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ABSTRACT Determining the motor intentions of an individual through the analysis of electroencephalo-
grams (EEGs) is a challenging task that concurrently holds considerable potential in aiding subjects with
motor dysfunctions. Moreover, thanks to the recent advances in artificial intelligence models and EEG
acquisition devices, such analyses can be carried out with ever higher accuracy. The latter aspect covers
great importance, since the EEG analysis of subjects whose mental efforts are focused on moving limbs
is frequently used for crucial tasks, including the control of interactive interfaces and prosthetic devices.
In this paper, a novel multi-stream 1D Convolutional Neural Network (CNN) architecture is proposed.
The input EEG signal is processed by four convolutional streams, which differ in the size of convolutional
kernels, thus allowing the extraction of information at different time scales. The resulting 1D feature maps
are then fused together and provided to a dense classifier to identify which limb the subject intended to
move. Comprehensive experiments conducted on PhysioNet EEG motor movement/imagery dataset, which
remains the reference collection of data in this application context, have demonstrated that the proposed
model surpasses the key works in the current state-of-the-art in both cross-subject and intra-subject settings.

INDEX TERMS Motor imagery, EEG analysis, multi-stream, 1D convolutional neural networks (1DCNNs),
brain–computer interfaces (BCIs).

I. INTRODUCTION
The last two decades have seen significant advances in
invasive and non-invasive Brain-Computer Interfaces (BCIs).
Invasive techniques for BCI applications entail the direct
placement of electrodes onto brain tissue, thus enabling the
acquisition, and occasionally induction, of high-definition
and granular electrical signals. These interfaces find appli-
cation in a wide range of tasks, including cognitive enhance-
ment [1], epilepsy monitoring and treatment [2], restoration

The associate editor coordinating the review of this manuscript and

approving it for publication was Md Kafiul Islam .

of sensory functions [3], and many others. Despite the
outstanding outcomes achieved, invasive techniques for BCI
applications are presently restricted to specific cases where
alternative solutions are not feasible. The utilization of these
interfaces involves several critical aspects, including surgical
intervention and constant monitoring of the implants over
time. Thanks to the ever-increasing quality of the information
acquired in terms of spatial and temporal resolution, non-
invasive techniques for BCI applications have taken on amore
prominent role in recent years. As with invasive interfaces,
non-invasive ones are also used in different application
areas, depending on the type of information acquired and
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the nature of the devices, which can vary in terms of
cumbersomeness. For example, Functional Near-Infrared
Spectroscopy (fNIRS), which measures brain activity by
detecting changes in the concentration of oxygenated and
deoxygenated hemoglobin in brain tissues, is utilized in a
broad spectrum of brain functional and cognitive research,
such as mental workload assessment [4], identification of
effective connectivity [5], and visuo-motor analysis [6].
On the other hand, Functional Magnetic Resonance Imaging
(fMRI), which typically measures changes in blood flow
associated with neuronal activity, is mainly employed for
analysis and investigation purposes [7], [8], [9], as well
as clinical and brain mapping applications [10], [11], [12].
Among the non-cumbersome and non-invasive techniques,
the most used in terms of versatility and usability are,
without a doubt, the EEG-based interfaces. Their high
accuracy in acquiring signals is making them indispensable
in an extensive range of challenging tasks, such as person
identification [13], [14], [15], emotion recognition [16],
[17], [18], neural rehabilitation [19], [20], [21], motor
imagery [22], [23], [24], and many others. Regarding motor
imagery (MI), it is undoubtedly one of the most fascinating
and valuable fields for EEG-based interfaces. These devices
enable the design of low-cost, high-performance systems
capable of significantly improving the quality of life for a
wide range of individuals with motor dysfunctions.

It is well-known that methodologies addressing MI focus
on interpreting predominant brain areas that are activated
when a subject mentally simulates movements or actions
without actual physical execution. The nature of these
imagined activities depends on their intended goals, which
can range from simple device interactions and performing
rehabilitation exercises to piloting mechanical prostheses.
Unsurprisingly, recent years have seen remarkable results
in complex tasks, thanks to the ever-increasing use of
modern BCIs. These interfaces allow for the acquisition of
EEG signals with increasingly accurate and coherent spatio-
temporal content.

The current literature features a growing number of
works from different research groups, each pushing the
boundaries of MI forward. For example, the authors of [25]
propose a novel three-dimensional capsule network EEG
signal recognition model. Initially, this model employs a
multi-layer 3D convolution module for feature extraction.
Subsequently, it integrates a capsule network to obtain
advanced spatial features, and finally, it uses dynamic
routing connections and squash functions for classification.
Similarly, the approach presented in [26] introduces an
enhanced complex-valued common spatial pattern, which
aims to analyze EEG signals by decomposing them into
spatial patterns through covariance. The primary objective
of their method is to maximize the variance between signals
associatedwith distinct classes whileminimizing the variance
between signals within the same class. An alternative solution
for analyzing MI tasks is reported in [27], where a phase

locking value-based method linked with the synchronization
between EEG signals from different areas of the brain
is presented. The authors in [28] propose a real-time MI
analysis based on examining single-channel EEG signals; in
particular, they suggest a thresholding method to facilitate
the differentiation between transients and low-frequency
components within such signals.

Moving on to amore generalizedmodel, the authors in [29]
propose a method that uses wavelet transform for the EEG
feature extraction phase and a simple Multi-Layer Perceptron
(MLP) with a single hidden layer for classification. They
applied it to both mental and MI tasks to demonstrate the
versatility of the proposed approach. Similar to the work
reported in [29], the authors in [30] present an algorithm
for cursor manipulation on a screen through a BCI. In this
case, a wavelet transform is used for the feature extraction
stage. For the subsequent classification process, a hybrid
system made up of a Support Vector Machine (SVM) and an
MLP was developed. This combination of models aimed to
enhance the accuracy and efficiency of cursor control using
EEG signals. By imagining moving fists and feet, the subject
moves the cursor in the four cardinal directions, while closing
the eyes acts as a left-button click.

