modules that are placed over greater distances, and
2) improving the usage of the overall memory space of the
cluster, claiming external memory as much as needed by its
workload, reducing over-provisioning of memory space. Two
distinct architectures achieve these goals [3]:

TABLE 1. Optical switch latency latency from state-of-the-art devices.

1) SPLIT
A split architecture [8], [9], [13], [33], [34], [35], [36] allows
a complete software solution to implement disaggregated
memory using network interfaces (NIC). Memory disaggre-
gation can be achieved using conventional electrical devices,
e.g., PCIe interfaces with RDMA calls or custom protocols
for resource disaggregation.

2) POOL
It aggregates memory in an external pool [8], [9], [11], which
is connected to the computing nodes as an extra memory
space. Recent work [6], [37], [38] shows photonics to be
an appealing solution for attaching disaggregated memory
directly to the memory channel. Integrated electronic and
photonic circuits can provide optical interconnection in the
memory channel. Furthermore, memory allocation becomes
a solvable problem using reconfigurable optical circuit
switches.

Thiswork focuses on a pool architecture, where a memory
pool is organized as a shared resource for the computer cluster
(please refer to Section III-B).

B. OPTICAL SWITCHES FOR DATA CENTERS
Optical switch fabrics emerge as the basic block for
next-generation interconnects in data centers. Optical switch
fabrics have three main characteristics: i) exhibit better
scalability compared to electronic switch fabrics while having
a high port number [39], [40], ii) provide high bandwidth and
low energy consumption [41], and iii) are compatible with
CMOS while using photonic PDKs (Process Desing Kits)
[42]. Nanosecond operation has already been demonstrated
with photonic switches [43], [44], [45], [46], [47], [48].
However, reducing its system-level latencies remains a
challenge. There are two main overhead latencies: i) the
recovery and synchronization time whenever a lightpath is
established because of the circuit switching nature of the
optical links and ii) electro-optic devices driving and control
related overheads to enable routing.

In general, the latencies of the optical switch for data
communication are of the order of µs [43], [48], [49], [50],
[51], [52], as shown in Table 1.
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C. MESSAGE PASSING INTERFACE
The Message Passing Interface (MPI) standard [14] simpli-
fies the development of parallel programs using distributed
memory. An MPI implementation, such as MPICH [53]
or OpenMPI [54], is required to code and execute MPI
programs. These implementations have runtime processes
that run alongside application processes, known as process
manager (PM) [55]. PM provides inter-node communication
schemes to the MPI programs. Each computing node has a
running instance of the PM, which communicates to other
nodes to coordinate and perform data transfers between
processes.

Two key information required by the PM are: i) message
source, provided by the process sending data, and ii) desti-
nation address where the data should be written, provided by
the receiving process.

Additional information that needs to be equal is also sent
from both processes, such as a signature and a tag. It enables
the PM to compare the information from a sending (TXnode)
to a receiving request (RXnode), a.k.a. tag matching [56],
[57]. After performing the tag matching, the PM has all
the information necessary to complete the message-passing
process.

Inter-node communication with MPI can use two
protocols [58]:

1) EAGER
Figure 4a presents the eager protocol. First, it uses previously
allocated buffers 1b to allow TXnode to transfer the message
1a as soon as requested by the process. Afterward, RXnode
performs the tag matching 2 , copying the data to the
process’s local buffer.

2) RENDEZVOUS
Figure 4b shows the rendezvous protocol. After RXnode
receives the tag 1 , it performs the tag matching 2a . Before
transferring the message 3 , TXnode receives a confirmation
from the RXnode PM 2b .

The eager protocol has an advantage over the rendezvous
because the message transfer between nodes starts before the
tag matching and can conclude earlier, potentially reducing
each process’s time spent on communication. Despite this
advantage, the eager protocol is limited to transferring
messages that can fit the buffer size provided by the PM.

A defined message size threshold permits selecting the
protocol. The eager protocol is used for messages smaller
than the buffer, whereas the rendezvous protocol is chosen
for larger messages. This motivates us to develop a new MPI
protocol that allows for early transfers of large messages (see
Section III-A), even before the tag matching.

III. FLEXIBLE MEMORY UNIT ARCHITECTURE
In this section, we present our novel inter-node reconfigurable
architecture. The main goal is to use the memory space
of a disaggregated memory pool as a dedicated buffer for

FIGURE 4. Inter-node message passing protocols: Eager (a), Rendezvous
(b) and FMU (c).

storing MPI messages. We elaborate on the arbitration,
mapping methods and timing model for reconfigurable
memory channels.

