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ABSTRACT Automated diagnosis, as a temporary medical supplement, has gained significant attention
in research in recent years. Existing methods employ sequence generation approaches to inquire about
symptoms and diagnose diseases. However, these methods ignore the fact that: 1) doctors utilize their
past experience and similar cases to aid in diagnosis in real-world scenarios; 2) doctors inquire about key
symptoms that serve as vital diagnostic evidence within limited conversations. To address these issues,
we propose an end-to-end model KDPoG. Firstly, in addition to use the symptom and attribute embedding,
we propose patient-oriented graph enhanced representation learning, which is built by a patient-oriented
graph and learned with heterogeneous graph convolution networks. Furthermore, based on the encoder built
with gated attention units, we propose knowledge-guided attention mechanism learning, which incorporates
conditional probabilities of co-occurrence between symptom pairs. Finally, we utilize two linear layers as the
classification module to achieve symptom probing and disease diagnosis. We conduct extensive experiments
on four public datasets, which demonstrate that our proposedmodel outperforms the state-of-the-art methods.
We achieve an average absolute improvement of over 2% in disease diagnosis accuracy. Particularly, on the
Muzhi-10 dataset, we observe an absolute improvement of over 14.7% in symptom recall rate.

INDEX TERMS Automatic diagnosis, prior knowledge, heterogeneous patient-oriented graph, sequence
generation, topological connection.

I. INTRODUCTION
Automatic diagnosis is commonly appeared in medical
dialogue systems, which aims to simulate the process of
online consultations between doctors and patients. A specific
example is shown in Figure 1. The patient first provides
a self-report to the doctor, and then the doctor asks about
additional symptoms that the patient has not yet mentioned.
Finally, the doctor makes a disease diagnosis based on
all confirmed symptoms. So the automatic diagnosis is
essentially a task which aims to inquiry implicit symptoms in
limited turns and finally makes a correct disease diagnosis.
Since it has the potential in simplifying diagnostic process
and serving as medical supplement, it has received increasing
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FIGURE 1. An example of the automatic diagnosis task, where MCR
stands for the medical consultation records.

attention in recent years [1], [2], [3], [4], leading to the
emergence of numerous notable works.

Traditionally, methods for solving this task can be clas-
sified into two categories: those based on statistical models
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and those based on reinforcement learning (RL) models.
Firstly, among the previous works based on statistical models,
Bayesian-based models are particularly prominent, known
for their low complexity [5], [6]. They define symptom
probing as a feature selection task, using entropy functions
to identify optimal features and maximize information gain
as the training objective. However, these models have
limitations in terms of their relatively low accuracy and
diminished effectiveness when applied to large-scale data.
Considering the aforementioned problems, the majority of
subsequent work has shifted towards RL-based models [2],
[7], [8]. They treat symptom probing as a multi-step decision-
making task, modeling it as a Markov Decision Process
(MDP) and utilizing RL for policy learning. However, RL-
based models encounter challenges in terms of their low
efficiency and the difficulty of defining an appropriate
task-specific reward function, which greatly affects model
training.

Currently, the mainstream approach for this task is to
utilize sequence generation-based models for implementa-
tion, which avoid the aforementioned challenges in RL-
based models. They define symptom probing as the task
of generating a sequence of symptoms, and construct an
end-to-end auto-regressive model based on Transformer
architecture [9]. This model is equipped with a specially
designed mask matrix, as adopted in UniLM [10], [11], [12].
Due to their excellent performance on this task, we choose
to follow this approach. But there are two limitations that the
previous works have not taken both of them into account: 1)
During realistic clinical diagnosis, the doctor typically relies
on symptoms of the patient as the primary consideration.
However, they also draw upon their past experiences and
knowledge of similar patients to aid in their diagnosis [13].
Therefore, it’s necessary to utilize information from similar
patients and consider how to model such relations. 2) During
online medical consultations, although it is essential to gather
adequate symptoms from the patients, they often have limited
patience to answer each question individually. Therefore, the
model needs to prioritize asking about more critical questions
within a limited number of conversations, focusing on key
symptoms that serve as crucial diagnostic evidence.

To alleviate the above problems, we propose Knowledge-
routed automatic Diagnosis with heterogeneous Patient-
oriented Graph (KDPoG), which is an end-to-end model.
To address the first issue, in addition to symptom and
attribute embedding, we also introduce patient-oriented graph
enhanced representation learning. The reason for this consid-
ering is to model the topological connections among patients
and incorporate experiential knowledge from similar patients
into the model. Specifically, to obtain the representation,
we first construct a patient-oriented graph, and then we apply
heterogeneous graph convolution operations on all types of
relations. To address the second issue, we use several stacked
Gated Attention Unit (GAU) blocks as the backbone of our
encoder. Additionally, we propose knowledge-guided atten-
tion mechanism learning that incorporates the conditional

probabilities of co-occurrence between symptom pairs. This
aims to route the model to inquiry high-frequency and highly-
correlated symptoms. Finally, we utilize a classification
module consisting of two linear layers for symptom inquiry
and disease diagnosis, respectively.