Analyzing the vast literature on MI, it can be seen that
various research groups, in addition to solving specific
tasks, are also focused on addressing intrinsic aspects
of EEG signals, such as redundancy, dimensionality, and
optimization. For example, an interesting paper reported
in [31] describes how the authors use a shrinkage-regularized
common spatial pattern to project EEG signals and select
features using a minimum redundancy maximum rele-
vancy algorithm. Subsequently, an SVM is adopted for
the classification of intentions. Authors in [32] and [33],
on the other hand, focus their work on the dimensionality
reduction of EEG signals through an iterative multi-objective
optimization for channel selection algorithm and Granger
causality, respectively. The research outlined in [34] centers
around a pre-processing stage designed to decompose µ

and β rhythms from EEG signals. The approach employs
uncorrelated transform complex common spatial patterns to
enhance the independence between the identified rhythms.
Subsequently, machine learning (ML) algorithms are used
to extract various valuable features from both rhythms. The
authors opposing the work reported in [35] primarily focus
on the analysis of the δ rhythm. The methodology employed
in this research involves the use of a Light Gradient Boosting
Machine (LightGBM) classifier, which is based on Decision
Trees (DT). The study explores the interplay between
the δ rhythm and the classifier, thus providing insights
into their relationship and potential implications. Finally,
a recent study presented in [36] explores the use of attention
mechanism-based deep learning (DL) models to construct
subject-independent MI interfaces. This study shows that
these mechanisms also aid in achieving remarkable results for
practical case studies in this area.
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FIGURE 1. The architecture of the proposed model. The latter is composed by four CNN streams, which are defined in Table 1, and a set of fully
connected layers, which are defined in Table 2.

In addition to what is reported above, and thanks to
the ever-increasing computational capabilities of current
Graphical Processing Units (GPUs), it should be highlighted
that the last decade has seen continuous growth in the
use of DL models for analyzing EEG signals, including
MI-based tasks. For example, the authors in [37] employ
a Convolutional Neural Network (CNN) within an end-
to-end framework to simultaneously extract features and
classify EEG signals. This approach eliminates the necessity
for ad-hoc, non-deep feature extraction algorithms. The
results show a substantial enhancement in both intra-subject
and cross-subject accuracies compared to prior non-deep
methodologies. Similarly, the work reported in [38] uses
a Long Short-Term Memory (LSTM) neural network in
conjunction with an attention mechanism, diverging from
the previouslymentioned approach. Alternatively, the authors
in [39] introduce a virtual reality (VR) serious game designed
for stroke rehabilitation. The game employs a CNN, and
the outcomes align closely with those reported in [37]. The
work proposed in [40], instead, utilizes the positioning of
EEG electrodes to rearrange the input for a Graph-based
Convolutional Recurrent AttentionModel (G-CRAM), which
performs feature extraction and classification by leveraging
the spatiality of the data. Finally, the CNN used in [41]
incorporates the local re-parameterization trick, a method
that can generate a gradient estimator to reduce variance.
Confirming the leap in quality due to the ever-increasing use
of deep learning models to analyze EEG signals is the work
described in [42] where, moreover, the absolute goodness
of CNNs in terms of accuracy and versatility emerges. For
all the reasons seen so far and in light of the remarkable
results obtained, this paper proposes a novel architecture
based onmulti-stream 1DCNNwhere the input EEG signal is
processed by four convolutional streams, which differ in the

size of convolutional kernels. The resulting 1D feature maps
are then fused together and provided to a dense classifier to
identify which limb the subject intended to move. The key
contributions of this work can be summarized as follows:

• a novel modular multi-stream 1D CNN architecture for
the feature extraction stage that can retrieve meaningful
information by analyzing the same data considering
different time scales;

• in the conducted ablation study, it has emerged that with
this specific type of data, shallow models with more
streams achieve better results with respect to deeper
models with less streams;

• comparative experiments on PhysioNet EEG motor
movement/imagery dataset, the reference data collection
for MI application field, that show how the proposed
model overcomes the key works of the current literature
in both cross-subject and intra-subject analysis.

As a final consideration, employing modern deep mod-
els in EEG analysis could yield interesting insights into
neuroscience. For instance, CNNs could enhance feature
extraction from noisy EEG signals, or alternately, by focusing
on the classification of these signals, it could be possible
to develop advanced prosthetic limbs. Additionally, deep
models could be leveraged for diagnosing neurological dis-
orders such as epilepsy, Alzheimer’s disease, and attention-
deficit/hyperactivity disorder (ADHD).

The rest of the paper is structured as follows. Section II
describes in detail the proposed architecture, specifying
how the different streams and the classifier are composed.
Section III describes the used dataset together with the
performed experiments; moreover, it shows the obtained
results compared with the current literature. Section IV
reports the conducted ablation study for the modeling of
the final architecture. In Section V, the limitations of the
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proposed method are highlighted, together with the future
works. Finally, Section VI concludes the paper.

II. METHODOLOGY
The proposed deep architecture is a CNN that approximates
the function m : Rb×s×cin → Rb×|L|, which maps each EEG
in b to a probability distribution. In detail, we have:

• b ∈ N ≥ 1 represents the number of EEG trials
in each batch given as input to the CNN during the
training and inference phases. As pointed out in [43],
this hyperparameter must be accurately chosen based on
the problem being treated and the available hardware
since it directly affects the performance, both in means
of computational costs and of classification result;

• s ∈ N ≥ 1 is the number of samples for each EEG
trial calculated as s = ⌊r · t⌋, where r ∈ R > 0 indi-
cates the sampling rate, expressed in Hertz (Hz), and
t ∈ R > 0 the recording time in seconds (s). Each EEG
trial used in the training and testing phases for this work
has a fixed length;

• cin ∈ N ≥ 1 is the number of EEG channels recorded
during the experiments. This parameter mainly depends
on the device used for recording the data. In this work,
we used all the available data for each trial;

• L is the set of classes (also called labels) of each trial
in the used dataset, corresponding to {Al,Ar } for the
PhysioNet dataset, where Al and Ar mean left or right
arm activation, respectively. Each trial is labeled either
Al or Ar .

The proposed model m consists of two main sub-modules:
a set of convolutional streams, ms, described in detail in
Section II-A, whose purpose is to extract different features
from the input, and the classifier,mc, covered in Section II-B,
that outputs a tensor of probabilities (in the form of logits)
for L.

A. CONVOLUTIONAL STREAMS
A convolutional stream msi ∈ ms is composed of one
or more convolutional blocks, each one composed of 1D
convolutional layers. All the convolutional streams present
the same structure, differing solely in the parameter denoted
as k , namely, the size of the kernels of each stream. The idea
behind employing kernels of varying sizes is to facilitate the
extraction of information from each channel across diverse
temporal scales. Let us define the kernel size of the first
stream as k1. The subsequent streams iwill have a kernel size
of ki = ki−1 + 2. For example, if k1 = 3, we will have that
k2 = 5, k3 = 7, k4 = 9 . . . ki = ki−1 + 2.
A convolutional block is formed by a sequence of two

1D convolutional layers with kernel size k , padding
⌊ k
2

⌋
and stride 1, and a ReLU activation function after each
convolutional layer. All convolutional blocks, except for the
final one, present a final 1D convolutional layer with a
stride equal to 2, to reduce the length of the samples. Next
to the final convolutional block, there is a 1D Adaptive
Max Pooling layer, that shapes the input to a fixed length

TABLE 1. Layers and parameters for each stream of the proposed model.

