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ABSTRACT In order to comply with the development trend of the ‘‘Brain Project’’, China has listed the
neural basis for explaining cognitive function as a core pillar, emphasizing the investment of resources
and research capabilities into urgent social needs such as early diagnosis and intervention treatment of
neurological and psychiatric diseases. The control scheme proposed on the basis of neural computational
models can predict changes in brain dynamics induced by neurostimulation, which helps to develop more
effective treatment plans for neurological and psychiatric diseases, while reducing the risk of brain damage
and secondary injury that may result from direct animal experiments or clinical trials. The paper presents such
a theoretical method for modulating brain dynamics based on the concept of pinning control from complex
network control theory to suppress spikes generated by neural population networks affected by measurement
noise. The main issues to be addressed of the work include: how to select driving nodes (the locations
where need to exert neurostimulation) to better ensure the effectiveness of pinning strategies for neural
population networks with different topologies? What are relationships among control gain, control energy,
coupling strength and the number of driving nodes while ensuring the effectiveness of control strategies?
To solve these problems, firstly, based on the Wendling-type neural population model, graph theory and
complex network theory are applied to construct neural population networks with ‘‘nearest-neighbor’’,
‘‘scale-free’’ and ‘‘small-world’’ topologies, respectively. Then, different pinning control strategies are
designed to modulate the brain dynamics simulated by the established network models according to the
degree distribution, and better strategies are determined through simulation experiments. The local control
adopts the output-feedback method based on the fuzzy regulator and cubature Kalman filter algorithm.
Finally, the effects of coupling strength and number of driving nodes on control gain amplitude and control
energy are studied using analytical and statistical methods. This work provides new ideas for the development
of neuromodulation strategies in the treatment of neurological and psychiatric diseases, and is expected to
play a potential role in future clinical applications.

INDEX TERMS Cubature Kalman filter algorithm, fuzzy regulator, neural population networks,
neuromodulation research, pinning control.
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I. INTRODUCTION
In terms of the progress of the global ‘‘Brain Project’’, devel-
oping prevention and treatment technologies for neurological
and psychiatric diseases is one of the priority projects that

82782

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0892-119X
https://orcid.org/0000-0002-8737-9185
https://orcid.org/0000-0003-0075-0824
https://orcid.org/0000-0001-7208-6374


C. Sun et al.: Design of Pinning Control Strategies of Different Neural Population Networks

should be considered in medical and health policies [1], [2].
Revealing the mechanisms underlying physiological func-
tions such as cognition and behavior is a necessary foundation
for understanding the causes of neurological and psychiatric
diseases, and fully understanding the pathogenesis of neu-
rological and psychiatric diseases can help formulate the
most effective prevention and treatment plans for patients.
Current research suggests that cognitive, behavioral and
other abilities stem from rhythmic electrical activities, known
as neural oscillations, triggered by large-scale neuronal
interactions in the cerebral cortex [3], [4]. According to
the frequency coverage range, neural oscillations are usually
divided into delta (1-4Hz), theta (4-7Hz), alpha (8-12Hz),
beta (13-30Hz) and gamma (30-100Hz) oscillation [5]. More
and more experimental and clinical data supports the view
that abnormal neural oscillations can transfer brain function
from a physiological state to a pathological state, leading
to neurological or psychiatric diseases [6]. For example,
the theta oscillation of Alzheimer’s patients is significantly
enhanced during sleep [7]; The neural oscillations generated
by the synchronous activity of patients’ cortical neurons
exhibit spikes during epileptic seizures [8]. Appropriate neu-
ral stimulation can normalize abnormal neural oscillations
that cause neurological or psychiatric diseases, which plays
an important role in promoting brain function recovery in
patients and improving human mental health levels [9], [10],
[11]. Given the significant individual differences in patients
with neurological and psychiatric diseases, repeated exper-
iments may be necessary to determine the optimal neural
stimulation parameters, while direct animal or clinical trials
may increase the risk of brain damage and secondary injury.
The neural population model originated in the 1970s not only
helps to study the mechanism of static neural oscillations
generated by autonomous discharge of neurons in the cerebral
cortex, but can also simulate the evolutionary mechanism of
neural oscillations induced by neural stimulation [12], [13],
[14]. David and Friston pointed out that neural population
models can generate different neural oscillations in various
physiological and pathological states by simply changing
intrinsic parameters [15]. Karoly et al. tracked clinical data
from 12 patients with focal epilepsy recorded by cortical
electroencephalography during more than 3000 seizures by
changing the parameters of the neural population model,
providing a powerful method for further experimental
research to generate verifiable hypotheses about the working
principles of the brain [16]. Basu et al. used neural population
models to simulate the evoked responses of human and
non-human primates to cortical and subcortical stimuli,
providing a theoretical basis for developing the optimal
neural stimulation strategy based on the patient’s specific
situation and the rehabilitation goals to be achieved [14].
Therefore, making assumptions and predictions according
to the changes in brain dynamics under external stimuli
simulated by control schemes developed on the basis of
neural population models can help form new theoretical

achievements and guide the future development direction of
‘‘Brain Project’’.