The main contributions of this paper can be summarized as
follows:

• We propose the patient-oriented graph enhanced rep-
resentation learning, which aims to enable the model
to mimic doctors in utilizing their past experience and
knowledge from similar patients to aid in diagnosis;

• We propose the knowledge-routed encoder, which aims
to prioritize asking about key symptoms that serve as
vital diagnostic evidence within a limited number of
conversations;

• Experimental results on four public datasets show that
our model outperforms SoTA methods. Particularly,
on the Muzhi-10 dataset, we observe an absolute
improvement of over 14.7% in symptom recall rate.

II. METHOD OVERVIEW
In this section, we first introduce some basic definitions
related to automatic diagnosis. Then we formulate the task
definition and outline the framework of our model.

A. PRELIMINARY
Definition 1: Explicit/Implicit Symptoms Let S =

{si|i = 1, 2, . . . , ns} denotes the set of all possible symptoms.
The set of symptoms extracted from the self-report in
medical consultation record (MCR) [14] are defined as
explicit symptoms Sexp = {sexp1 , sexp2 , . . . , sexpm } while the
others in conversations are defined as implicit symptoms
Simp = {simp1 , simp2 , . . . , simpn }, where (Sexp ∪ Simp) ⊆ S, and
Sexp ∩ Simp = ∅.
Definition 2: SymptomAttribute The symptom attribute

is defined as the relation between a certain symptom and the
patient. Let A = {aj|j = 1, 2, . . . , na} denotes the set of
all possible symptom attributes. Typically, A includes three
attributes: 1) True: patient has the symptom, 2) False: patient
does not have the symptom, 3) Unknown: the symptom is
not mentioned in the dialogue. For the attributes of Sexp and
Simp, we respectively use Aexp = {aexp1 , aexp2 , . . . , aexpm } and
Aimp = {aimp1 , aimp2 , . . . , aimpn } to represent them.
Definition 3: Structured MCR Let D = {dk |k =

1, 2, . . . , nd } denotes the set of all possible diseases. A struc-
tured MCR then can be denoted as: ({(sexpi , aexpi )}mi=1, {(s

imp
j ,

aimpj )}nj=1, dk ), where m is the number of explicit symptoms,
n is the number of implicit symptoms, and dk is the disease
diagnosis made by the doctor.

B. TASK DEFINITION
Given a structured MCR of a patient, based on explicit
symptoms Sexp and their attributes Aexp, we aim to inquire
about as many implicit symptoms Simp as possible, within
the fewest number of dialogue turns. Finally, we provide a
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FIGURE 2. Illustration of our model structure, which includes patient-oriented graph enhanced representation learning,
knowledge-routed encoder and classification module.

diagnosis for disease dk based on all confirmed symptoms
and their attributes ({(sexpi , aexpi )}mi=1, {(s

inq
j , ainqj )}

nq
j=1), where

the inquired symptom sinqn ∈ Simp and nq is the number of
inquired symptoms.

C. FRAMEWORK
As shown in Figure 2, our solution for this task is mainly
divided into three stages. Firstly, given Sexp and Aexp,
we utilize patient-oriented graph enhanced representation
learning to obtain fused encoding representations that
represent explicit symptom information of the patient.
Then, based on the fused representations, we obtain hidden
representations through knowledge-routed encoder. Finally,
based on the hidden representations, we predict implicit
symptoms and diseases through classification module.

The specific content of each stage is as follows: 1) Patient-
oriented Graph Enhanced Representation Learning. We
first construct the patient graph based on entities in training
data (i.e., patients, symptoms, diseases and attributes). Then,
we apply Heterogeneous Graph Convolutional Network
(HGCN) convolution operations on all types of relations,
aiming to incorporate patient and disease nodes’ information
into symptom nodes. Finally, we combine symptom embed-
ding, attribute embedding, and graph embedding of each
symptom, serving as the final input. 2) Knowledge-Routed
Encoder. Given the input above, we stack several GAU
blocks serving as encoder in our model. We innovatively

propose knowledge-guided attention mechanism learning
incorporating a conditional probability matrix, aiming to per-
form secondary processing and constraints on the prediction
results of our model. 3) Classification Module. Our model
incorporates two linear layers as the output layers. The first
linear layer is responsible for symptom classification, aiming
to minimize the number of inquiries required to identify all
implicit symptoms. The model continues decoding until it
encounters a termination symbol, signaling the diagnosis of
a disease. At this point, the second linear layer is invoked for
disease classification.

III. METHODOLOGY
In this section, we introduce the main architecture of our
model, including patient-oriented graph enhanced represen-
tation learning, knowledge-routed encoder and classification
module. Then, we discuss the training and inference proce-
dures of our model.

A. PATIENT-ORIENTED GRAPH ENHANCED
REPRESENTATION LEARNING
This part is the input of ourmodel, which consists of symptom
embedding, attribute embedding, and graph embedding. First,
we obtain symptom and attribute embedding based on the
given Sexp and Aexp. Then, we build a patient-oriented graph
based on entities in training data, and utilize HGCN to embed
the graph to obtain graph embedding of symptoms. Finally,
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we combine symptom embedding, attribute embedding, and
graph embedding of each symptom, serving as the final input.

Thus, we first discuss symptom and attribute embedding.
Then, we introduce the graph embedding, which involves
two steps: 1) constructing a patient-oriented graph, and
2) designing a graph HGCN layer to obtain node embedding
for symptoms. Finally, we discuss the representation combi-
nation of all three embedding.