TABLE 2. Layers and parameters for the classifier of the proposed model,
where L is the set of labels.

preserving the number of channels [44], and a flattening layer,
which purpose is to reshape the obtained feature map to
the form accepted by the classifier. A convolutional stream
approximates the function msi : Rb×s×cin → Rb×(cout ·p),
where cout = 64 is the number of output channels of the
final convolution and p = 48 the final output size of the 1D
Adaptive Max Pooling layer.

In the proposed model, we have that the optimal number
of streams is 4, and the parameters k for the kernel are,
respectively, 7, 9, 11, and 13 for ms1 , ms2 , ms3 , and ms4 . The
rest of the parameters are reported in Table 1.

B. CLASSIFIER
The classifier block mc is composed of a sequence of fully
connected layers, which get as input the concatenation of the
flattened features maps obtained through the convolutional
blocks of each stream msi ∈ ms. Each fully connected
layer, is preceded by a dropout layer [45], which prevents
neurons from excessive co-adaptation by randomly dropping
each one and its connections with a fixed probability during
training. In addition, every linear layer except the last one
is followed by a ReLU activation function to add non-
linearity. The classifier block approximates the function mc :

Rb×(cout ·p·|ms|) → Rb×|L|. The parameters chosen for the
model used in the results are reported in Table 2.

III. EXPERIMENTS AND DISCUSSION
In this section, the dataset, experimental setup, and experi-
mental protocol are presented first. Subsequently, the results
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obtained from the intra-subject and cross-subject experi-
ments, along with a comparison to the current literature, are
discussed.

A. DATASET
The PhysioNet EEG motor movement/imagery dataset [46],
[47] is a collection of EEGs from 109 subjects recorded
during the execution of four tasks: opening and closing left
or right hand, imagining opening and closing them, opening
and closing both hands or both feet, imagining opening
and closing them. Such data has been recorded using a 64-
channel, 160Hz Brain Computer Interface. In this work,
we focused on the recordings belonging to the second task,
i.e., imagining opening and closing the right and left hand.
No pre-processing steps were used on the dataset samples.
This choice is due to the robustness of the CNN models in
extracting features also in contexts in which the data present
some noise.

B. EXPERIMENTAL SETUP
The final model architecture employed in the experiments
was determined by considering the optimal configuration that
emerged from the ablation study delineated in Section IV.
Consequently, the model comprises four distinct streams
in ms, each containing two convolutional blocks. The kernel
size for the first stream is set to k = 7 to analyze
a sufficiently wide temporal window. In our experiments,
we obtained the best results with one convolutional block,
one final convolutional block, and one pooling block. The
structural delineation of each of these blocks is explained
in detail in Table 1. The classifier, mc, comprises two linear
layers, as depicted in Table 2. Figure 1 illustrates our final
multi-stream CNN architecture.

The model has been implemented by using the Pytorch
framework, while the EEG data has been handled with the
MNE [48] framework. The model has been trained and tested
on a machine with a 2-core Intel Xeon CPU at 2.2GHz,
13GiB of RAM and with an nVidia Tesla T4 GPU bundled
with 16GiB of GDDR6 RAM. The code related to our model
is available on GitHub.1

C. EXPERIMENTAL PROTOCOL
In this work, we focused on two types of experiments: cross-
subject (Section III-C1) and intra-subject (Section III-C2)
classification of MI-based EEGs.

1) CROSS-SUBJECT
The following is the formal definition of the cross-subject
classification task. Given a pool E =

⋃
1≤i≤N (xi, yi) of N

labeled EEGs belonging to all the subjects, a model is trained
on a subset Et ⊂ E to identify patterns in EEG signals to
predict the thought action, and its performance is evaluated
on a subset Ev ⊂ E , where Et∩Ev = ∅ and Et∪Ev = E . Each
sample (x, y) ∈ E is formed by an EEG record x ∈ Rs×cin of

1https://github.com/Prometheus-Laboratory/2024_MultiStream1D

TABLE 3. Comparison with the related work on the PhysioNet dataset.
Bold values are the best ones in their respective columns.

a fixed duration of s samples and cin channels, and a label
y ∈ L that indicates the action being thought by the subject
in that trial.

2) INTRA-SUBJECT
Intra-subject classification task has been structured as
follows. For each subject Si ∈ S in a pool S of subjects,
where Si =

⋃
1≤i≤N (xi, yi) is a collection of N labeled EEGs

of a single subject, a model is trained on a subset Et ⊂ Si
to identify patterns in EEG signals and predict the thought
action. Its performance is evaluated on a subsetEv ⊂ Si where
Et ∩ Ev = ∅ and Et ∪ Ev = Si. As in section III-C1, each
sample (x, y) ∈ E is formed by an EEG record x ∈ Rs×cin and
a label y ∈ L. At the end of the process, a model is produced
for each subject, and the final intra-subject performances are
calculated as the mean of the performances of each model.

D. RESULTS
In this section, the results obtained in the performed
intra-subject and cross-subject experiments, together with the
comparison with the current literature, are presented.

E. PERFORMANCE METRICS
Given the intricate nature of EEG data, which is characterized
by high dimensionality and susceptibility to noise, it is
imperative to employ a variety of metrics to comprehensively
assess the model performance on the validation sets. In the
following paragraphs, the metrics employed for measuring
the goodness of our model are described [49].

a: ACCURACY
Represents the ratio between correctly classified samples and
their total amount within the dataset. Hence, the accuracy
gives an overall measure of model performance.

b: PRECISION
Represents the ratio between correctly classified positive
samples and the number of positive predictions. Precision
quantifies the number of true positive predictions among
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FIGURE 2. Loss values for a) training and b) testing phases on the PhysioNet dataset using 10-fold cross validation, and accuracy values for c) training
and d) testing phases on the PhysioNet dataset using 10-fold cross validation. Both accuracy and loss refer to the cross-subject experiment. Each line
in the plots represents the i-th fold, while the value µ represents the average value obtained among the several folds. Formally, let M ∈ Rkf ×e be the
accuracy matrix, where kf is the number of folds in the cross validation and e the maximum number of epochs, µ =

1
kf

∑
1≤i≤kf

max(Mi ) is equal to
the mean of the maximum accuracy reached for each fold. In our experiments, kf = 10 and e = 100.