At present, a series of important achievements have been
made in the research of brain dynamics modulation based
on neural population models. However, the research objects
are generally rule models with simple topological structures,
which are difficult to fully describe the intricately complex
and highly variable nature of the brain. Schirner et al.
pointed out that the human brain is an extremely complex
dynamic network [17]. Specifically, a neuron cluster local
area network that performs specific functions is composed
of large-scale neurons with interactions, and further forms a
‘‘network of networks’’ through information exchange with
other neuron cluster local area networks. As far back as the
early 1990s, Felleman and Van Essen discovered a number of
anatomical structural connectivity features by summarizing
the layout of visually relevant regions in the mammalian
cerebral cortex, which later proved to be compatible with
the ‘‘small-world’’ characteristics [18].With the development
and advancement of neuroimaging technology, more and
more studies have pointed out that there are functional
connectivity relationships closely related to resting or task
states in different brain regions. The Salvador team was the
first to clarify that the resting state functional network of
the human brain derived from functional magnetic resonance
imaging (fMRI) data has ‘‘small-world’’ characteristics [19],
[20]. Eguíluz et al. used fMRI technology to extract the
functional networks of relevant brain regions in subjects
performing on-off finger tapping tasks, and found that the
distribution of functional connections was ‘‘scale-free’’ and
had ‘‘small-world’’ characteristics [21]. After analyzing the
electroencephalogram (EEG) data from subjects, Ferri et al.
pointed out that the functional connections between brain
regions that achieve slow-wave synchronization during sleep
exhibit characteristics of the ‘‘small-world’’ network [22].
These brain functional networks that can be reverse deduced
utilizing technologies such as EEG, Magnetoencephalogram
(MEG), fMRI and local field potential (LFP) indicate that
when mammals are in a physiological state, their brain func-
tional connections have the dual characteristics of ‘‘small-
world’’ and ‘‘scale-free’’. Constructing neural population
networks with different topologies on the basis of existing
neural population models is not only beneficial for a more
comprehensive understanding of the seizure mechanisms
of various neurological and psychiatric diseases, but also
lays a necessary theoretical foundation for the development
and improvement of clinical diagnosis and intervention
treatment technologies for neurological and psychiatric
diseases.

Since the 21st century, neuroscientists have put forward
increasingly high demands for the accuracy of computational
neural research with the rise of ‘‘Brain Project’’ in various
countries. Therefore, for the brain dynamics modulation
system with a more realistic neural population network as the
controlled object, how to take advantage of existing feedback
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FIGURE 1. The issues that need to be addressed in the paper.

control schemes to ensure its economic effectiveness has
become one of the urgent problems to be solved. Considering
the diversity of brain regions involved in the occurrence of
neurological and psychiatric diseases, as well as individual
differences in patient symptoms, the choice of neural stimu-
lation sites directly affects the effectiveness of the modulation
system, which is of great significance for maximizing the
therapeutic effect [23]. With the further cross-penetration
between complex networks and control theory, the concept
of pinning control provides ideas for improving treatment
techniques for neurological and psychiatric diseases [24],
[25]. Grigoriev et al. first clarified that pinning control is
to exert feedback control on some nodes (known as driving
nodes) in the network, and then ensures that the entire
network generates the desired dynamic behavior through
the ‘‘virtual control’’ between the coupling nodes [26].
Compared to the method of controlling all nodes, the idea
of using local feedback control to constrain the behavior
of the entire network has more theoretical and practical
value, especially in the field of neuroscience which takes
the brain as the research object, due to its advantages of
lower resource consumption, flexible and versatile control
approaches, simple and easy operation, etc. The selection
of driving nodes is the primary issue to consider in the
research of complex network control. Node degree is the
simplest and most direct method to describe the network
topology quantitatively [27]. Considering that the control
ability of driving nodes is affected by the degree distribution
of nodes in the network, the pinning control strategies
derived on the basis of node degree mainly include random
pinning, specific pinning, uniform distribution pinning, and
centralized distribution pinning. The random pinning strategy
is to randomly select several nodes in the network to exert
external control, while the specific pinning strategy is to
sequentially select several nodes with the largest or smallest
degree in the network for control, and these strategies
are suitable for irregular networks with inconsistent node
degrees. The uniform distribution and centralized distribution
pinning strategies adopt control methods that make the
driving nodes uniformly or centrally distributed, respectively,
and these strategies are suitable for regular networks with
consistent node degrees. Liu et al. found that priority should
be given to selecting nodes with larger degrees as driving

nodes when the percentage of driving nodes in the network is
relatively small, but it is more advantageous to choose nodes
with smaller degrees as driving nodes when the percentage
is relatively large [28]. Chen et al. confirmed that if the
control gain and the coupling strength between nodes are
large enough, a single controller can drive the output of the
entire network to the desired trajectory [29]. However, this
control method will greatly increase the control cost, and it
is difficult to achieve in reality. In summary, in addition to
selecting driving nodes, seeking a balance between coupling
strength, the control gain and the number of driving nodes is
also a fundamental and highly challenging issue in the design
of pinning control schemes for different neural population
networks.

For the sake of meeting the development needs of the
‘‘Brain Project’’, this paper aims to provide a more reason-
able theoretical method for the neuromodulation research.
Figure 1 states the issues that need to be addressed in the
paper, and we carry out the following targeted work to
solve these problems. Firstly, graph theory and complex
network theory are used to establish neural population net-
work models, such as ‘‘nearest-neighbor’’, ‘‘scale-free’’ and
‘‘small-world’’ networks, to simulate the neural oscillations
recorded by techniques such as EEG, MEG, fMRI, and
LFP. Then, considering the highly nonlinear and stochastic
characteristics of neural population networks, as well as the
potential impact of measurement noise on network outputs,
we design an output-feedback control scheme based on the
fuzzy regulator and cubature Kalman filter (CKF) algorithm
to suppress the spikes produced by the driving nodes. The
introduction of the fuzzy regulator in the control framework
is to adaptively adjust the control gain matrix to better
ensure the effectiveness of modulation. Further, select the
driving nodes based on the degree distribution of nodes,
and then the dynamics required for the entire network are
generated through ‘‘virtual control’’. Specifically, the output
modulation of the ‘‘nearest-neighbor’’ neural population
network model is achieved through uniform and centralized
distribution pinning strategies, while the output modulation
of the ‘‘scale-free’’ and ‘‘small-world’’ neural network
models is achieved through random and specific pinning
strategies. Finally, some simulation examples are given
to analyze the effectiveness of different pinning control
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strategies for the established neural population networks, and
the effects of coupling strength and the number of driving
nodes on the effectiveness of control strategies as well as the
control gain amplitude and control energy are summarized
through analysis and statistical methods.