1) SYMPTOM AND ATTRIBUTE EMBEDDING
Based on input Sexp and Aexp, we first construct a special

tokenizer (SymTokenizer) to encode input. Then, based on
the encoded sequence of input for the given patient, we utilize
linear layers for embedding.

Thus, before discussing the embedding of symptoms
and attributes, let’s first introduce SymTokenizer. Since we
inquire a certain symptom in each turn, we treat each
symptom as a token rather than each individual character.
Therefore, we construct our SymTokenizer in advance, which
includes symptoms S, symptom attributes A, diseases D, and
some special tokens Cspecial .

SymTokenizer = S ∪ A ∪ D ∪ Cspecial, (1)

Cspecial = {⟨SEP⟩, ⟨PAD⟩, ⟨DIS⟩, . . .}, (2)

where ⟨SEP⟩ for separation, ⟨DIS⟩ for disease diagnosis, and
⟨PAD⟩ for padding. Then, we utilize linear layers to embed
the symptoms and attributes.

Formally, given the input sequence {(sexp1 , aexp1 ) . . . ,
(sexpm , aexpm ), . . . , (simp1 , aimp1 ), . . . , (simpn , aimpn )}, we obtain
hsexpm = W ss

exp
m and haexpm = Waa

exp
m , as well as hsimpn

and
haimpn

, respectively. W s and Wa are weights of linear layers
for symptom embedding and attribute embedding.

2) GRAPH EMBEDDING
First, based on the symptoms and diseases of each patient

in the training set, we construct a patient-oriented graph.
Then, utilizing the graph, we build a graph HGCN layer for
graph representation learning, taking the representation of
symptom nodes as the graph embedding.

a: PATIENT-ORIENTED GRAPH
Due to the involvement of graph embedding in the model
training and to prevent leakage of information from the test
set, we only utilize data from the training set to construct the
graph. Firstly, for each patient, we create a new patient node.
Then, based on the symptoms and disease entities in the data,
we create symptom and disease nodes. Next, we establish
edges between the patient node, symptom nodes, and disease
nodes based on the attributes of symptoms and the diagnostic
results of diseases. Particularly, all edges are unidirectional.
Thus, for each data instance, we construct a patient sub-graph
with the patient node as the root node, as shown in Figure 2
(where the blue region represents a patient sub-graph).
Finally, we integrate all patient sub-graphs to form a patient-
oriented graph, where identical entities and edges are merged

into the same node or edge, respectively. Specifically, we add
isolated entities as isolated nodes to the graph.

Formally, the graph can be denoted asG = (gi) = {gi|gi =

(pi, si,j, di,k )}. The nodes include patient node (P = {pi|i =

1, 2, . . . ,M}), symptom node (S = {sj|j = 1, 2, . . . ,N }),
and disease node (D = {dk |k = 1, 2, . . . ,O}). The relations
include two types: positive one and negative one. In positive
one, there are three types of relations: 1) true: the patient
pi has the symptom sj, 2) related: the disease dk appears
together with the symptom sj, 3) diagnosis: the patient pi
is diagnosed the disease dk . In negative one, there are two
types of relations: 1) false: the patient pi hasn’t the symptom
sj, 2) unrelated: the disease dk doesn’t appear together with
the symptom sj. These types of nodes and relations represent
main interactions in training dataset. As our graph contains
three types of nodes and five types of relations, making it a
heterogeneous graph.

b: GRAPH HGCN LAYER
Given the heterogeneous patient graph constructed above,
our goal is to obtain representations for each symptom
node. As the graph is heterogeneous, we utilize HGCN for
graph embedding learning. The key idea is to simultaneously
perform graph convolution operations across all five types
of relations and ultimately aggregate all node representations
into the symptom nodes.

Formally, the initial representations of the three types of
nodes hinit are encoded using three embedding layers. Each
embedding layer consists of a linear layer weight Wgraph ∈

RNtype×Dinit , where Ntype is the number of nodes types and
Dinit is the dimension of node representation. Then, for
each node, graph convolution is applied using GCN, and the
formula is as follows:

h(l+1)
i = σ (bl +

∑
j∈N (i)

(
1
cji
hljW

l), (3)

where N (i) is the neighbors set of node i, cji =
√
N (j)

√
N (i),

σ is ReLU activation function, b and W are the parameters.
Then, the nodes with different relations are aggregated into
this node, and the formula is as follows:

h(l+1)
i = AGGr∈Ni (fr (gr ,h

l
rj ,h

l
ri )), (4)

where AGG is the summation function, fr is the GCN
function, gr is the sub-graph which only consists of relation
r , Ni is the relations between node i and its neighbour nodes.

Finally, the representations of the patients hlp and the
diseases hld will both be constructed into the symptom node,
namely hls = AGG(hlp,h

l
d ).

3) REPRESENTATION COMBINATION
After obtaining the symptom, attribute, and graph embed-

ding, we perform a weighted summation of these three
embedding into a single vector to serve as the input for our
model. Note that since the order of explicit symptoms makes
no sense and diseases should not be sensitive to the order
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of symptoms, we remove the position embedding, which is
different from previous works [9].