A. THE FMU PROTOCOL
FMU protocol consists of two sub-protocols: read and write.
In the write protocol, TXnode transfers the message to the
memory pool. In the read protocol, the memory pool transfers
the message to the RXnode. Figure 4c shows that all actions
performed by TXnode occur during writing, while all actions
performed by RXnode occur during reading.
On the occurrence of a sending call, TXnode sends the tag

for RXnode through the network 1a , similar to the rendezvous
protocol. At the same time, TXnode sends the data to the
memory pool 1c and ends its participation in the transfer.
On a receiving call, RXnode requires tag matching 2a . Then
RXnode can only initiate the reading request on the memory
pool once TXnode has already issued the request to write the
message on it. After the tag matching, RXnode begins reading
the message from the memory pool 3 , completing the
inter-node communication process. Note that in conventional
protocols and FMU, a local buffer 1b on RXnode is used to
store the tag.

B. ARCHITECTURE OVERVIEW
Figure 5 presents an overview of our FMU architecture
within a cluster. It has a set of N computing nodes. Each
node (left) has a local memory, a Network Interface Card
(NIC), and an FMU controller (CFMU) 1 . It can access the
FMU memory pool (right) to use it as an additional memory
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FIGURE 5. Overview of our computer cluster, where we have the nodes connected to a memory pool through an optical interconnection,
which is managed using an Optical Circuit Switch (OCS).

FIGURE 6. FMU access arbitration provided by the OCS, composed of the
FMU mapping schemes and the accessing queues.

space. FMU relies on the memory disaggregation solution
proposed in [6], which uses a silicon photonic link to establish
memory disaggregation at the rack distance (on the order of
meters). This optical interconnect has endpoints to translate
the information from the optical domain to the electrical
domain and vice versa. Over this optical interconnect, we add
an optical circuit switch (OCS) 2 to enable reallocation in the
memory pool. In addition to switching, OCS also performs a
mapping 2a and arbitration 2b mechanism (Section III-C).
Mapping consists in choosing which FMUwill be used on the
protocol, while arbitration controls the access to the FMUs.
The memory pool 3 is a set of M FMU single units. A single
FMU consists of an array of DIMMs in lock-step operation.
Figure 5 (right) illustrates an array of two DIMMs that use
a 64b interface each, resulting in a channel of 128b. There
is extra hardware for the transceiver and its glue logic to
modulate (transmit) and demodulate (receive) data, placed
inside the CFMU, OCS, and FMU single units.

C. FMU ACCESS ARBITRATION AND MAPPING
Figure 5 2 depicts an optical circuit switch (OCS) which has
two main functions: 1) enables reconfiguration and 2) acts
as a mapper and arbiter to access the FMUs. Each FMU can
be connected only to a single CFMU, and vice versa. OCS
arbitration works using a FIFO queue per FMU. The CFMU
interacts with the OCS using two commands: 1) FMUacquire
to request access to an FMU and 2) FMUrelease to release

the FMU previously allocated. If the OCS controller receives
an FMUacquire, it pushes the request into the queue of the
requested FMU. Each time a FMUrelease is issued, the OCS
pops the queue of the FMU allocated to the CFMU.

OCS controller chooses one FMU based on our mapping
policies if FMUacquire does not specify one. Figure 6 shows
the OCS controller’s steps on an incoming FMUacquire,
detailing the mapping scheme and its interaction with the
FMU queues. As shown in Figure 5, the memory pool is
a set of M FMUs. FMU mapping process ( 1 ) selects an
index i from the set. It has two consecutive selection methods:
1) try idle and 2) among all. First, the OCS controller
( 1a ) evaluates a mapping scheme based only on idle FMUs
in which the accessing queue is empty and no CFMU is
connected. Second, if no index is found because there is no
empty queue ( 1b ), then the index is selected from the entire
set of M FMUs.

The node that sends the data selects the FMU during
inter-node communication. To choose the FMU, the sending
node (TXnode) issues an FMUacquire to obtain an FMU index.
On the other hand, when the receiving node (RXnode) issues
an FMUacquire, it returns the previous index value.

TRY IDLE: this FMU index selection method has five
algorithms.