II. MATERIALS AND METHODS
A. CONSTRUCTION AND QUANTITATIVE DESCRIPTION
METHODS OF NEURAL POPULATION NETWORKS
Wendling et al. have confirmed that more complex brain
activities can be simulated by increasing the number of neural
populations [30]. Constructing neural population networks
with different topologies based on neural population models
is more in line with the complex characteristics of the
brain. The complex network theory based on graph theory
holds that a concrete network can be abstracted into a
graph composed of nodes and edges [31]. Thus, the brain
functional network can be described as a graph composed of
nodes representing neural populations and edges representing
functional connectivity relationships [32]. The topological
structure of neural population networks can be quantitatively
described by node degree. The node degree is defined as
the total number of edges directly connected to the node.
The larger the degree, the more important the node is in the
network. The average degree of a network is the average value
of all node degrees. The larger the average degree, the tighter
the connections between nodes.

1) THE CONSTRUCTION METHOD OF WS TYPE
‘‘SMALL-WORLD’’ NEURAL POPULATION NETWORK
According to the random reconnection process of the ‘‘small-
world’’ network proposed by Watts and Strogatz [33], the
construction of the ‘‘small-world’’ neural population network
can be summarized into the following two steps. Firstly,
establish a ‘‘nearest-neighbor’’ neural population network
with N nodes, and connect each node to K/2 neighbor
nodes on the left and right sides, where K should be even.
Secondly, the edges of the ‘‘nearest-neighbor’’ network are
randomly reconnected with the probability P(0 < P <

1), ensuring that there is at most one edge between any
two different nodes, and each node cannot be connected to
itself. The transformation of the network between regularity
and randomness can be closely monitored by changing the
reconnection probability P. Figure 2 shows the random
reconnection process from a ‘‘nearest-neighbor’’ regular
network to a ‘‘small-world’’ network and then to a ‘‘random’’
network as the reconnection probability P increases when
N = 20 and K = 4.

2) THE CONSTRUCTION METHOD OF BA TYPE
‘‘SCALE-FREE’’ NEURAL POPULATION NETWORK
Barabási and Albert first confirmed the existence of
self-organization for characterizing large-scale features of
complex networks, and they suggested that self-organizing
large networks into ‘‘scale-free’’ states is an unpre-
dictable feature of existing ‘‘random’’ networks [34]. The

FIGURE 2. Random reconnection process for generating ‘‘small-world’’
and ‘‘random’’ networks with N = 20 and K = 4.

FIGURE 3. The formation process of the ‘‘scale-free’’ network.

‘‘scale-free’’ nature of networks stems from two generation
mechanisms, namely, continuously expanding the network
by adding new nodes, and selectively connecting new
nodes to existing nodes with larger degrees. Therefore,
the construction process of the BA ‘‘scale-free’’ neural
population network can be summarized into two steps. First,
node addition process: Starting from a small number of nodes
(m0), a new nodewithm (m ≤ m0) edges is added at each time
interval, and the new node is connected tom different existing
nodes. Second, the optimal connection process: Connect the

new node to node l with the probability of 5(kl) = kl/
N∑
j=1

kj,

where N represents the total number of existing nodes and
kl is the degree of node l. After t time intervals, the original
neural population model evolves into a ‘‘scale-free’’ network
with t+m0 nodes andmt edges. Figure 3 intuitively illustrates
the formation process of a ‘‘scale-free’’ network with m0 =

m = 2.

3) MATHEMATICAL DESCRIPTION OF NEURAL POPULATION
NETWORK MODELS
For the neural population network composed of N nodes,
each node is a neural population described by a set of
differential equations, with the form of [30]

ẋ l(t) = Ax l(t) + Bf (Hx l(t)) + B1pl(t) + δ
N∑

m=1,
m̸=l

Dxm(t),

yl(t) = Gx l(t),

(1)

where N ≥ 2 indicates the total number of populations,
superscripts l (l = 1, 2, · · · ,N ) and m (m = 1, 2, · · · ,N )
denote the l-th and m-th populations, respectively. The
endogenous stochastic or deterministic noise input pl(t)
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represents the average pulse density of afferent action
potentials from adjacent or distant populations. The constant
δ > 0 denotes the coupling strength between populations.
x l(t) = [x l1(t) x l2(t) · · · x l8(t)]

T represents the state
vector, in which x l1(t), x

l
3(t), x

l
5(t), x

l
7(t) are outputs of

postsynaptic potential blocks, and x l2(t), x
l
4(t), x

l
6(t), x

l
8(t) are

their time derivatives, respectively. yl(t) is the postsynaptic
membrane potential of the main neuron subset, which can be
used to simulate the rhythmic electrical activity of cortical
neural populations recorded by head-mounted or implantable
electrodes. A, B,H , B1,D,G are constant matrices with forms
of