FIGURE 3. The four metrics computed for the cross-subject experiments.
For each of the metrics, a box plot is provided, which allows a better
overview of the metrics distribution and their variability in the 10 folds.

the total number of positive predictions made, reflecting the
model reliability in predicting positive instances.

c: RECALL
Represents the ratio between correctly classified positive
samples and the number of positive samples. Recall rep-
resents the proportion of actual positive instances that the
model correctly identified, providing insight into the model
sensitivity to positive instances.

d: F1 SCORE
Represents the relation between precision and recall using
their harmonic mean. F1 offers a balanced measure of the
model’s performance, especially when the class distribution
is imbalanced. Accuracy, precision, recall, and F1 score are
critical for assessing the model’s ability to make correct

predictions and minimize errors, providing insights into the
model’s reliability in real-world applications.

e: COHEN’S K
Represents the agreement between two annotators that
classify the items, and also considers the agreement obtained
by chance, ranging in [−1, 1] [50]:

kC =
accuracy− pe

1 − pe
, (1)

where pe is the expected agreement when both annotators
assign labels randomly. Cohen’s k offers a measure of the
degree to which the classifications made by the model align
with expert annotations, considering random agreement, and
thus it adds an additional layer of validation to the assessment.
This aspect plays a key role, especially in themedical context,
where reliability is fundamental.

Themeticulous application of different metrics is crucial in
our cross-subject experiments due to the inherent variability
and complexity arising from the diversity in subject char-
acteristics, behaviors, and responses. Such a comprehensive
approach ensures the nuanced evaluation of model general-
izability, reliability, and robustness across different subjects.
Conversely, intra-subject experiments typically exhibit less
variability, allowing for a more streamlined evaluation with
fewer metrics, yet adequately capturing the essence of
model performance within individual subjects. The proposed
selection of metrics provides a robust way for evaluating
the model performance, enabling the revelation of insights
and subtleties that may remain elusive when constrained by
a narrower set of evaluative tools, often observed in prior
research.

Since the dataset is not split into training and validation
sets, k-fold cross-validation has been used. It consists in
splitting a dataset E in k subsets Ei such that

⋂
1≤i≤k Ei = ∅

and
⋃

1≤i≤k Ei = E , train k models using k − 1 splits as the
training set and a single split as the validation set such that
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FIGURE 4. Confusion matrix for the cross-subject experiment on the PhysioNet dataset. Al and Ar are respectively the labels for left and
right arm activation.

the validation split is different in each of the k iterations, and
finally averaging the performances of the k models.

F. COMPARISON WITH RELATED WORKS
In this section, a comparison of our work with the state-
of-the-art is performed, emphasizing distinctions in both
cross-subject and intra-subject evaluations.

It is worth noting that numerous works [29], [30],
[39], predominantly showcase the accuracy metric due
to its straightforwardness, providing a snapshot of model
performance. However, this simplification canmiss subtleties
and imbalances in model evaluation. In opposition, our
method, similar to [33] and [38], employs multiple, compli-
mentary metrics, as described in Section III-E, ensuring a
nuanced understanding of model performance and offering
a more well-rounded insight into its reliability and efficacy.
Additionally, the incorporation of both cross-subject and
intra-subject evaluations marks a departure from the norm,
reflecting a depth observed in only a few studies like [32],
[33], [37], and [38]. This inclusive approach affords a
comprehensive view of model performance and adaptability
across diverse subjects and singular subject scenarios.
Focusing on one kind of evaluation potentially overlooks
critical insights and nuances that are integral to understanding
model behavior and efficacy comprehensively.

1) CROSS-SUBJECT
In cross-subject experiments, the proposed model achieves
state-of-the-art results when compared with the related work.
As depicted in Figure 2, the validation loss reaches its
minimum at about the twentieth epoch; after that, the model
starts overfitting, reaching a mean accuracy score µ = 85.9.
Such an accuracy score is obtained by averaging the
maximum accuracy of each fold, which consistently outper-
forms the previous state-of-the-art score achieved in [33]
by ∼ 2.3%. The latter, as for the work reported in [32], uses
an SVM classifier, thus meaning that a data pre-processing
step is mandatory to remove noise and artifacts. This step can
strongly influence the result of classification since there is the
risk of removing relevant information needed to accomplish

the task. Instead, when using CNN-based approaches, as the
one proposed in this paper and those presented in [37] and
[39], it is possible to provide raw EEG data directly to the
CNN-based model thanks to its ability, on the one hand,
to automatically extract relevant features from input data,
on the other hand, to effectively capture local patterns and
filter out irrelevant information, thus allowing the model
to be robust in real application contexts. In Figure 4,
the normalized confusion matrix for the experiments is
presented, highlighting that the left arm samples are classified
with higher accuracy. The boxplot in Figure 3 allows a more
precise examination and comparison of the metrics described
in Section III-E, regarding the cross-subject experiments
conducted. It is observed that accuracy, precision, recall, and
F1 scores are predominantly situated within an 84% to 90%
range, indicating themodel’s robust performance and efficacy
in correctly identifying and classifying instances across sub-
jects. On the contrary, Cohen’s k value displays a range from
68% to amaximum of 81%. The relative reduction in Cohen’s
k values compared to the aforementioned metrics under-
scores potential disparities in the classification of instances,
hinting at a possible presence of false positives/negatives
that may be affecting the inter-annotator reliability. This
variance in metrics accentuates the intricate dynamics of
model performance and emphasizes the criticality of having
several metrics to ensure the reliability and validity of
the model’s predictive capabilities in diverse experimental
conditions.

It is worth noting that the feature extraction part of the
pipeline has been entirely handled by the streams through the
use of the learned convolutions that automatically filter and
extract meaningful information from the data, thus allowing
the human not to necessarily define a hand-crafted algorithm
for noise reduction or channel selection but to focus on the
architecture of the neural network.

2) INTRA-SUBJECT
The results of the intra-subject experiments are very promis-
ing with a µ value of 0.996, where µ is computed as
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FIGURE 5. Bar plots of a,b) loss and c,d) accuracy per subject on the PhysioNet dataset using 10-fold cross-validation for intra-subject experiments.
Each bar represents a subject of the dataset, and the gray part of the bar represents the variability among the several folds of the considered measure.

the mean of the maximum accuracy scores per subject for
each fold, with almost all subjects correctly classified as
can be seen in Figure 5. In contrast to Figure 2, which
utilizes a line plot to represent cross-subject variations,
reflecting the results of a single training and validation
process, Figure 5 employs a bar plot to illustrate intra-subject
variability due to multiple training sessions proportional to
the number of subjects. In this case, a bar plot effectively
represents and contrasts the discrete, categorical data points,
allowing for clear comparisons between individual subjects.
The use of different plot types in Figures 2 and 5 is integral
to accurately conveying the distinct aspects of the neural
network’s performance and variability in cross-subject and
intra-subject contexts. The results are comparable to the ones
obtained by [35], although in the latter work just the δ

rhythm has been used: those are waves from 0 to 4Hz [51]
observed in the frontal and occipital region of the cortex and
are associated with sleep and tasks in which the subject is
required to carefully pay attention [52].
The previous state-of-the-art accuracy of 0.983, achieved

by [33] and [38], is approximately 1.3% less accurate than
the proposed method. Despite these two works achieving
equal intra-subject accuracy, it is worth noting that [33]
uses 105 subjects for the experiments, while [38] uses
103 subjects. Also, in the intra-subject experiments, the
works that use deep model-based approaches are the ones
that achieve higher results, except for the work presented
in [33], in which an SVM is used. The reason behind their
good results can be imputable to the automatic selection of the
channels based on their significance during the MI actions.