Formally, the input representation is computed by sum-
ming the symptom embedding, attribute embedding and
graph embedding, which is as follows:

hexpm = α ∗ (hsexpm + haexpm ) + (1 − α) ∗ hkexpm
, (5)

where hkexpm
is the graph embedding of explicit symptoms.

hk impm
is defined the same as hkexpm

. α is a balanced parameter.

B. KNOWLEDGE-ROUTED ENCODER
Given the above combined representations, our goal is to
learn their hidden states. To achieve this goal, we design a
knowledge-routed encoder. The key idea is as follows: 1) We
first use multiple stacked GAU blocks as the backbone of
our encoder. 2) Then, we design prior knowledge-guided
attention mechanism learning by combining a conditional
probability matrix with the raw self-attention in GAU, which
aims to route the model to inquiry high-frequency and highly-
correlated symptoms, as shown in Figure 3. 3) Finally,
we utilize themaskmatrix to implement sequence generation,
as shown in Figure 4.

1) GAU
Firstly, we introduce GAU. GAU uses Gated Linear Unit

(GLU) to replace feed-forward network (FFN) in Trans-
former [9], and combines attention and GLU as a unified
layer, aiming to maximize the sharing of their computations.
Given that GAU can achieve comparable performance to
multi-attention heads of Transformer using just one attention
head, and considering our need for modifying the attention
matrix, we choose GAU as our preferred approach.

GAU consists of three parts. Specifically, given the repre-
sentation of an input sequence h = (hexp1 ,hexp2 , . . . ,hexpm ,

himp1 , . . . ,himpn ), we first utilize Layer Normalization, the
OffsetScale layer, and linear layers to respectively obtain
Q,K,V ,hgate as follows:

V ,hgate = φSiLU (hnormW v), (6)

Q,K = OffsetScale(φSiLU (hnormWqk )), (7)

where hnorm is the normalized representation, and Wqk and
W v are the weights of linear layers. Secondly, we obtain the
attention matrix Matten by performing dot product between
Q and K , as shown in the equation given by Matten =

QKT /dk , where dk is the length of the input sequence.
Finally, we multiply V , Matten, and hgate together as the
output.

2) PRIOR KNOWLEDGE-GUIDED ATTENTION
MECHANISM LEARNING

Given the above attention matrix Matten, our goal is to
use prior knowledge to guide the learning of the attention
mechanism, so that high-frequency and highly-correlated
symptom pairs have higher attention scores. To achieve this
goal, we initially construct a probability matrix where each

FIGURE 3. GAU block with prior knowledge-guided attention mechanism
learning.

element represents the conditional probability between two
corresponding symptoms. Then, we utilize the conditional
probability as prior knowledge to guide the learning of
attention mechanism. The learning method is to integrate the
probability matrix with attention matrix.

Formally, given the symptoms set S, we initialize a matrix
M = (mi,j), where the size of S is s and the size of the matrix
is s ∗ s. The element mi,j in M represent the probability of
symptom sjoccurring when symptom si is present:

mi,j = P(sj|si) =
n(si, sj)∑s
k=1(sk , si)

= mj,i, (8)

where n(si, sj) is the number of patients who both have
symptom sj and si. Since certain symptoms in the test set
may not be present in the training set, we initialize the
matrix with diagonal elements mi,i all set to 1, which helps
avoid

∑s
k=1(sk , si) being equal to 0. In order to alleviate the

differences in the frequency of symptoms, we apply a softmax
layer to normalize the matrix.

M s = Softmax(M) + Softmax(M)T , (9)

Given the conditional probability matrix M s, we take
into account that each position in the attention matrix
represents the correlation between two symptoms. Therefore,
we add the values from the conditional probability matrix
to the corresponding positions in the attention matrix. Then,
we obtain the prior knowledge attention matrix Mprior

atten as
follows:

Mprior
atten = β ∗Matten + (1 − β) ∗ k ∗M s, (10)

where β is used to balance attention matrix and conditional
probability matrix. In particular, we just modifyMatten at odd
layers instead of all layers. When the number of the layer is
even, k = 0, otherwise k = 1. The experimental section will
provide a detailed analysis of the reasons for setting it up this
way.
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FIGURE 4. Mask matrix.

3) MASK MATRIX
Finally, given the prior knowledge attention matrixMprior

atten ,
our goal is to use a mask matrix to implement sequence
generation, as shown in Figure 4. The key idea is to mask
out symptoms that should not be attended to, which prevents
information leakage. Formally, given the raw input sequence
as follows:

X = (sexp1 , . . . , sexpi , . . . , simp1 , . . . , simpj , simpj+1, . . .). (11)

Then, for sexpi , it can attend all explicit symptoms Sexp. For
simpj , it can also attend all Sexp, while it can only see itself
and the implicit symptoms have been inquired. Therefore,
the construction of the mask matrix Mmask is illustrated as
follows:

Mmask (s)

=

{
(1, .., 1, . . . ,−∞, . . . ,−∞, −∞, . . .), if s ∈ Sexp
(1, . . . 1, . . . 1, . . . 1, −∞, . . .). if s ∈ Simp

(12)

Finally, the entire output ho is illustrated as follows:

ho = Wo(Vφ2
ReLU (M

prior
atten +Mmask ) ∗ hgate), (13)

whereWo is the weights of a linear layer.