A = diag(A1, . . . ,A4),

Aj =

[
0 1

−µ2
j − 2µj

]
, j = 1, 2, 3, 4,

µ1 = µ2 =
1
τe

, µ3 =
1
τi

, µ4 =
1
τd

,

B =


0

θA

τe
0 0 0 0 0

θA

τd

0 0 0
θA

τe
C2 0 0 0 0

0 0 0 0 0
θB

τi
C4 0 0


T

,

H =

H1
H2
H3

 =

 0 0 1 0 − 1 0 0 0
C1 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0

 ,

B1 =

[
0 0 0

θA

τe
0 0 0 0

]T
,

D =

 O3×6 O3×1 O3×1

O1×6
θA

τe
γ lm 0

O4×6 O4×1 O4×1

 ,

G =
[
0 0 1 0 − 1 0 0 0

]
,

where Om×n represents the zero matrix of m× n dimension.
γ lm determines the topological structure of networks. If there
is a functional connection that characterizes the information
exchange between population l and population m, then
γ lm=1; otherwise γ lm=0. θA and θB are excitatory and
inhibitory parameters, which determine the maximum ampli-
tudes of excitatory and inhibitory postsynaptic potentials,
respectively. τe and τi are lumped parameters linked to the
average time constant of the passive membrane and all other
spatially distributed delays in the dendritic network; τd is the
average time delay related to functional connections among
populations. The connectivity constants C1 − C4 represent
the average number of synaptic contacts from axons of main
cells to interneurons and from axons of interneurons to main
cells. It should be noted that the local parameters θA, θB, τe,
τi, τd , C1 − C4 depend on the population l and may vary
from one population to another. For the sake of simplicity, the
superscript l is not added to these parameters. The continuous

FIGURE 4. Alpha-like oscillations.

nonlinear vector function f (Hx l(t)) has the form

f (Hx l(t)) =

 S(H1x l(t))
S(H2x l(t))
S(H3x l(t))

 , (2)

where the static nonlinear function S(Hjx l(t)) has the sigmoid
form

S(Hjx l(t)) =
2e0

1 + er(v0−Hjxl (t))
, j = 1, 2, 3, (3)

where e0 characterizes the maximum firing rate of the neural
population, v0 is the postsynaptic potential when the firing
rate achieves 50%, and r indicates the bending degree of the
sigmoid function.

It is known that the neural population model will produce
alpha-like oscillations as shown in Figure 4, when all
parameters are set to standard values [33]

θA = 3.25mV , θB = 22mV , µ1 = 101, σ1 = 35,

τe = 0.0108s, τi = 0.02s, τd = 0.0303s,

C1 = 135, C2 = 108, C3 = C4 = 33.75,

e0 = 2.5s−1, v0 = 6mV , r = 0.56mV−1 (4)

whereµ1 and σ1 are the average and standard deviation of the
endogenous input pl(t) simulated by Gaussian white noise,
respectively. Existing studies have shown that most neurolog-
ical and psychiatric diseases result from internal instability
caused by the disruption of the excitation/inhibition balance
in the brain system. For example, when one or some brain
regions are over-excited and beyond the self-adjustment
scope of the brain system, they become hyper-excitatory
regions, and abnormal neural oscillations generated by
these regions spread to other regions under the action of
functional connections, leading to the onset of neurological
and psychiatric diseases [35]. That is to say, hyper-excitatory
brain regions may be the source of lesions of neurological
and psychiatric diseases. Therefore, a common method to
simulate the onset mechanism of neurological and psychiatric
diseases is to increase the excitatory parameters of neural
populations to make them become hyper-excitatory neural
populations [36].
For the convenience of computer implementation, it is

commonly necessary to discretize the continuous systems in
modern control system theory research. Typical continuous
nonlinear systems, such as the neural population network
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FIGURE 5. Structure diagram of dynamic modulation system of driving node based on the fuzzy
regulator and CKF algorithm.

model (1), can be discretized as x l(k) = fd
(
x l(k − 1), pl(k − 1)

)
yl(k) = gd

(
x l(k)

) (5)

where k indicates the sampling sequence number; fd (·) and
gd (·) are functions that can be derived from equation (1).

B. DESIGN OF THE CONTROL SCHEME FOR
NEUROMODULATION
The aim of the paper is to transform high-amplitude spikes
that characterize the onset of neurological or psychiatric
diseases into alpha-like oscillations that reflect normal brain
activity through modulating the brain dynamics modeled
by neural population networks. It is often unnecessary
to control all populations for neural population networks
because this approach can easily lead to system instability
due to excessive control. According to the concepts related
to network control, it can be clearly stated at the theoretical
level that for a connected neural population network,
as long as the coupling strength between populations and
the control gain are appropriate, the modulation target can
definitely be achieved by controlling partial nodes in the
network. Given that the distribution of node degrees in
the network can affect the control ability of driving nodes,
it is necessary to adopt different pinning control strategies
based on the characteristics of the degree distribution of
different networks to modulate the brain dynamics simulated
by neural population networks. For the ‘‘nearest-neighbor’’
neural population network with consistent node degrees,
we adopt uniform distribution and centralized distribution
pinning control strategies. For ‘‘small-world’’ and ‘‘scale-
free’’ neural population networks with inconsistent node
degrees, we adopt random and specific pinning control
strategies. Considering that the output of neural population

networks may be affected by measurement noise, we design
a feedback control scheme based on the CKF algorithm to
modulate the dynamics of driving nodes, and introduce the
fuzzy regulator to adaptively adjust the control gain to ensure
the modulation effect. Then through the action of ‘‘virtual
control’’, the entire network generates the desired dynamic
behavior. The basic structural framework of the local control
system is shown in Figure 5, where pl(k) represents the
known endogenous noise input at the k-th sampling sequence;
r(k) and ylc(k) are the expected and controlled outputs of
the driving node, respectively; ylco(k) is the measurement
controlled output affected by measurement noise wl(k); ŷl(k)
indicates the estimated output obtained utilizing the CKF
algorithm; control error el(k) = r(k) − ŷl(k); 1el(k)
represents the rate of change in the control error; x lc(k) is the
controlled state vector; x̂ l(k−1|k−1) indicates the posterior state
estimation vector generated by the (k − 1)-th iteration of the
CKF algorithm; F l(k) denotes the control gain vector, and its
general form is