IV. ABLATION STUDY
In this section, the choices made during the selection of the
architecture of the final model are discussed. The several
experiments have been made using a split At of the PhysioNet
dataset D as the training set, with |At | ≈ 0.7 · |D|, and a
test set Av such that At ∪ Av = D and At ∩ Av = ∅. This
ablation study consisted of several experiments that focused
on different parts of the network: the number of streams
and their depth, the structure of the convolutional block, and

the depth of the final classifier. In Figure 6, a quantitative
representation of the performed experiments is depicted.
Within each experimental configuration, three distinct bar
plots are systematically illustrated, representing, in sequence,
the accuracy, the number of parameters, and the average
time required for each training epoch on our benchmark
machine described in Section III-B. The y axis delineates the
scale of the applied metric, with respective representations
for percentage, quantity, and minutes. The x axis portrays
the varying values of the parameter under examination.
Given that more than one run has been computed for every
unique configuration, the bar plots further incorporate a
representation of the fluctuations observed among them.
These fluctuations are manifested through a black line
superimposed on each respective box. This allows for a more
comprehensive understanding of the variability inherent in
each configuration, thereby providing a nuanced insight into
the relative stability and reliability of the tested parameter
values.

1) NUMBER OF STREAMS
This experimental phase consisted of changing the number of
streams of the model, and each stream follows the structure
described in Section II-A. According to the results shown in
Figure 6a, the number of parameters and the time required for
the training proportionally increase as the number of streams
increases. On the contrary, the accuracy value does not follow
this trend. In fact, while with 1, 2, and 3 streams themaximum
value is comparable, with 4 streams the accuracy increases
significantly. This behavior is due to the bigger kernel size in
the latest streams, thus allowing the extraction of information
from a bigger temporal interval.

2) DEPTH OF STREAMS
In this experimental phase, several convolutional blocks per
stream have been tested. The number of blocks ranged from
one to three. The structure of convolutional streams and
blocks follows the description provided in Section II-A.
According to the results shown in Figure 6b, the highest
accuracy value is achieved by using two convolutional blocks.
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FIGURE 6. Results of ablation studies on the structure of the proposed architecture. The features plotted are the accuracy on the PhysioNet
dataset using 10-fold cross-validation, the number of parameters of the model, and the average minutes per training epoch.

This is amenable to the fact that a single block is not able
to extract fine-grained features, while using three blocks,
the signal results to be too much processed, thus leading
to losing part of the information from the original signal.
It is worth noting that the number of parameters and average
training time are not proportional, as seen in Figure 6a.
This is due to the fact that when a single convolutional
block is used, the final convolution of the block having
stride 2 is removed, where instead b inner convolutional
blocks, i.e., all the convolutional blocks except the last one,
have b · 3 convolutions.

3) KERNEL SIZE
In this experimental phase, different kernel sizes for several
streams have been tested. In detail, the kernel size of the
first stream has been set, respectively, to a size of [3, 5, 7].

Then, the size of subsequent streams has been computed by
following the process defined in Section II-A. As depicted in
Figure 6c, this parameter does not have a significant impact
on the final accuracy.

4) LEARNED POOLING
In this experimental phase, tests were conducted to determine
which layer, between convolution and max pooling, must be
placed at the end of the convolutional block to achieve the
best results. As shown in Figure 6d, the learned convolution
allows us to get better accuracy results at a slightly higher
computational cost compared to the max pooling alternative,
which is not a learnable layer. These findings are in line
with the current state-of-the-art, as the trend in CNNs is to
completely replace pooling operations [53].
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5) BATCH NORMALIZATION
In this experimental phase, the effectiveness of batch
normalization has been tested. In detail, we tested the
batch normalization layer after the first two convolutional
layers of each convolutional block. Batch normalization is
a technique adopted to reduce the internal covariate shift
of batches, thus speeding up the convergence and solving
various initialization problems [54]. From the results shown
in Figure 6e, normalizing batches reduces accuracy and
slightly increases the training time. The decrease in accuracy
is due to the smoothing effect of batch normalization on
signals within the same batch, which results in the loss of
several peaks in the signals andmakes the samples too similar.
Regarding the increasing training time, instead, it is simply
due to the additional operation performed.

6) DEPTH OF CLASSIFICATION LAYERS
In this last experimental phase, the depth of the linear
layer has been tested. Such depth consisted of a number
of layers ranging from 1 to 3. As shown in Figure 6f, the
highest accuracy value was achieved using two classification
blocks, although the average training time and the number of
parameters remained similar across all configurations.

V. LIMITATIONS AND FUTURE WORKS
The biggest limitation of the proposed method is the
optimization. By having different streams, it is more difficult
to optimize the proposed architecture for different reasons.
Firstly, we have a higher number of hyperparameters that
must be correctly tuned. In addition, the definition of the
architecture itself can be non-trivial, e.g., number of streams,
depth of the streams, streams of the same length or not,
and more. In future research, we plan to further evaluate
the performance of the proposed method by testing it with
additional state-of-the-art datasets. While our current results
demonstrate the effectiveness of our approach, expand-
ing the evaluation to include other datasets will provide
a more comprehensive understanding of its capabilities
and robustness. By conducting experiments on additional
datasets, we aim to assess the generalizability of our method
across different domains and applications of EEG signals.
Additionally, we intend to explore potential modifications
and enhancements to our method, e.g., by considering
attention mechanisms, to verify if it is possible to reduce the
number of streams or the number of convolutional layers.

VI. CONCLUSION
This paper proposes a novel multi-stream 1D CNN model
for classifying EEG signals related to the MI application
field. The main novelty of the model is the use of the multi-
stream strategy, where parallel kernels with different sizes
on each stream are able to retrieve meaningful information
from the same data at different time scales. Comparative
experiments on the reference dataset, i.e., PhysioNet EEG
motor movement/imagery data collection, for this type of
application context, i.e., MI, show that the proposed method

outperforms the current state-of-the-art in cross-subject
and intra-subject experiments. Furthermore, our approach
demonstrates a marked advancement over related works,
primarily attributed to the utilization of a more extensive
and diverse array of metrics. This comprehensive evaluation
methodology enables a more nuanced and thorough under-
standing of model performance, thus ensuring the validity
and reliability of our findings across varied contexts and
applications. Finally, a consistent ablation study has been
conducted to assess the performances of multiple feature
extraction streams and their structure, which led to the best
model configurations to surpass the previous results in the
literature.