C. CLASSIFICATION MODULE
Given the hidden state generated by encoder, our goal is
to decide the next implicit symptom to inquire about and
make a disease diagnosis. To achieve this goal, we employ
two linear layers as the classification module for prediction,
respectively. The first linear layer is responsible for symptom
inquiring, aiming to minimize the number of inquiries
required to identify all implicit symptoms. The second linear
layer is invoked for disease diagnosis.

Formally, given the hidden state generated by encoder
h′

= (h′exp
1 ,h′exp

2 , . . . ,h′exp
m ,h′imp

1 , . . . ,h′imp
n ), we insert

several ⟨SEP⟩ tokens after it, which the number of ⟨SEP⟩

tokens is n + 1. The j-th ⟨SEP⟩ is used to decide the j-
th symptom. And the last ⟨SEP⟩ is used to decide ⟨DIS⟩

token, which indicates the ending of inquiring. For symptom
inquiring, the formula is as follows:

zsj = W sc(. . .Mnew
atten(K,V = (. . . ,h′exp

m , . . . ,h′imp
j−1)) . . .),

(14)

where W sc is weights of symptom classification layer, and
zsj is the output of this layer. Note that when predicting
the symptom at position j, only the explicit symptoms
and the preceding j − 1 implicit symptoms are attended.
We use the cross entropy loss of layer output zsj as the
symptom inquiry loss losssym. For disease diagnosis, the
formula is as follows:

zdk = Wdc(. . .Mnew
atten(K,V = (. . . ,h′exp

m , . . . ,h′imp
n )) . . .),

(15)

whereWdc is weights of disease classification layer, zdk is the
output of this layer. Note that when predicting the disease dk ,
all explicit and implicit symptoms are attended. We use the
cross entropy loss of layer output zdk as the disease diagnosis
loss lossdis.

IV. TRAINING AND INFERENCE
A. TRAINING
Since we define the task as a sequence generation task, our

object is to inquiry about as many symptoms sinqj belonged
to Simp as possible within a limited number of dialogue
turns, and to provide a correct diagnosis of the disease dk .
Besides, the more implicit symptoms are queried, the higher
the diagnostic accuracy is. Therefore, our training objective
is to maximize the probability of the following formula:

N∑
k=1

M∏
j=1

(P(sinqj |Sexp, Sinq)P(dk |Sexp ∪ Sinq)), (16)

where sinqj ∈ Sinq ⊆ Simp, and N and M respectively indicate
the number of patients and unconfirmed symptoms. And we
convert the optimization objective into minimizing the loss
function in the following formula:

Losstotal = losssym + lossdis (17)

where losssym is the symptom inquiry loss, and lossdis is the
disease diagnosis loss. Note that during each training epoch,
we initialize the graph embedding rather than continuing
from the previous epoch. Besides, the graph embedding is
trained together with the rest of the model.

B. INFERENCE
After training, the model starts with the symptom inquiry

process. Firstly, it obtains the probability distribution of
symptoms based on the given explicit symptoms. Then,
it selects the symptom with the highest probability for
inquiry. And the user simulator will decide whether the
symptom belongs to the set of implicit symptoms. If the
symptom is an implicit symptom, we add this symptom to
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TABLE 1. Details of the four datasets. # Sample represents the number of
conversations. # Disease and # Symptom represent the number of
disease and symptom categories, respectively. # Sym/Patient, #
Exp/Patient, and # Imp/Patient represent the average number of
symptoms/maximum number of symptoms, explicit symptoms, and
implicit symptoms.

the current symptom set. Otherwise, we continue to inquiry
another symptom of next highest probability. The inquiry
process continues until the model predicts the ⟨DIS⟩ token,
which indicates the start of the diagnosis phase. We set
three thresholds to prevent the model from continuously
inquiring symptoms. The first one is the maximum number
of inquiry turns allowed. If the number of inquiry turns
reaches this limit, the model will stop inquiring and directly
start to diagnosis disease. The second one is the maximum
predicted probability for the ⟨DIS⟩ token. If the predicted
probability for the ⟨DIS⟩ token exceeds this threshold, the
model proceeds with the disease diagnosis phase. The third
one is the minimum probability for an inquired symptom.
If the probability of an inquired symptom falls below this
threshold, the model stops inquiring and proceeds with the
disease diagnosis phase.

V. EXPERIMENT
In this section, we first introduce the experiment setup. Then,
we compare our model with several baselines on four public
datasets. Finally, we discuss some detailed analysis.

A. EXPERIMENT SETUP
1) DATASETS

In our experiments, we evaluate our proposed model on
a total of four real-world datasets. The real-world datasets
include Muzhi-4 [1], DXY [15], GMD-12 [16] and Muzhi-
10 [17], all of which are annotated from real medical
dialogues. To provide a better understanding of these datasets,
we present the statistics information about them in Table 1.

2) BASELINES
To establish a fair comparision with other models,

we select several competitive baselines, including Flat-
DQN [1], REFUEL [18], KR-DS [15], GAMP [19],
HRL [20], PPO [21], MMF-AC [22], BSODA [23],
Diaformer [10], DxFormer [24], CoAD [25], and
Tian et al. [26].