• NONE: returns no index i and goes to AMONG ALL.
• RANDOM: selects and returns a random index i.
• SIMPLE: chooses the lowest index i;
• LEAST_S: chooses the index of the least used FMU
accounting previous send requests. The memory pool
contains M FMUs represented by an array of M , where
each position holds a counter of the amount of data
written into an FMU (in bytes). Each position i in the
array represents an FMU, and the size of the message
increments the counter. Then, the OCS controller selects
the FMU with the lowest counter. If two or more
positions have the same value, the controller selects the
one with the lowest index.
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FIGURE 7. FMU content (top), composed of two data structures: Qheader
and Qdata, and the protocols steps (bottom) followed by the nodes for
interacting with these structures.

• LEAST_SR: chooses the index of the least used FMU
accounting previous send and receive requests. Similarly
to LEAST_S, the message size increments the FMU
counter with send requests. However, it decreases with
the receiving requests.

AMONG ALL: This selection method has five algorithms
including RANDOM, LEAST_S and LEAST_SR, which are
the same as in the TRY IDLE selection method.

• STATIC: chooses based on the index of RXnode, using
FMUindex = r (mod M ), where r is the index of RXnode
and M is the total number of FMUs;

• INCREMENTAL: chooses based on a wrapping global
counter, which initiates at zero and increments on each
send request. We use the formula FMUindex = gi
(mod M ), where gi is the global counter and M is the
total number of FMUs;

We evaluated our mapping methods in Section VI-D
to observe its impact on protocol contention and system
performance.

D. FMU READ AND WRITE PROTOCOLS
Figure 7 (top) presents the content of an FMU, and it consists
of two circular queues: (1) Qdata, which is used to store the
content of a message (m), and (2) Qheader , which is used as
an index structure to store the tag and a pointer (t) to the
address of the message content stored on Qdata. Both queues
are similar to the circular queue of pending messages used
for buffered sends in the MPI standard, e.g., when using
MPI_Buffer_attach.

The FMU address space is a set of contiguous addresses
limited by physical capacity. This memory space limits the
maximum size of both Qheader and Qdata. Both queues have
the same number of messages and tags, namely m0,1,...,n and
t0,1,...,n, respectively. However, while ti entries in Qheader
have the same size, mi in Qdata can be of varying sizes.
We define the size of Qdata and Qheader experimentally
under different workloads; please refer to our results in
Section VII-B.

FIGURE 8. Timing diagram showing the interaction between CFMU, OCS
and FMU.

Figure 7 (bottom) depicts the FMU protocol and its two
main parts: i) read protocol for the RXnode, and ii) write
protocol for the TXnode. It shows that the main steps to
read or write a message or tag on an FMU are performed
between FMUacquire and FMUrelease. FMU protocol supports
coalescing for read and write operations, allowing multiple
message transfers simultaneously when using non-blocking
operations.

IV. TIMING MODEL FOR THE FMU PROTOCOL
In this section, we defined a timingmodel to identify latencies
that can impact the overall FMU performance. The model is
based on two main definitions: the access time, Taccess (from
TXnode to FMU) and the transfer time, Ttransfer (from TXnode
to FMU and to RXnode).

A. FMU ACCESS TIME, TACCESS
The FMU access process starts with an FMUacquire command
issued by the node, and ends with an FMUrelease. The process
is depicted in Figure 8. For better understanding, we divide it
into three steps:
Step 1 : The node sends an FMUacquire to the OCS. The

OCS takes a total time of Tocm to acknowledge this request.
Tocm represents the delay due to the disaggregating solution.
Every interaction between CFMU and the OCS, or between
CFMU and an FMU delays a system by Tocm. Thus, the first
step has a total delay time of Tacquire = 2Tocm+Tmap+Tswitch,
where Tmap is the time the OCS takes to select an FMU (by
executing an FMUmapping scheme) and to place the request
in the FMU queue, Tqueue is the time the request stays in the
queue, and Tswitch is the switching time. After the switch has
been completed, OCS informs the node about it. The node
acknowledges this switch after Tocm seconds.
Step 2 : Here the local memory of the node and

the selected FMU exchange data. Each interaction has a
disaggregation delay of Tocm and employs Tcopy to complete.
We define Tcopy =

S
BW , where S is the data exchanged in

bytes and BW is the real bandwidth of the memory channel
(in bytes per second).
Step 3 :After data exchange is completed, the node issues

an FMUrelease to the OCS, removes the request from the front
of the queue, and terminates the interaction. The OCS takes
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FIGURE 9. FMU transfer time from the TXnode, RXnode and during the
complete transfer process.

Tocm to acknowledge FMUrelease and terminates the access
process.