REFERENCES
[1] C. Loriette, C. Ziane, and S. Ben Hamed, ‘‘Neurofeedback for cognitive

enhancement and intervention and brain plasticity,’’ Revue Neurologique,
vol. 177, no. 9, pp. 1133–1144, Nov. 2021.

[2] K. Tan, A. Daitch, P. Pinheiro-Chagas, K. Fox, J. Parvizi, and
M. Lieberman, ‘‘Electrocorticographic evidence of a common neurocogni-
tive sequence for mentalizing about the self and others,’’ Nature Commun.,
vol. 2022, no. 13, p. 1919, 2022.

[3] R. Wahnoun, M. Benson, S. Helms-Tillery, and P. D. Adelson,
‘‘Delineation of somatosensory finger areas using vibrotactile stim-
ulation, an ECoG study,’’ Brain Behav., vol. 5, no. 10, pp. 1–10,
Oct. 2015.

[4] L.G. Lim, W. C. Ung, Y. L. Chan, C.-K. Lu, S. Sutoko, T. Funane,
M. Kiguchi, and T. B. Tang, ‘‘A unified analytical framework with multiple
fNIRS features for mental workload assessment in the prefrontal cortex,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 11, pp. 2367–2376,
Nov. 2020.

[5] M. Kiani, J. Andreu-Perez, H. Hagras, E. I. Papageorgiou, M. Prasad, and
C.-T. Lin, ‘‘Effective brain connectivity for fNIRS with fuzzy cognitive
maps in neuroergonomics,’’ IEEE Trans. Cognit. Develop. Syst., vol. 14,
no. 1, pp. 50–63, Mar. 2022.

[6] S. B. Moro, M. Carrieri, D. Avola, S. Brigadoi, S. Lancia, A. Petracca,
M. Spezialetti, M. Ferrari, G. Placidi, and V. Quaresima, ‘‘A novel semi-
immersive virtual reality visuo-motor task activates ventrolateral prefrontal
cortex: A functional near-infrared spectroscopy study,’’ J. Neural Eng.,
vol. 13, no. 3, Jun. 2016, Art. no. 036002.

[7] N. Ramsey, M. van de Heuvel, K. Kho, and F. Leijten, ‘‘Towards human
BCI applications based on cognitive brain systems: An investigation
of neural signals recorded from the dorsolateral prefrontal cortex,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 214–217,
Jun. 2006.

[8] B. Ng, R. Abugharbieh, X. Huang, and M. J. McKeown, ‘‘Spatial
characterization of fMRI activation maps using invariant 3-D moment
descriptors,’’ IEEE Trans. Med. Imag., vol. 28, no. 2, pp. 261–268,
Aug. 2009.

[9] K.-R. Müller and S. M. Hofmann, ‘‘Interpreting deep learning models
for multi-modal neuroimaging,’’ in Proc. 11th Int. Winter Conf. Brain-
Comput. Interface (BCI), Feb. 2023, pp. 1–4.

[10] S. H. Jin, S. H. Lee, G. H. Jang, Y. J. Lee, J. An, and Y.-S. Lee, ‘‘Cortical
activation by fNIRS and fMRI during grasping in patient with traumatic
brain injury: A case study,’’ in Proc. Int. Winter Workshop Brain-Comput.
Interface (BCI), Feb. 2014, pp. 1–4.

[11] S. Leinders, M. J. Vansteensel, G. Piantoni, M. P. Branco,
Z. V. Freudenburg, T. A. Gebbink, E. G. M. Pels, M. A. H. Raemaekers,
A. Schippers, E. J. Aarnoutse, and N. F. Ramsey, ‘‘Using fMRI
to localize target regions for implanted brain–computer interfaces
in locked-in syndrome,’’ Clin. Neurophysiol., vol. 155, pp. 1–15,
Nov. 2023.

[12] J. Zhang, Q. Wang, X. Wang, L. Qiao, and M. Liu, ‘‘Preserv-
ing specificity in federated graph learning for fMRI-based neuro-
logical disorder identification,’’ Neural Netw., vol. 169, pp. 584–596,
Jan. 2024.

[13] P. Kumari and A. Vaish, ‘‘Information-theoretic measures on intrinsic
mode function for the individual identification using EEG sensors,’’ IEEE
Sensors J., vol. 15, no. 9, pp. 4950–4960, Sep. 2015.

VOLUME 12, 2024 83949



D. Avola et al.: Multi-Stream 1D CNN for EEG Motor Imagery Classification of Limbs Activation

[14] W. Chang, H. Wang, G. Yan, and C. Liu, ‘‘An EEG based familiar and
unfamiliar person identification and classification system using feature
extraction and directed functional brain network,’’ Expert Syst. Appl.,
vol. 158, Nov. 2020, Art. no. 113448.

[15] W. Li, Y. Yi, M. Wang, B. Peng, J. Zhu, and A. Song, ‘‘A novel tensorial
scheme for EEG-based person identification,’’ IEEE Trans. Instrum.
Meas., vol. 72, pp. 1–17, 2023.

[16] Y. Li, L. Wang, W. Zheng, Y. Zong, L. Qi, Z. Cui, T. Zhang, and T. Song,
‘‘A novel bi-hemispheric discrepancy model for EEG emotion recogni-
tion,’’ IEEE Trans. Cogn. Develop. Syst., vol. 13, no. 2, pp. 354–367,
2021.

[17] P. Samal and M. F. Hashmi, ‘‘Ensemble median empirical mode
decomposition for emotion recognition using EEG signal,’’ IEEE Sensors
Lett., vol. 7, no. 5, pp. 1–4, May 2023.

[18] Y. Yan, X. Wu, C. Li, Y. He, Z. Zhang, H. Li, A. Li, and L. Wang,
‘‘Topological EEG nonlinear dynamics analysis for emotion recognition,’’
IEEE Trans. Cognit. Develop. Syst., vol. 15, no. 2, pp. 625–638,
May 2023.

[19] K. P. Thomas, A. P. Vinod, and C. Guan, ‘‘Enhancement of atten-
tion and cognitive skills using EEG based neurofeedback game,’’ in
Proc. 6th Int. IEEE/EMBS Conf. Neural Eng. (NER), Nov. 2013,
pp. 21–24.

[20] G. Placidi, D. Avola, A. Petracca, F. Sgallari, and M. Spezialetti,
‘‘Basis for the implementation of an EEG-based single-trial binary
brain computer interface through the disgust produced by remem-
bering unpleasant odors,’’ Neurocomputing, vol. 160, pp. 308–318,
Jul. 2015.

[21] A. Kamble, P. H. Ghare, V. Kumar, A. Kothari, and A. G. Keskar, ‘‘Spectral
analysis of EEG signals for automatic imagined speech recognition,’’ IEEE
Trans. Instrum. Meas., vol. 72, pp. 1–9, 2023.