F l(k) =
[
0 0 0 λl(k) 0 0 0 0

]T (6)

where the control gain λl(k) is a negative constant, but when
the neural population l is not the driving node λl(k) = 0;
the external control input vector ul(k) = F l(k)ŷl(k); Z−1

represents time delay.
Each iteration process in which the estimated value

constantly approximates the true value contains two time
scales: a prior and a posterior, when take advantage of the
CKF algorithm to estimate the output of a nonlinear system.
Between these two time scales, there is a transformation
process in which the posterior estimated values are obtained
by correcting the prior estimated values, and the posterior
estimate results obtained from each iteration are used to
predict the prior knowledge of the next iteration [37].
Assuming that the posterior state estimation vector x̂ l(k−1|k−1)
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and the posterior error covariance matrix Pl(k−1|k−1) at the
sampling time point k−1 are known, and each component of
the measurement noise follows a Gaussian distribution with
zero mean and σ variance, then the mathematical expressions
for estimating the k-th complete iteration of the output of
the driving node using the CKF algorithm are as follows
(the superscript l is not added to relevant parameters for
simplicity):

1) Prediction process

χ(k−1) = Chol
(
P(k−1|k−1)

)
ϕi = χ(k−1)ζi + x̂(k−1|k−1), i = 1, 2, . . . , 2nx

x̂(k|k−1) =
1
2nx

2nx∑
i=1

fd (ϕi)

P(k|k−1) =
1
2nx

2nx∑
i=1

fd (ϕi)f Td (ϕi) − x̂(k|k−1)x̂T(k|k−1) (7)

where nx is the dimension of the state vector, then nx = 8;
χ(k−1) is the Cholesky decomposition factor of the posterior
error covariance matrix P(k−1|k−1), and Chol(·) represents
the Cholesky decomposition function; ϕi is the cubature
point, x̂(k|k−1) and P(k|k−1) represent the prior state estimation
vector and prior error covariance matrix at the sampling time
point k , respectively; ζi is a standard orthogonal vector group
whose elements are usually represented as

ζi =

{ √
nx[Inx ]i, i = 1, 2, · · · , nx

−
√
nx[Inx ]i, i = nx + 1, nx + 2, · · · , 2nx

where [Inx ]i is the i-th column vector of the nx × nx
dimensional identity matrix Inx . 2) Correction process

χ(k) = Chol
(
P(k|k−1)

)
ϕ̃i = χ(k)ζi + x̂(k|k−1)

ŷ(k|k−1) =
1
2nx

2nx∑
i=1

gd (ϕ̃i)

Pxy =
1
2nx

2nx∑
i=1

ϕ̃igTd (ϕ̃i) − x̂(k|k−1)ŷT(k|k−1)

Pyy =
1
2nx

2nx∑
i=1

gd (ϕ̃i)gTd (ϕ̃i) − ŷ(k|k−1)ŷT(k|k−1) + σ

K = PxyP−1
yy

x̂(k|k) = x̂(k|k−1) + K
(
yco(k) − ŷ(k|k−1)

)
P(k|k) = P(k|k−1) − KPyyKT

ŷ(k|k) = g
(
x̂(k|k)

)
(8)

where ŷ(k|k−1) is the prior output estimation vector at the sam-
pling time point k; Pxy and Pyy represent the cross-covariance
matrix and auto-covariance matrix, respectively; K is the
Kalman filter gain matrix; x̂(k|k), P(k|k) and ŷ(k|k) denote the
posterior state estimation vector, posterior error covariance
matrix and posterior output estimation vector at the sampling

TABLE 1. Fuzzy control rules.

FIGURE 6. The ‘‘nearest-neighbor’’ network with 10 neural populations
and its quantitative description.

time point k , respectively, where x̂(k|k) and P(k|k) are used for
the (k + 1)-th iteration operation.
The process of using the fuzzy controller to adaptively

tune the control gain vector F l(k) in Figure 5 can be roughly
summarized as follows (the superscript l is also not added to
relevant parameters for simplicity):

1) Define a fuzzy set {NB, NM, NS, ZE, PS, PM,
PB} in the fuzzy domain for fuzzification, where the
subset ‘‘NB’’ means negative large, ‘‘NM’’ means
negative middle, ‘‘NS’’ means negative small, ‘‘ZE’’
means zero, ‘‘PS’’ means positive small, ‘‘PM’’ means
positive middle, ‘‘PB’’ means positive large, and the
most commonly used triangular membership function
is selected as the membership function of the fuzzy
subsets;

2) Perform fuzzy processing on the control error e(k)
and error change rate 1e(k), and use the obtained
quantitative data as the input for the fuzzy regulator;

3) Perform fuzzy logic reasoning according to fuzzy rules.
Table 1 presents 49 fuzzy control rules in the decision-
making process, where U (k) is the fuzzy output
variable related to the control gain vector F(k). The
fuzzy reasoning method adopts the classical Mamdani
minimax reasoning method;

4) The centroid method is used to defuzzify the fuzzy
values obtained from inference into the control gain
vector of the system.

C. THE PERFORMANCE METRIC FOR MEASURING THE
CONTROL COST
Professors Wang and Chen pointed out that effectiveness
is a fundamental issue for pining control referring to how
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FIGURE 7. The ‘‘scale-free’’ network with 10 neural populations and its
quantitative description.

FIGURE 8. The ‘‘small-world’’ network with 10 neural populations and its
quantitative description.

to select the driving nodes of networks to ensure that the
control goal can be achieved with lower control cost [38].
The consumed control energy can generally be used as a
performance metric to measure the cost of pinning control
[39]. In order to quantify the energy consumption of the
control process, we define the total control energyEn required
to achieve the modulation goal of brain dynamics as

En =

N∑
l=1

M∑
k=1

(
ul(k)

)T
ul(k) (9)

where M represents the total number of sampling times.
The physical meaning of this expression is that the energy
consumption is directly proportional to the size of the control
signal [40].