The FMU access process has a total access time Taccess
defined by Equation 1. We can simplify this equation by
neglecting some latencies. Namely, Tocm and Tmap are on
the order of a few nanoseconds, with calculated Tocm as low
as 3.2 ns [6], and Tmap depends only on a fast non-iterative
algorithm (please refer to Section III-C). Additionally, our
experiments let us consider Tswitch in the order of a few
microseconds, and Tqueue a variable determined by the
number of requests on the accessing queue. Thus, Taccess can
be reduced to Equation 2. Note that the realized bandwidth
BW , the message size, S and Tswitch are parameters that
can be obtained by analyzing the memory channel, the MPI
operation, and the OCS. Furthermore, Tqueue represents the
contention during execution time of the FMU protocol.

Taccess = 4 × Tocm + Tmap + Tqueue
+ Tswitch + Tcopy (1)

Taccess ≈ Tqueue + Tswitch + Tcopy

≈ Tqueue + Tswitch +
S
BW

(2)

B. FMU TRANSFER TIME, TTRANSFER
Ttransfer is the total transfer time during the FMU protocol
execution. We calculate three cases of Ttransfer according to
Figure 9: a the transmission node, TXnode, b the reception
node, RXnode, and c the whole transference process.
The write protocol a starts with an MPI_Send, starting

an FMUacquire process that completes after Taccess seconds.
Thus, in TXnode, Ttransfer = Taccess (Equation 3). Note that
this behavior is similar to the eager protocol.

Ttransfer (TXnode) = Taccess (3)

The read protocol b starts with a receiving call,
MPI_Recv, which issues an FMUacquire. Ttransfer in the

reading phase can take two values. If the reading phase starts
after the end of a writing phase, RXnode issues FMUacquire
immediately, so Ttransfer = Taccess. However, if the read
protocol starts before the end of a write protocol, there is
an additional delay difference between the end of the write
phase, Wend , and the start of the receiving phase, Rstart , thus
Ttransfer = (Wend − Rstart )+ Taccess. Note that RXnode is able
to issue FMUacquire before Wend , however, the request will
remain in the accessing queue at least until the end of the
write protocol (Figure 9c).

Ttransfer (RXnode)

=

{
Taccess, Rstart ≥ Wend

(Wend − Rstart ) + Taccess, Rstart < Wend
(4)

Lastly, the complete transfer process c begins when the
sending call is issued, which starts the writing phase. The
transfer is completed when the message is located in local
memory RXnode, which occurs at the end of the reading phase,
after Rend . Hence, the delay in the whole transfer process can
be calculated by Ttransfer = Rend −Wstart .

The three definitions of Ttransfer provide correct timing but
use variables whose values are only known during execution.
To create an analytical model for the transmission time of
a message of size S, we considered the minimum time that
Ttransfer can take. Equation 5 is a simplified model that
uses only interconnection characteristics and message size.
It highlights that the message is transmitted twice in the FMU
protocol, once from TXnode to FMU and again from FMU to
RXnode.

Ttransfer(simplified) = Taccess(TXnode) + Taccess(RXnode)

= Tswitch +
S
BW

+ Tswitch +
S
BW

= 2 × (Tswitch +
S
BW

) (5)

C. FMU COMPARED TO PACKET-SWITCHED NETWORKS
High-performance computing systems mainly use
packet-switched networks with interconnects like InfiniBand
and Ethernet. Equation 6 shows a simplified communication
timing model, T̂transfer , for a packet-switched network, where
TL is the minimum time to transmit a single package, S is the
message size and BW is the maximum bandwidth achieved
by the interconnect.

T̂transfer = Tpacket−switched = TL +
S
BW

(6)

FMU and packet-switched networks have three key
differences, which are outlined in Table 2. In packet-switched
networks, the bottleneck is the NIC to NIC performance,
while in FMU, it is the DDR interface of the memory channel.
Tqueue is affected by the contention that occurs before
a node obtains access to the FMU. Additionally, packet-
switched networks share the communication channel among
all nodes, whereas FMU offers an exclusive channel. In terms
of available protocols, packet-switched networks use eager
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TABLE 2. Summary of characteristics from packet-switched networks and
FMU for inter-node message passing.

or rendezvous protocols, while FMU uses a two-protocol
scheme that benefits larger messages similar to the eager
protocol.

Equation 6 models the packet-switched network transfer,
while Equation 5 models the FMU protocol transfer time.
Although both models have components representing latency
and bandwidth, the FMU protocol requires transmitting
the message twice. Therefore, the memory channel should
provide a bandwidth that is at least twice as high as that of
the packet-switched network to maintain throughput. Note
that in the FMU protocol, each phase of the transmission can
utilize the full bandwidth of the memory channel, as shown
in Equation 5.