3) EVALUATION METRICS
To evaluate the performance of our model, we adopt the

commonly used evaluation metrics in previous studies [1],
[20], including the accuracy of diseases (DAcc), the recall
of implicit symptoms (SRec), and the average inquiry turn

(ATurn). Specifically, we aim for higher accuracy and
recall, and smaller average turn to indicate better model
performance.

4) HYPER-PARAMETERS
In the embedding, the dimension of output de is set to 512.

The dimension of intermediate representation of HGCN dc
is set to 100. Since the graph is relatively small, we set the
number of layers in HGCN to 1. The aggregation method
in HGCN is summation, with a dropout layer added. In the
encoder, we set the number of GAU blocks to 10. The
dimensions of value dQ and key dV are set to 128, and
the dimension of the hidden representation dh is set to
512. The final output utilizes a residual structure. The input
to the classification layer is obtained by summing all the
representations at positions not masked. The model is trained
on a NVIDIA A100 (80G) GPU. To optimize the model,
we use the Adam optimizer [27] with a learning rate of 1e-5.
The batch size is set to 16, and the number of epochs is set to
80. For the three hyper-parameters in inference: themaximum
number of inquiring turns is set to 10, since it is reasonable
and consistent with the previous works [16]. The minimum
probability for inquiring is set to 0.01, and the maximum
probability for diagnosis is set to 0.9.

B. MAIN RESULTS
1) OVERALL EXPERIMENT

We evaluate our proposed model on four public datasets,
and the experimental results are presented in Tables 2 ∼ 5.
Based on the results presented in the tables, it is evident that:
1) When restricting the number of turns to 10, our method
outperforms the SoTA results on all datasets, demonstrating
the effectiveness of our approach. Specifically, on the GMD-
12 dataset, we achieve improvements of over 1.7% in disease
accuracy compared to the SoTA models. 2) Furthermore,
our model surpasses the performance of existing models
in terms of symptom recall, with particularly noteworthy
enhancements of over 14% on the Muzhi-10 dataset and
over 27% on the GMD-12 dataset. 3) Besides, it can be
observed that the overall performance of Muzhi-10 dataset
is much lower compared to the other three datasets, which
can reflect the difficulty of this dataset. However, our model
still performs better on it, especially in terms of symptom
recall, indicating that our model is also suitable for more
challenging datasets. 4) Finally, although our model performs
slightly worse than the method by Tian et al. on the Muzhi-
4 dataset, our model outperforms their method in terms of
average performance across both the DXY and Muzhi-4
datasets. Specifically, our average disease diagnosis accuracy
is 79.6%, while the method by Tian et al. achieves only
75.7%, resulting in an improvement of over 3.9%.

2) DIAGNOSIS WITH SMALLER LIMITED TURNS
We observe that our model requires more inquiry turns,

particularly when compared to some early RL models.
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TABLE 2. Comparison results on DXY. MTurn represents the maximum
number of conversation rounds, and an MTurn of 10 indicates that the
number of conversation rounds falls between 5 and 10 rounds.

TABLE 3. Comparison results on Muzhi-4.

TABLE 4. Comparison results on Muzhi-10.

However, from the perspective of doctor, inquiring about
7-10 symptoms is acceptable, which allows for a more
comprehensive coverage of implicit symptoms [24]. It is
worth noting that the number of inquiry turns cannot be
controlled, as most models are RL-based. To ensure a
relatively fair comparison, we restrict the maximum number
of inquiry turns of our model to match that of baselines.
When restricting the number of turns to 5, our method
also achieve the best results. Specifically, on the DXY
dataset, we achieve a 3.3% improvement in disease accuracy
compared to the PPOmodel. Additionally, from the results of
Muzhi-4 dataset, it can be observed that in terms of disease
accuracy, we surpass the SoTA performance in 10 turns with
just 5 turns of inquiry. This demonstrates the potential of our
model to achieve better diagnostic results with smaller limited
turns.

TABLE 5. Comparison results on GMD-12.

FIGURE 5. The impact of adding the prior knowledge attention matrix to
different layers.

C. ABLATION STUDY
To validate the effectiveness of our proposed methods,
we conduct ablation experiments about embedding and
encoder parts on all four datasets. Firstly, for the embedding,
we remove the graph embedding and instead directly sum the
representations of symptoms and attributes. Secondly, for the
encoder, we remove the conditional probability matrix and
use the raw attention. The experimental results are presented
in Table 6, and it can be observed that: 1) Removing either
of these two components results in a decrease in model
performance, indicating the effectiveness of our proposed
methods. 2) Specifically, removing the graph embedding can
lead to a decrease in disease diagnosis accuracy of 2%.
3) Removing the conditional probability matrix can result in
a decrease in disease diagnosis accuracy of 2.3%.