III. RESULTS
A. CONSTRUCTION OF ‘‘NEAREST-NEIGHBOR’’,
‘‘SMALL-WORLD’’ AND ‘‘SCALE-FREE’’ NEURAL
POPULATION NETWORKS
We construct ‘‘nearest-neighbor’’, ‘‘small-world’’ and
‘‘scale-free’’ neural population networks with 10 nodes
respectively by using the methods mentioned in Subsection A
of Section II. Each node in the network is a neural population
described by the nonlinear ordinary differential equation
system (1), and the edge represents the undirected connection
relationship between the neural populations. The values of
even K and reconnection probability P in the ‘‘nearest-
neighbor’’ neural population network are 4 and 0. The values

of K and P in the ‘‘small-world’’ neural population network
are 4 and 0.8. The values of initial number of nodes m0,
number of new nodes m and reconnection probability 5(kl)
in the ‘‘scale-free’’ neural population network are 3, 2 and
0.8. It should be emphasized that the network parameters
in the paper are strictly selected according to the relevant
requirements, which can ensure the relevant characteristics of
‘‘small-world’’ and ‘‘scale-free’’ networks. The topological
structure and quantitative description of the constructed
networks are shown in Figures 5, 6 and 7, respectively.

B. ANALYSIS OF THE EFFECTIVENESS OF PINNING
STRATEGIES
The uniform distribution and centralized distribution pinning
control strategies are adopted to modulate the brain dynamics
simulated by the ‘‘nearest-neighbor’’ neural population
network shown in Figure 6. The random and specific
pinning control strategies are adopted to modulate the brain
dynamics simulated by ‘‘small-world’’ and ‘‘scale-free’’
neural population networks shown in Figures 7 and 8, and
the specific pinning strategy here is to sequentially select
the node with the largest degree in the network for control.
The dynamic modulation system diagram of the driving node
based on the fuzzy regulator and CKF algorithm is shown in
Figure 5. The paper will use Matlab software for numerical
simulation analysis. In each of the simulations described
below, equation (1) is numerically solved using the fourth-
order Runge-Kutta method.

Assuming that the measurement noise is simulated by
Gaussian distributed noise with the mean of µ1 = 0 and
standard deviation of σ1 = 2. In the neural population
network shown as Figures 6, 7 and 8, except for the excitatory
parameter of the population 1, which is a non-standard value
of 3.4mV, all other local parameters are set to standard
values shown in equation (4). The simulation time is 10s,
and the time step is set to 0.001. The initial value of the
state vector in neural population networks can be arbitrarily
selected. In order to generate reference data, the measured
output vector yo(k) =

[
y1o(k) y

2
o(k) · · · y10o (k)

]T of different
networks at each sampling time point are recorded, and
then the variation curves of each component over time are
plotted separately. At the same time, record the controlled
state vectors and measurement controlled output vectors of
different networks at each sampling time point, and the
obtained (k − 1)-th controlled state vector is re-input into
the CKF algorithm as the posterior corrected state vector
x̂(k−1|k−1) for the k-th iteration. After the k-th iteration of
the CKF algorithm, the output vector at the sampling time
point k is ŷ(k) =

[
ŷ1(k) ŷ2(k) · · · ŷ10(k)

]T . Record the
estimated output vectors of different networks at the end of
each iteration, and then plot the variation curves of each
component over time.

There are two points that need to be clarified in advance:
Firstly, existing studies have shown that the hyper-excitatory
neural populations in networks must serve as driving nodes;
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FIGURE 9. Output of the ‘‘nearest-neighbor’’ neural population network
under the influence of measurement noise.

FIGURE 10. Modulation results of the first uniform distribution pinning
strategy (1,4,8 are driving nodes).

Secondly, setting too many driving nodes may cause the
system instability due to excessive control, and at the same
time, the work requires that the number of driving nodes
should be less than half of the total number of nodes in the
network due to considerations such as ease of operation in
clinical practice.

1) ANALYSIS OF THE EFFECTIVENESS OF PINNING
STRATEGIES IN THE ‘‘NEAREST-NEIGHBOR’’ NEURAL
POPULATION NETWORK
When the coupling strength between neural populations is
40, the outputs of the ‘‘nearest-neighbor’’ network shown
in Figure 6 are shown in Figure 9 under the influence of
measurement noise. It can be seen that if control measures
are not taken, the spikes generated by the hyper-excitatory
neural population 1 will propagate to the remaining 9 nodes
of the ‘‘nearest-neighbor’’ neural population network under

FIGURE 11. Modulation results of the second uniform distribution
pinning strategy (1,4,6,8 are driving nodes).

FIGURE 12. Modulation results of the first centralized distribution
pinning strategy (1,2,3 are driving nodes).

the coupling action. We propose two uniform distribution
pinning strategies and two centralized distribution pinning
strategies to modulate the brain dynamics simulated by
the ‘‘nearest-neighbor’’ network to suppress the spikes in
Figure 9. The first uniform distribution pinning strategy is
to make the feedback control based on the fuzzy regulator
and CKF algorithm act on nodes 1, 4 and 8, respectively,
and the modulation results are shown in Figure 10. The
second uniform distribution pinning strategy is to select
neural populations 1, 4, 6 and 8 as the driving nodes, and the
modulation results are shown in Figure 11. It is not difficult
to see from the figures that both strategies can quickly
drive the spikes generated by the ‘‘nearest-neighbor’’ neural
population network to the expected alpha-like oscillations.
The first centralized distribution pinning strategy is to make
the feedback control based on the fuzzy regulator and
CKF algorithm act on nodes 1, 2 and 3, respectively, and
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TABLE 2. Statistical data of the uniform distribution pinning control strategies.