[22] B. Sun, X. Zhao, H. Zhang, R. Bai, and T. Li, ‘‘EEG motor imagery
classification with sparse spectrotemporal decomposition and deep
learning,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 541–551,
Apr. 2021.

[23] W. Zhang and D. Wu, ‘‘Lightweight source-free transfer for privacy-
preserving motor imagery classification,’’ IEEE Trans. Cogn. Develop.
Syst., vol. 15, no. 2, pp. 938–949, Jul. 2023.

[24] H. Zhi, Z. Yu, T. Yu, Z. Gu, and J. Yang, ‘‘A multi-domain convolutional
neural network for EEG-based motor imagery decoding,’’ IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 31, pp. 3988–3998, 2023.

[25] X. Du, M. Kong, S. Qiu, J. Guo, and Y. Lv, ‘‘Recognition of motor
imagery EEG signals based on capsule network,’’ IEEE Access, vol. 11,
pp. 31262–31271, 2023.

[26] C. Park, C. C. Took, and D. P. Mandic, ‘‘Augmented complex common
spatial patterns for classification of noncircular EEG from motor imagery
tasks,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 1–10,
Jan. 2014.

[27] A. Loboda, A. Margineanu, G. Rotariu, and A. Mihaela, ‘‘Discrimination
of EEG-based motor imagery tasks by means of a simple phase
information method,’’ Int. J. Adv. Res. Artif. Intell., vol. 3, no. 10, pp. 1–5,
2014.

[28] M. Mahmoodi, B. Makkiabadi, M. Mahmoudi, and S. Sanei, ‘‘A new
method for accurate detection of movement intention from single channel
EEG for online BCI,’’Comput. Methods Programs Biomed. Update, vol. 1,
Jan. 2021, Art. no. 100027.

[29] M. Tolić and F. Jovic, ‘‘Classification of wavelet transformed EEG signals
with neural network for imagined mental and motor tasks,’’ Kinesiology,
vol. 45, no. 1, pp. 130–138, 2013.

[30] M. H. Alomari, A. Abubaker, A. Turani, A. M. Baniyounes, and
A. Manasreh, ‘‘EEG mouse: A machine learning-based brain computer
interface,’’ Int. J. Adv. Comput. Sci. Appl., vol. 5, no. 4, pp. 193–198,
2014.

[31] H. V. Shenoy, A. P. Vinod, and C. Guan, ‘‘Shrinkage estimator based
regularization for EEG motor imagery classification,’’ in Proc. 10th Int.
Conf. Inf., Commun. Signal Process. (ICICS), Dec. 2015, pp. 1–5.

[32] V.S. Handiru and V. A. Prasad, ‘‘Optimized bi-objective EEG channel
selection and cross-subject generalization with brain–computer inter-
faces,’’ IEEE Trans. Human-Mach. Syst., vol. 46, no. 6, pp. 777–786,
Dec. 2016.

[33] H. Varsehi and S. M. P. Firoozabadi, ‘‘An EEG channel selection
method for motor imagery based brain–computer interface and neuro-
feedback using Granger causality,’’ Neural Netw., vol. 133, pp. 193–206,
Jan. 2021.

[34] Y. Kim, J. Ryu, K. K. Kim, C. C. Took, D. P. Mandic, and C. Park,
‘‘Motor imagery classification using mu and beta rhythms of EEG with
strong uncorrelating transform based complex common spatial patterns,’’
Comput. Intell. Neurosci., vol. 2016, no. 1, 2016, Art. no. 1489692.

[35] S. Abenna, M. Nahid, and A. Bajit, ‘‘Motor imagery based brain–
computer interface: Improving the EEG classification using delta rhythm
and LightGBM algorithm,’’ Biomed. Signal Process. Control, vol. 71,
Jan. 2022, Art. no. 103102.

[36] A. Keutayeva and B. Abibullaev, ‘‘Exploring the potential of attention
mechanism-based deep learning for robust subject-independent motor-
imagery based BCIs,’’ IEEE Access, vol. 11, pp. 107562–107580,
2023.

[37] H. Dose, J. S. Møller, H. K. Iversen, and S. Puthusserypady, ‘‘An end-to-
end deep learning approach to MI-EEG signal classification for BCIs,’’
Expert Syst. Appl., vol. 114, pp. 532–542, Dec. 2018.

[38] G. Zhang, V. Davoodnia, A. Sepas-Moghaddam, Y. Zhang, and A. Etemad,
‘‘Classification of hand movements from EEG using a deep attention-
based LSTM network,’’ IEEE Sensors J., vol. 20, no. 6, pp. 3113–3122,
Mar. 2020.

[39] T. Karácsony, J. P. Hansen, H. K. Iversen, and S. Puthusserypady,
‘‘Brain computer interface for neuro-rehabilitation with deep learning
classification and virtual reality feedback,’’ in Proc. 10th Augmented Hum.
Int. Conf. (AH), 2019, pp. 1–8.

[40] D. Zhang, K. Chen, D. Jian, and L. Yao, ‘‘Motor imagery classification via
temporal attention cues of graph embedded EEG signals,’’ IEEE J. Biomed.
Health Informat., vol. 24, no. 9, pp. 2570–2579, Sep. 2020.

[41] W. Huang, W. Chang, G. Yan, Z. Yang, H. Luo, and H. Pei, ‘‘EEG-based
motor imagery classification using convolutional neural networks with
local reparameterization trick,’’ Expert Syst. Appl., vol. 187, Jan. 2022,
Art. no. 115968.

[42] D. Avola, M. Cascio, L. Cinque, A. Fagioli, G. L. Foresti, M. R. Marini,
and D. Pannone, ‘‘Analyzing EEG data with machine and deep learning:
A benchmark,’’ in Proc. Int. Conf. Image Anal. Process. (ICIAP), 2022,
pp. 335–345.

[43] T. Takase, ‘‘Dynamic batch size tuning based on stopping criterion
for neural network training,’’ Neurocomputing, vol. 429, pp. 1–11,
Mar. 2021.

[44] B. McFee, J. Salamon, and J. P. Bello, ‘‘Adaptive pooling operators for
weakly labeled sound event detection,’’ IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 26, no. 11, pp. 2180–2193, Nov. 2018.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[46] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, ‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,’’ Circulation,
vol. 101, no. 23, pp. 215–220, Jun. 2000.

[47] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw,
‘‘BCI2000: A general-purpose brain–computer interface (BCI) system,’’
IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1034–1043, May 2004.

[48] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier,
C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and
M. S. Hämäläinen, ‘‘MEG and EEG data analysis with MNE-Python,’’
Frontiers Neurosci., vol. 7, no. 267, p. 70133, 2013.

[49] H. Dalianis, Evaluation Metrics and Evaluation. Cham, Switzerland:
Springer, 2018, pp. 45–53.