D. DETAILED ANALYSIS
1) THE IMPACT OF ADDING CONDITIONAL PROBABILITY
MATRIX TO DIFFERENT LAYERS

The conditional probability matrix can be incorporated
into the attention matrix of each block. Since there are
several GAU blocks in the encoder, we conduct entailed
experiments to assess the effects of adding the matrix at
different layers on the performance of our model. Regarding
the experimental setup, we conducted experiments using two
datasets, DXY and MZ-4, as examples. We explore several
intuitive approaches for incorporating the matrix, namely
adding it to all layers, odd-numbered layers, even-numbered
layers, the first layer, and the last layer. The experimental
results are presented in Figure 5, indicating that adding the
conditional probability matrix to either odd-numbered or
even-numbered layers yields slightly better results compared
to other approaches. The reasons for this are twofold:
1) Adding only to the first or last layer is insufficient to
have a significant impact on the model, so the result is

89580 VOLUME 12, 2024



Z. Li, T. Ruan: Knowledge-Routed Automatic Diagnosis With Heterogeneous Patient-Oriented Graph

TABLE 6. Ablation study.

FIGURE 6. The impact of graph embedding on representing patient
similarity. ‘‘Allergic R’’, ‘‘Upper RTI’’, ‘‘Pediatric HFMD’’, and ‘‘Pediatric D’’
are abbreviations for Allergic rhinitis, Upper respiratory tract infection,
Pediatric hand-foot-mouth disease, and Pediatric diarrhea, respectively.

similar to the ablation experiment of removing the matrix.
2) Adding to all 10 layersmay lead themodel to overly rely on
prior knowledge, thus impeding its learning capacity. Since
the odd-numbered layers have better performance on both
datasets, we adopt this method in subsequent experiments.

2) THE IMPACT OF GRAPH EMBEDDING
Since we believe that patients with the same disease

exhibit similar topological connections, incorporating the
topological representation of the graph into the embedding
layer can better model patient representations. Hence,
we conduct experiments to further analyze whether it truly
enhances the representation capabilities. In the experimental
setup, we take DXY as an example and randomly select eight
patients for each disease, resulting in a total of forty patients.
Then, we calculate the similarity (using cosine similarity)
between each pair of patients by comparing the original
embedding representations without patient-oriented graph
and the embedding representations with patient-oriented
graph. Finally, we visualize the results using a heat-map. The
experimental results are shown in Figure 6, with the left side
representing the embedding without patient-oriented graph
and the right side representing the embedding with patient-
oriented graph. The darker the color, the closer the similarity
is to 1, and vice versa. From figure 4, we can observe
that patients with the same disease exhibit darker colors in
the corresponding regions, indicating higher similarity. This
demonstrates that incorporating topological information can
indeed enhance the ability to encode patient representations
more effectively. Additionally, we can also observe that
patients with ‘‘pneumonia’’ and ‘‘upper respiratory tract
infection’’ have high similarity, which aligns with real-world

TABLE 7. Performance comparison with ChatGPT.

scenarios as these two diseases share similar symptom
manifestations.

3) PERFORMANCE COMPARISON WITH CHATGPT
Since large language models (LLMs) can directly perform

automatic diagnostic tasks, we further conduct comparative
experiments with LLMs. In the experimental setup, we select
both ChatGPT-3.5 and ChatGPT-4. To achieve better results,
we employ the ICL technique, i.e., few-shot learning. Specif-
ically, we conduct 0-shot, 1-shot, and 3-shot experiments.
In the prompts, we provide all candidate symptom and
disease sets, emphasizing that only one symptom could be
queried at a time. To avoid excessively large candidate sets,
we limit the experimental datasets to DXY and Muzhi-4.
Finally, to ensure the accuracy of results, we repeat the
experiments multiple times (N=5). The experimental results,
as shown in Table 7, indicate that: 1) In the 0-shot setting,
our model outperforms both ChatGPT-3.5 and ChatGPT-4,
with over 10% improvement in disease diagnosis accuracy.
2) In the few-shot setting, ChatGPT’s performance shows
some improvement compared to the 0-shot scenario, but our
model’s performance still significantly surpasses ChatGPT.

4) CASE STUDY
In this section, to better illustrate the input-output structure

and advantages of our model, we use a real example as shown
in Table 8. Given a patient, the input consists of the patient’s
explicit symptoms, including restlessness, fever and rash. The
goal of the model is to output the same as the target, which
is to inquire about symptoms to include as many implicit
symptoms as possible and predict the disease to be the same
as the target disease. This example indicates that: 1) Our
model only inquiries about five symptoms, including four
implicit symptoms, indicating a high recall rate of implicit
symptoms and accurate disease diagnosis. 2) We select two
SOTAmodels for comparison, namely CoAD and Diaformer.
Among them, CoAD shows low relevance in the symptoms it
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TABLE 8. Case study.

inquiries about, while also making wrong disease diagnosis.
Although Diaformer achieves accurate disease diagnosis,
it requires a higher number of symptom inquiry rounds and
does not inquire about more implicit symptoms in fewer
rounds. This indicates that our model has to some extent
learned more realistic diagnostic patterns and has better
performance.

VI. RELATED WORK
In recent years, there has been a significant surge in research
on automatic diagnosis, focusing on model design and
construction for strategy selection.