FIGURE 13. Modulation results of the second centralized distribution
pinning strategy (1,2,3,4 are driving nodes).

the modulation result is shown in Figure 12. The second
centralized distribution pinning strategy is to select neural
populations 1, 2, 3 and 4 as the driving nodes, and the
modulation results are shown in Figure 13. According to these
two figures, it can be seen that except the spikes generated by
the driving nodes that can be quickly suppressed, the spikes
generated by the other nodes require a longer adjustment
time to be driven to the expected alpha-like oscillations.The
above results indicate that the adjustment time required
for achieving the modulation target using the uniform
distribution pinning strategy is obviously shorter than that
of the centralized distribution pinning strategy. Therefore,
the uniform distribution pinning strategy has significant
advantages over the centralized distribution pinning strategy
when modulating the brain dynamics simulated by the
‘‘nearest-neighbor’’ neural population network. We will then
use the performance metric of the control cost to analyze the
effectiveness of the more advantageous uniform distribution
pinning strategy.

Table 2 presents statistical data for analyzing the effec-
tiveness of the two proposed uniform distribution pinning
strategies, where the values of control energy are calculated
based on equation (9). It is not difficult to see from the
table that: Firstly, when the coupling strength between
neural populations is 40, the second strategy requires more
control energy to achieve the modulation target compared
with the first uniform distribution pinning strategy, and
the control gain amplitudes required by driving nodes
is smaller except that the control gain amplitude of the
hyper-excitatory node remains unchanged; Secondly, for

the second uniform distribution pinning strategy, with the
increase of the coupling strength, the control energy required
to achieve the modulation target increases, and the control
gain amplitudes required by the driving nodes increase except
that the control gain amplitude of the hyper-excitatory node
remains unchanged. These results indicate that the coupling
strength and the number of driving nodes can affect the
effectiveness of the uniform distribution pinning strategy for
the ‘‘nearest-neighbor’’ neural population network.

To sum up, the uniform distribution pinning strategy based
on the fuzzy regulator and CKF algorithm has significant
advantages over the centralized distribution pinning strategy
for the ‘‘nearest-neighbor’’ neural population network whose
output is affected by measurement noise. The statistical
results further indicate that the coupling strength between
neural populations and the number of driving nodes can affect
the effectiveness of the uniform distribution pinning strategy.
In general, for the ‘‘nearest-neighbor’’ neural population
network with a certain coupling strength, the uniform
distribution pinning strategy with fewer driving nodes can
better ensure the effectiveness when the control energy is
required to be as small as possible; But when the feedback
control gain amplitudes of the driving nodes (except for
the hyper-excitatory node) are required to be as small as
possible, the uniform distribution pinning strategy with more
driving nodes can better ensure the effectiveness. For a
uniform distribution pinning strategy with a certain number
of driving nodes, a smaller coupling strength between neural
populations can better ensure its effectiveness, because the
smaller the coupling strength, the less control energy and
smaller control gain amplitudes required to achieve the
modulation target.

2) ANALYSIS OF THE EFFECTIVENESS OF PINNING
STRATEGIES IN THE ‘‘SCALE-FREE’’ NEURAL POPULATION
NETWORK
When the coupling strength between neural populations is
40, the output of the ‘‘scale-free’’ network shown in Figure 7
is shown in Figure 14 under the influence of measurement
noise. It can be seen that if control measures are not
taken, the spikes generated by the hyper-excitatory neural
population 1 will propagate to the remaining 9 nodes of the
‘‘scale-free’’ neural population network under the coupling
action. We propose two specific pinning strategies and two
random pinning strategies to modulate the brain dynamics
simulated by the ‘‘scale-free’’ network to suppress the spikes
in Figure 14. The first specific pinning strategy is to make
the feedback control based on the fuzzy regulator and CKF
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FIGURE 14. Output of the ‘‘scale-free’’ neural population network under
the influence of measurement noise.

FIGURE 15. Modulation results of the first specific pinning strategy (1,3
are driving nodes).

algorithm act on the hyper-excitatory neural population 1 and
the node 3 with the highest degree, and the modulation results
are shown in Figure 15. The second specific pinning strategy
is to first apply feedback control to the hyper-excitatory
neural population 1, and then sequentially select nodes
3 and 2 with the highest degree as the driving nodes. The
modulation results are similar to which shown in Figure 15,
so it is not repeated. It is not difficult to see from the figures
that both strategies can quickly drive the spikes generated by
the ‘‘scale-free’’ neural population network to the expected
alpha-like oscillations. The first random pinning strategy is
to make the feedback control based on the fuzzy regulator
and CKF algorithm act on nodes 1 and 2, respectively, and
the modulation results are shown in Figure 16. According
to the figure, it can be seen that the 3-rd neural population
in the ‘‘scale-free’’ network still continuously generates
spikes, indicating that this control strategy cannot achieve

FIGURE 16. Modulation results of the first random pinning strategy (1,2
are driving nodes).

FIGURE 17. Modulation results of the second random pinning strategy
(1,2,5 are driving nodes).

the modulation target. The second random pinning strategy
not only applies feedback control to the hyper-excitatory
neural population 1, but also randomly selects populations
2 and 5 as the driving nodes, and the modulation results are
shown in Figure 17.According to the figure, it can be seen
that the 3-rd and 5-th neural populations in the ‘‘scale-free’’
network still continuously generate spikes, indicating that
this control strategy is also unable to achieve the modulation
target. In addition, we find that when the number of driving
nodes is 2 or 3, only the specific pinning strategy canmake the
‘‘scale-free’’ neural population network produce the expected
dynamic behavior through a large number of simulation
examples. The above results indicate that the specific pinning
strategy has significant advantages over the random pinning
strategy when modulating the brain dynamics simulated by
the ‘‘scale-free’’ neural population network. We will then
use the performance metric of the control cost to analyze
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TABLE 3. Statistical data of the specific pinning control strategies.

the effectiveness of the more advantageous specific pinning
strategy.