TL +
Ŝ
BW

= 2 × Tswitch + 2 ×
Ŝ
BW

(7)

The FMU and the packet-switched network protocols
can be used to transfer messages based on their size, S.
Comparing the two transfer timing models helps to decide
which method provides the lowest transfer time. The FMU
protocol is associated with the higher bandwidth provided
by the memory channel and the memory space provided
by the FMU, so it is more suited for transferring large
messages. However, smaller messages may have to rely on
the packet-switched network. The pivot value, denoted by Ŝ,
represents the threshold value at which the transfer time on
both approaches is equal, as given by Equation 7. This hybrid
approach enables automatic use of the FMUprotocol, without
prior knowledge of distributed workloads.

V. FMU SIMULATOR
We developed SimpleComm, a trace-oriented MPI simula-
tor that calculates the communication contention and the
overlap of communication and computation. It works using
time-independent traces produced by SimGrid [59], which
are composed of MPI calls and approximations of the
computing time expressed in floating-point operations per
second (Flops). Currently, SimpleComm executes real MPI
workloads using three models: i) FMU, ii) hybrid FMU (see
Section VI-D), and iii) Infiniband.

We modeled InfiniBand communication as an ideal remote
direct memory access (RDMA) transfer with no protocol
overhead from protocol, package processing, or buffer
contention.Wemodel the message or payload transfer time in
the simulator. We use state-of-the-art switching latency (see
Section II-B) and a maximum bandwidth from two lockstep

FIGURE 10. SimpleComm implementation overview.

DDR5 4800MHz devices [25] in both FMU and hybrid FMU
models. All FMU accesses are managed by a request queue
manager while the total time accounts for the queueing and
transfer time.

SimpleComm simulates each rank individually, starting at
MPI_Init, using a four-state machine to control its progress:

• Norm: This is the initial state where any MPI operation
does not block the rank. Computation progress and
non-blocking MPI operations keep the rank in this state.

• Comm: The rank is blocked by a P2P or collective MPI
operation.

• Wait: The rank is blocked by an MPI_Wait or
MPI_Waitall operation.

• Fin:The rank finished its simulationwithMPI_Finalize.
Comm and Wait are blocking states where computation

estimation holds until the communication operation ends. The
time spent in the blocking states counts as idleness.

SimpleComm’s rank communication time estimation is
presented in Figure 10b. An MPI operation can generate both
send and receive (S/R) calls, which are included in the S/R
queue ( 1 ). For each inclusion, SimpleComm performs a
tag matching. If successful, it takes the issue time of the
S/R call ( 2 ) and adds the transfer time calculated using
Equation 5 for the FMU protocol and Equation 6 for packet-
switched networks. Subsequently, SimpleComm accounts for
contention between the transfers ( 3 ), adjusting the transfer
times accordingly.

While the contention model for InfiniBand is based on a
packet switch topology, the contention model for FMU is
based on a circuit switch. The main difference compared to
Infiniband is that FMU can only send data between nodes
once a communication path is set by the first request in the
queue. The output of this contention analysis is the final
time annotation related to the transfer time. Finally, this value
returns to the rank ( 4 ). Ranks return to the Norm state after
the required time information is updated. In P2P operations,
one other rank is involved in communication (two updates),
and in collective operations, there are multiple ranks involved
(more than two updates).

SimpleComm is written in Python and was designed
to simplify the implementation of new contention models.
A contention model is an abstract class that can be used
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CODS LISTING 1. Definition of topology and its contention method
processContention

CODS LISTING 2. Example configuration file for FMU

as a template. Listing 1 presents a template code snipet
showing the signature of the processContention method.
A new communication model is defined in the Topology class
and has its definition of the processContention method.
SimpleComm supports several parameters in a configu-

ration file. For example, the FMU model has the following
parameters: latency, bandwidth, number of FMUs, CPU
processing speed, and mapping methods. Listing 2 presents
a code snippet of the configuration file, setting the simulator
to the FMU protocol, with 4 FMUs, using the FMU mapping
methods NONE (try idle) and INCREMENTAL (among all),
bandwidth to 76.8 GBs, 5µs latency, and a node processing
speed of 12GFlops. SimpleComm is available as open-source
in [29].