[50] M. L. McHugh, ‘‘Interrater reliability: The Kappa statistic,’’ Biochemia
Medica, vol. 22, no. 3, pp. 276–282, 2012.

[51] E. P. Torres, E. A. Torres, M. Hernández-Álvarez, and S. G. Yoo, ‘‘EEG-
based BCI emotion recognition: A survey,’’ Sensors, vol. 20, no. 18,
p. 5083, Sep. 2020.

[52] T. Harmony, T. Fernández, J. Silva, J. Bernal, L.Díaz-Comas, A. Reyes,
E. Marosi, M. Rodríguez, and M. Rodríguez, ‘‘EEG delta activity:
An indicator of attention to internal processing during performance of
mental tasks,’’ Int. J. Psychophysiol., vol. 24, nos. 1–2, pp. 161–171,
Nov. 1996.

[53] M. Sun, Z. Song, X. Jiang, J. Pan, and Y. Pang, ‘‘Learning pooling for
convolutional neural network,’’ Neurocomputing, vol. 224, pp. 96–104,
Feb. 2017.

[54] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), vol. 37, 2015, pp. 448–456.

83950 VOLUME 12, 2024



D. Avola et al.: Multi-Stream 1D CNN for EEG Motor Imagery Classification of Limbs Activation

DANILO AVOLA (Member, IEEE) received the
M.Sc. degree in computer science from the
Sapienza University of Rome, Italy, in 2002, and
the Ph.D. degree in molecular and ultrastructural
imaging from the University of L’Aquila, Italy,
in 2014. Since 2024, he has been an Associate Pro-
fessor with the Department of Computer Science,
Sapienza University of Rome. He co-founded and
currently leads the Prometheus Laboratory and
is the Co-Founder of 4AI, a university startup

focused on pioneering new methodologies in artificial intelligence. Previ-
ously, as an Assistant Professor, he was the Research and Development Sci-
entific Director of the Computer Vision Laboratory (VisionLab), Sapienza
University of Rome. As the Principal Investigator, he currently directs
several strategic research initiatives at the Sapienza University of Rome,
including Wi-Fi sensing for person re-identification and human synthesis,
emotion transference in humanoids via EEG, UAV navigation by view,
and LieToMe systems. His research interests include artificial intelligence
(including machine learning and deep learning), computer vision, Wi-Fi
sensing, EEG signal analysis, human–computer interaction, human-behavior
recognition, human-action recognition, biometric analysis, bioinformatics,
optimized neural architectures, deception detection, VR/AR systems, drones,
and robotics. He is an Active Member of several professional organizations,
including IAPR, CVPL, IEEE, ACM, AIxIA, and EurAI.

LUIGI CINQUE (Senior Member, IEEE) received
the M.Sc. degree in physics from the University
of Napoli, Italy. From 1984 to 1990, he was with
the Laboratory of Artificial Intelligence (Alenia
S.p.A), involved on the development of expert sys-
tems and knowledge-based vision systems. He is
currently a Full Professor of computer science
with the Sapienza University of Rome, Rome,
Italy. He is the author of more than 200 papers in
national and international journals and conference

proceedings. His current research interests include distributed systems for
analysis and interpretation of video sequences, target tracking, multisensor
data, and information fusion. Some of the techniques he has proposed
have found applications in the field of video-based surveillance systems,
autonomous vehicle, road traffic control, human behavior understanding,
and visual inspection. He is a member of ACM, IAPR, and CVPL. He also
serves as a reviewer for many international journals. He served on scientific
committees of international conferences (e.g., CVPR, ICME, and ICPR) and
symposia. He serves as a Reviewer for European Union in different research
program.

ANGELO DI MAMBRO received the B.Sc. and
M.Sc. (cum laude) degrees in computer science
from the Sapienza University of Rome, Italy,
in 2018 and 2021, respectively, where he is
currently pursuing the Ph.D. degree in computer
science with the Prometheus Laboratory, Depart-
ment of Computer Science. He is a member
of the Prometheus Laboratory, Department of
Computer Science, Sapienza University of Rome.
His research interests include deep learning, EEG

biometrics, EEG emotion recognition, EEG synthesis, signal processing,
human–computer interaction, computer vision, AR/VR, bioinformatics,
optimized neural architectures, and robotics.

ROMEO LANZINO (Graduate Student Member,
IEEE) received the degree (cum laude) in com-
puter science from the Sapienza University of
Rome, in 2021, where he is currently pursuing the
Ph.D. degree in artificial intelligence. He is a part
of the VisionLab, Computer Science Department.
His research interests include deep learning,
bioinformatics, computer vision, digital signal
processing, and human–computer interaction.

DANIELE PANNONE (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer sci-
ence from the Sapienza University of Rome,
in 2015 and 2018, respectively. He was a
member of the Computer Vision Laboratory
(VisionLab), Department of Computer Science,
from 2015 to 2024. As of 2020, he holds the posi-
tion of an Assistant Professor with the VisionLab,
Department of Computer Science, and in 2024,
he has Co-Founded the Prometheus Laboratory.

In the same year, he has co-founded 4AI, a Sapienza University of Rome
startup focused on pioneering new methodologies in artificial intelligence.
His research interests include machine and deep learning, event recognition,
object detection, person re-identification, signal analysis and processing,
bioinformatics, human–computer interaction, AR/VR, and robotics. He is
also a member of several professional organizations, including IAPR, CVPL,
IEEE, ACM, AIxIA, and EurAI.

FRANCESCO SCARCELLO received the Ph.D.
degree in computer science from the University of
Calabria, in 1997. He is currently a Full Professor
of computer science (SSD ING-INF/05) with
the University of Calabria. His research interests
include computational complexity, game theory,
(hyper) graph theory, constraint satisfaction, logic
programming, knowledge representation, non-
monotonic reasoning, and database theory. He has
extensively published in all these areas in leading

conferences and journals. He is a fellow of European Association for
Artificial Intelligence. His article ‘‘Pure Nash Equilibria: Hard and Easy
Games’’ received the 2008 IJCAI-JAIR Best Paper Prize, awarded to an
outstanding paper published in the Journal of Artificial Intelligence Research
in the preceding five years. His article ‘‘Hypertree Decompositions and
Tractable Queries’’ received the 2009 ACM PODS Alberto O. Mendelzon
Test-of-Time Award, awarded every year to an article published in the
proceedings of the ACM Symposium on Principles of Database Systems
(PODS) ten years prior that had the most impact in terms of research,
methodology, or transfer to practice over the intervening decade. In 2016,
his article ‘‘Hypertree Decompositions: Questions andAnswers’’ was invited
for the special gems of PODS session, at the 35th ACM Symposium on
Principles of Database Systems.

Open Access funding provided by ‘Università degli Studi di Roma ''La Sapienza'' 2’ within the CRUI CARE Agreement

VOLUME 12, 2024 83951