In the early stages, a considerable number of methods
were based on statistical models. Among them, Bayesian
models [5], [28], [29] are dominant, which define symptom
inquiry as a feature selection task. These models utilize
entropy functions to find optimal features and maximize
information gain as the training objective. Guan and Baral [5]
utilize the Quick Medical Reference belief network and
respectively uses Bayesian inference and Bayesian experi-
mental design in the inference phase and the inquiry phase.
Wang et al. [30] develop a disease self-diagnosis system that
searches and provides relevant alternative symptoms based
on predefined meta-paths by graph representation learning.
Besides, some latest works [11], [23], [31] define this task
as a sequence generated task, which utilizes transformer
as the backbone of model. Diaformer [10] proposes a
symptom attention framework and three unordered training
mechanisms to eliminate the impact of sequence order.
This type of methods has fast training speed and is easy
to expand to large-scale data. Tian et al. [26] introduces
an experience-driven knowledge model, iteratively learning
from data and injecting it into a knowledge graph to address

data collection and multi-classification challenges via entity
linking, graph fusion, adaptive neural network construction,
and incremental updates.

Nowadays, most of works define the automatic diagnosis
task as a sequential decision-making task. It is naturally
modeled as a Markov decision-making process, so RL
is used for strategy learning. Among that, Flat-DQN [1]
utilizes a basic DQN model to train the embedding of
symptom questioning and disease diagnosis in the motion
selection space. REFUEL [18] proposes a method of feature
reconstruction and reward remodeling to improve model
training performance. After that, KR-DS [15] proposes
introducing prior statistical information into action selection.
GAMP [19] first introduces generative adversarial networks
of this task, which trains a symptom generator and a symptom
discriminator respectively through the game between them.
HRL [20] utilizes a two-layer hierarchical RL framework
to mimic the offline diagnostic process, where the first
layer is used for coarse-grained department determination,
and the second layer is used for fine-grained disease
diagnosis. Liu et al. [32] propose leveraging learned dialogue
models to customize reinforcement learning settings for
efficient action space exploration, and designs a clustering
method and pre-training strategy. DxFormer [24] decou-
ples symptom inquiry and disease diagnosis, utilizing a
Transformer-based model to treat symptoms as tokens,
enabling independent optimization through reinforcement
reward and cross-entropy loss. Tiwari et al. [33] propose
a novel knowledge-infused and context-driven hierarchical
reinforcement learning diagnostic dialogue system, which
achieves intelligent and context-aware symptom investigation
and significantly improved disease classification accuracy
through the Potential Candidate Module (PCM) and the Hier-
archical Disease Classifier (HDC). CoAD [25] introduces a
framework that aligns disease labels with symptom steps,
augments symptom labels to strengthen training signals, and
combines repeated symptom input with an attention schema
for concurrent symptom and disease generation.

Additionally, with the emergence of large language
models, recent works have adopted LLMs for this task.
Wang et al. [34] employ an agent derived from LLMs
without fine-tuning as the model and propose the Agent-
derived Multi-Specialist Consultation (AMSC) framework,
which adaptively integrates the probability distributions of
potential diseases from the agents to model the real-world
diagnostic process. Jin et al. [35] propose an innovative
framework, Health-LLM, by integrating health reports and
medical knowledge, large-scale feature extraction, and
the retrieval-augmented generation (RAG) mechanism to
improve the accuracy of disease prediction and personalized
healthcare. Zhang et al. [36] combine LLMs with Markov
logic networks (MLNs) and external medical knowledge
to enhance the interpretability and accuracy of medical
diagnosis.

Finally, some works have expanded this task to end-to-end
medical dialogue generation. Jin et al. [35] utilize LLMs to
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directly generate dialogues by integrating health reports and
medical knowledge. Varshney et al. [37] propose a medical-
knowledge-aware neural model, MED, by integrating UMLS
and medical entities extracted using BERT, embedding the
triples from the knowledge graph into pre-trained language
models to improve the accuracy and relevance of medical
dialogue generation.

VII. CONCLUSION
In this article, we propose an end-to-end model KDPoG.
Firstly, in addition to use the symptom and attribute
embedding, we propose patient-oriented graph enhanced
representation learning, which is built by a patient-oriented
graph and learned with heterogeneous graph convolution
networks. Furthermore, based on the encoder built with
graph attention units, we propose knowledge-guided atten-
tion mechanism learning, which incorporates conditional
probabilities of co-occurrence between symptom pairs.
Finally, we utilize two linear layers as the classification
module to achieve symptom probing and disease diagnosis.
We conduct extensive experiments on four public datasets,
which demonstrate that our proposed model outperforms the
state-of-the-art methods. We achieve an average absolute
improvement of over 2% in disease diagnosis accuracy.
Particularly, on the MZ-10 dataset, we observe an absolute
improvement of over 14.7% in symptom recall rate.

LIMITATIONS
In this work, our model has two key limitations that will
be further addressed in future research. The first limitation
is that our model’s input is relatively singular, only able
to take symptoms and their attributes as input. However,
in practical application scenarios, other key information such
as the severity of symptoms, affected areas, and the patient’s
medical history will also be included, and these pieces
of information are crucial for diagnosis. To mitigate this
limitation, our potential approach may involve adding the
aforementioned information to the input encoding section,
or directly encoding self-reported text using language mod-
els. The second limitation is that in practical applications,
our model needs to be complemented with other NLP
components to achieve automated diagnosis, including NLU
for information extraction and normalization, and NLG for
natural language text responses. To facilitate the end-to-end
construction of the entire process, we plan to use LLMs
to implement other components. Additionally, LLMs can
provide external knowledge, and the combination of large and
small models theoretically enables higher-quality follow-up
questions and more accurate diagnosis.
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