VI. EVALUATION METHODOLOGY
A. EXPERIMENTAL SETUP
We evaluated our proposal using the aforementioned sim-
ulator. Table 3 presents our simulation parameters. Our
baseline system comprises up to 64 nodes, each with a
CPU with a frequency of 3 GHz and a peak processing
speed of 12 GFlops. These nodes connect through an
InfiniBand network, and each node has a single CFMU
that enables it to access the external pool of memories
composed of up to 64 FMUs. The MPI benchmarks use
up to 64 ranks, allocating one rank per node in all cases.
The InfiniBand communication cost is estimated using its
theoretical bandwidth [26] and an experimental latency
measured with the OSU_Latency application from [60],
running on a local system with Mellanox ConnectX-5 NICs.
FMU communication is circuit switching, and its cost is
estimated to be the maximum bandwidth of two lockstep
DDR5-4800 MHz devices. We considered a 5 µs switching
time based on [6].

B. BENCHMARKS
We evaluated our methods using 3 synthetic and 4 real-world
benchmarks:

TABLE 3. Simulated system and interconnect parameters for Infiniband
and FMU models.

• Synthetic benchmarks, we used three synthetic
benchmarks that aim to stress a specific MPI
collective operation: i) Ring_Bcast for MPI_Bcast,
ii)Ring_Reduce forMPI_Reduce and iii)Ring_Allreduce
for MPI_Allreduce. They provide a scenario where
several messages of the same size are transmitted
simultaneously. These benchmarks are communication-
bound, as their computation parts are negligible.
Their iterative execution repeats 100 hundred times.
A benchmark calls the collective operation once per
rank each time. For example, executing them with
64 ranks results in the collective operation being called
64 times per iteration, varying the root rank on each call.
The benchmarks Ring_Allreduce and MPI_Allreduce
do not have a root rank. In our experiments (see
Section VII-A), MPI_Bcast and MPI_Reduce were
tuned to use the MPI binomial tree algorithm [61], [62],
and MPI_Allreduce is composed of an MPI_Reduce
followed by anMPI_Bcast.

• NPB benchmarks, we selected four benchmarks from
the NAS Parallel Benchmark suite (NPB) [63]: CG,FT,
IS, and LU. We used two input workloads, class C and
class D. Class D provides a heavier workload than class
C in computation and communication.

C. MESSAGE SIZE ANALYSIS AND HYBRID FMU VARIANT
We used the communication cost from Table 3 to estimate
the impact on performance. We executed the ping-pong
type program OSU_latency [60] and measured the transfer
time between two nodes using Infiniband and FMU without
contention. Although FMU is not intended to be the
main interconnect between nodes, this evaluation helped us
validate our simulator behavior and identify the message size
where FMU can outperform Infiniband during the execution
of an ideal communication. Figure 11 presents the transfer
time of messages up to 10 MB (large messages). With large
messages, the transfer time increases for both Infiniband
and FMU. FMU obtains a maximum speedup of 2.99× for
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FIGURE 11. Comparison of transmission time between Infiniband and
FMU with large messages in the order of MB (lower is better).

FIGURE 12. Comparison of transmission time between Infiniband and
FMU with short messages in the order of KB (lower is better).

messages of 10 MB over Infiniband. This result matches
the expected bandwidth ratio BWFMU

BWInfiniBand
between FMU and

Infiniband.
Figure 12 presents the transfer time of messages smaller

than 70 KB. The pivot value of 37 KB represents the
minimum message size where the Infiniband communication
cost is higher than the FMU communication cost.

In our experiments, we evaluated the FMU protocol by
executing the benchmarks in two scenarios: i) using the
FMU protocol and ii) using a variant called hybrid FMU
where messages smaller than 37 KB are transferred using the
Infiniband interconnect.

D. MAPPING METHOD ANALYSIS
We measured speedup with FMU using all mapping methods
(see Section III-C) using the NPB benchmarks, compar-
ing the results to a conventional Infiniband interconnect.
We observe that the combination of NONE (try idle) and
INCREMENTAL (among all) mapping methods obtained
the highest speedup when using 16, 32, and 64 FMUs. The
combination of LEAST_S (try idle) and STATIC (among all)
showed the highest speedup when using 1, 4, and 8 FMUs.
However, the speedup difference with less than 8 FMUs is
below 3%. The maximum speedup of FMU with NONE and
INCREMENTAL is 1.22×. For this reason, we selected the
NONE and INCREMENTAL mapping methods to show our
detailed performance evaluation.

VII. FMU EVALUATION
A. PERFORMANCE EVALUATION WITH SYNTHETIC
BENCHMARKS
We evaluated a scenario in which synthetic benchmarks
generate messages of identical sizes that are simultaneously

TABLE 4. Message characteristics of the synthetic benchmarks aimed to
stress MPI collective operations.

transmitted. These benchmarks do not require computation
on the nodes. Table 4 shows the total number of messages
per synthetic benchmark and its message size. The average
message size during execution is equal to the input size
of the benchmark. As expected, the nodes remain idle
during all executions (100% idleness) due to the benchmark
implementation only containing the MPI collective for
communication.

Figure 13 presents the speedup of the FMU protocol
over InfiniBand when running the synthetic benchmarks
with 64 ranks, one rank per node, with up to 64 FMUs.
We evaluated message sizes from 32 KB to 16 MB. The
results with 16MBmessages and 64 FMUs show amaximum
speedup of 5.18× with Ring_Bcast, and an average speedup
of 3.02× with the Reduce and Allreduce benchmarks. We
make three key observations. First, increasing the number of
FMUs to eight or more with messages larger than 2MB can
lead to improved performance. In an ideal evaluation scenario
without contention, a pivot value of 37 KB message size is
observed (see Section VI-C). We observe a similar behavior
in a contention scenario, with 32 KB messages exhibiting
slowdown. FMUarchitecture withmessages larger than 2MB
can help improve performance in contention scenarios.

Second, the ratio between the number of ranks and FMUs
( #Ranks#FMUs ) need to be greater than 4 to obtain a similar
performance to the baseline. However, with 32 FMUs, the
performance improvement is similar with 64 FMUs. This can
be caused by the waiting time to first access an FMU. The
average waiting time with 16 FMUs is 6 ns, with 32 FMUs is
1.9 ns, and with 64 FMUs it is on the order of ps.

Third, the binomial tree broadcast algorithm provides
negligible performance impact when used with the FMU
protocol due to its circuit-switching operation. Using a
naive algorithm, we tested a small benchmark using
MPI_Reduction where all ranks send the message straight to
the root rank. The results with the naive and the binomial tree
algorithm were the same, while Infiniband shows a speedup
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FIGURE 13. Performance improvement of FMU over InfiniBand when executing synthetic benchmarks and 64 ranks (higher is better).

TABLE 5. NPB benchmarks: 4 benchmarks from NPB using classes C and
D inputs.

of up to 3× with a binomial tree compared to the naive
algorithm.

B. PERFORMANCE EVALUATION WITH NPB
BENCHMARKS
Table 5 shows the results using 4, 16, and 64 ranks with
NPB benchmarks using input classes C and D. We measured
three values: i) the total number of messages transmitted,
ii) average message size, and iii) idleness as the percentage
of time from the total execution time the ranks were idle due
to communication.

We observe that idleness can increase with the number of
ranks on all-to-all MPI communication patterns. As shown
in Table 5, idleness increases with FT and IS benchmarks,
while it reduces with CG and remains the same with LU being
both P2PMPI communication. As expected, a higher number
of ranks allowsmore messages to be on-fly in the system. The
FT benchmark with class D input shows an average message
size of 1.6 GB with 4 ranks and 8.2 MB with 64 ranks.

As shown in Figure 14, we evaluated the performance
of the FMU protocol compared to InfiniBand by executing
the NPB workloads using FMU and hybrid FMU (see
Section VI-C).

We considered 64 FMUs using 4, 16, and 64 ranks,
allocating one rank per node. Table 5 shows that only
1% of the messages produced with LU and class C input
are larger than 37 KB. The maximum speed-up in both
scenarios is 22%, that is, execute FT with class C input,
16 ranks, and 16 FMUs. We make two key observations.
First, the hybrid FMU approach reduces the slowdown when
transferring messages of smaller sizes (37KB). As depicted
in Figure 14c, the hybrid FMU approach with CG benchmark
and class C input shows improvement from 11% to 16% using
16 ranks and from 5% to 20%with 64 ranks. Second, a system
with fewer FMUs can benefit from the hybrid approach if the
workload can transfer more than onemessagewhen accessing
an FMU.

Assuming DDR5 DIMMs of 8 GB, an FMU provides a
minimum of 16 GB of storage space. We tracked the number
of messages and their size during our experiments. Both
define the size of Qdata and Qheader . The largest size of
Qdata is 8.5 GB with the FT benchmark using class D inputs.
We measured a maximum of 3938 messages in a single FMU
with theIS benchmark, in both the class C and class D inputs.
The estimated size of Qheader is ≈ 32 KB considering 8B
blocks for indexing.

C. INTRA-NODE COMMUNICATION
FMU interconnects can achieve the bandwidth of local
DDR memory because optical interconnects have a high
bandwidth. We evaluated a scenario where we placed all
ranks in the same node, making all communication intra-
node. The FMU bandwidth is 76.8 GB/s (from FMU
in Table 3), and the switch latency is zero because it
does not require path reconfiguration. We executed four
NPB benchmarks with class C input and the Ring_Bcast
benchmark using a small (32 KB) and large (16MB)message
size. Figure 16a shows the speedup results of inter-node
communication with InfiniBand and FMU compared to
a conventional DDR interconnect using 4 ranks. The
performance in NPB benchmarks is similar to the baseline in
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FIGURE 14. FMU performance improvement compared to InfiniBand with
NPB benchmarks (higher is better).

Infiniband and FMU. FMU shows an average 0.99× speedup,
and Infiniband shows an average speedup of 0.93×. FMU
and Infiniband presented slowdown with Ring benchmark
using 32 KB. With 16 MB messages, Infiniband slowed
down while FMU presented a similar performance to the
baseline. Performance improves as we increase the number of
ranks to 64. As depicted in Figure 16b, on NPB benchmarks
both Infiniband and FMU presented speedups with CG,
FT and IS benchmarks. With Ring_Bcast using 16 MB
messages, FMU achieved a speedup of 8.8×. This significant
improvement compared to the baseline can be caused by the
contention reduction provided by FMU. Multiple memory
requests on the baseline highly degrade the performance
of intra-node communication. We make two observations
about this experiment: i) intra-node communication exhibits
a better performance on scenarios of low contention and
small message sizes, such as LU and Ring with 32 KB;
ii) FMU shows an average speedup of 2.81× and Infiniband
an average speedup of 1.81× on benchmarks that uses large
message sizes, i.e. CG, FT, IS and Ring (16 MB).

VIII. RELATED WORK
To our knowledge, this is the first work to implement and
extensively evaluate anMPI protocol with optically disaggre-
gated memory for inter-node message buffering. This section
presents related works on MPI inter-node optimization,
memory disaggregation, and optical disaggregation.

FIGURE 15. FMU hybrid performance improvement compared to
InfiniBand with NPB benchmarks (higher is better).

A. MPI INTER-NODE OPTIMIZATION
In [17] the authors characterize the MPI standard to under-
stand the performance challenges. Previous works on MPI
inter-node communication aimed to use RDMA [15], [16].
Previous works focus on improving collective operations
with specific algorithms [18] and developing hardware
accelerators [20], [22]. Other works study the usage of threads
on endpoints [19], [21]; tag matching offloading [56], [57].
None of the previous work evaluates optical disaggregated
memory as an alternative to overcome MPI performance
challenges.

B. MEMORY DISAGGREGATION
There are several works on disaggregated memory pool [8],
[9], [13], [35], [36]. Many prior works used the NIC-to-NIC
interface to share node local memory [33], [34] or implement
an additional level in the memory hierarchy [11], [12].
However, none of these works focused onMPI-disaggregated
memory usage for point-to-point and collective operations.
In [3], the authors discussed the need for more work on
message passing optimization in the disaggregated memory
scenario.

C. PHOTONICS FOR DATACENTER
Recent works explore reconfigurable optical links inside the
data center for efficient data movement [51], [64], [65],
[66]. Other works propose new devices and systems for
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FIGURE 16. Speedup of Infiniband and FMU compared to intra-node communication.

optical disaggregation [67], [68]. In [6] the authors show
a detailed implementation of the optical interconnect for
memory disaggregation.

IX. CONCLUSION
We have explored a novel approach for a disaggregated
memory architecture and system-level design through optical
reconfigurable channels. A comprehensive analysis com-
bining protocol definition, timing models, and system-level
simulation was performed to evaluate our memory archi-
tecture. Our FMU architecture is designed to work as an
additional disaggregated buffer in cooperation with conven-
tional interconnects such as Infiniband. Our evaluation shows
performance gains of up to 5.18× in communication-bound
applications and up to 1.22× in computing-intensive appli-
cations. Our new protocol is also implemented on a custom
simulator based on SimGrid traces. The combined results
in this work provide a detailed analysis of MPI inter-node
communication. Our results characterize scenarios associated
with small (37 KB) and large (> 2 MB) message sizes where
MPI collectives can take advantage of our FMU architecture.
This study empowers the usage of optical interconnects
for disaggregated memory, paving the way for the future
implementation of experimental systems.
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