Table 3 presents statistical data for analyzing the effec-
tiveness of the two proposed specific pinning strategies,
where the values of control energy are calculated based
on equation (9). It is not difficult to see from the table
that: Firstly, when the coupling strength between neural
populations is 40, the second strategy requires more control
energy to achieve the modulation target compared to the first
specific pinning strategy, and the control gain amplitudes
required by driving nodes are relatively large; Secondly, for
the first specific pinning strategy, with the increase of the
coupling strength, the control energy required to achieve the
modulation target increases, and the control gain amplitudes
required by the driving nodes increase. These results indicate
that the coupling strength and the number of driving nodes
can affect the effectiveness of the specific pinning strategy
for the ‘‘scale-free’’ neural population network.

To sum up, the specific pinning strategy based on the fuzzy
regulator and CKF algorithm has significant advantages over
the random pinning strategy for the ‘‘scale-free’’ neural
population network whose output is affected by measurement
noise. The statistical results further indicate that the coupling
strength between neural populations and the number of
driving nodes can affect the effectiveness of the specific
pinning strategy. In general, for the ‘‘scale-free’’ neural
population network with a certain coupling strength, the
specific pinning strategy with fewer driving nodes can better
ensure the effectiveness, because the less control energy
and smaller control gain amplitudes are required to achieve
the modulation target when the number of driving nodes
is small. This phenomenon may be caused by excessive
control due to the increase in the number of driving nodes.
For a specific pinning strategy with a certain number of
driving nodes, a smaller coupling strength between neural
populations can better ensure its effectiveness, because the
smaller the coupling strength, the less control energy and
smaller control gain amplitudes required to achieve the
modulation target.

3) ANALYSIS OF THE EFFECTIVENESS OF PINNING
STRATEGIES IN THE ‘‘SMALL-WORLD’’ NEURAL POPULATION
NETWORK
When the coupling strength between neural populations is
40, the output of the ‘‘small-world’’ network shown in
Figure 8 is shown in Figure 18 under the influence of
measurement noise. It can be seen that if no control measures
are taken, the spikes generated by the hyper-excitatory neural

FIGURE 18. Output of the ‘‘small-world’’ neural population network
under the influence of measurement noise.

population 1 will propagate to the remaining 9 nodes of the
‘‘small-world’’ neural population network under the coupling
action. We propose two specific pinning strategies and three
random pinning strategies to modulate the brain dynamics
simulated by the ‘‘small-world’’ network to suppress the
spikes in Figure 18. The first specific pinning strategy is
to make the feedback control based on the fuzzy regulator
and CKF algorithm first act on the hyper-excitatory neural
population 1, and then sequentially act on the nodes 7 and
5 with the highest degree. The modulation results are
shown in Figure 19. The second specific pinning strategy
is to first apply feedback control to the hyper-excitatory
neural population 1, and then sequentially select nodes 7,
5 and 9 with the highest degree as the driving nodes. The
modulation results are similar to which shown in Figure 19,
so it is not repeated. It is not difficult to see from the figures
that both strategies can quickly drive the spikes generated by
the ‘‘small-world’’ neural population network to the expected
alpha-like oscillations. The first random pinning strategy is
to make the feedback control based on the fuzzy regulator
and CKF algorithm act on nodes 1, 5 and 9, respectively, and
the modulation results are shown in Figure 20. The second
random pinning strategy is to exert the feedback control to
neural populations 1, 3, and 4. The modulation results are
similar to which shown in Figure 20, so it is not repeated.
The third random pinning strategy not only applies feedback
control to the hyper-excitatory neural population 1, but also
randomly selects populations 3, 4 and 5 as the driving nodes,
and the modulation results are shown in Figure 21. According

VOLUME 12, 2024 82793



C. Sun et al.: Design of Pinning Control Strategies of Different Neural Population Networks

TABLE 4. Statistical data of the uniform distribution pinning control strategies.

FIGURE 19. Modulation results of the first specific pinning strategy (1,5,7
are driving nodes).

to these figures, it can be seen that the spikes generated
by some nodes require a relatively obvious adjustment
time before they are driven to the expected alpha-like
oscillations. The above results indicate that the adjustment
time required for achieving the modulation target using the
specific pinning strategy is obviously shorter than that of
the random pinning strategy. Therefore, the specific pinning
strategy has significant advantages over the random pinning
strategy when modulating the brain dynamics simulated by
the ‘‘small-world’’ neural population network. We will then
use the performance metric of the control cost to analyze
the effectiveness of the more advantageous specific pinning
strategy.

Table 4 presents statistical data for analyzing the effec-
tiveness of the two proposed specific pinning strategies,
where the values of control energy are calculated based
on equation (9). It is not difficult to see from the table
that: Firstly, when the coupling strength between neural
populations is 30, the second strategy requires more control
energy to achieve the modulation target compared to the
first specific pinning strategy, but the control gain amplitudes
required by driving nodes are relatively small; Secondly,
for the first or second specific pinning strategy, with the
increase of the coupling strength, the control energy required
to achieve the modulation target increases, and the control
gain amplitudes required by the driving nodes increase. These
results indicate that the coupling strength and the number
of driving nodes can affect the effectiveness of the specific
pinning strategy for the ‘‘small-world’’ neural population
network.

FIGURE 20. Modulation results of the first random pinning strategy (1,5,9
are driving nodes).

FIGURE 21. Modulation results of the first random pinning strategy
(1,3,4,5 are driving nodes).

To sum up, the specific pinning strategy based on the fuzzy
regulator and CKF algorithm has significant advantages over
the random pinning strategy for the ‘‘small-world’’ neural
population network whose output is affected by measurement
noise. The statistical results further indicate that the coupling
strength between neural populations and the number of
driving nodes can affect the effectiveness of the specific
pinning strategy. In general, for the ‘‘small-world’’ neural
population network with a certain coupling strength, the
specific pinning strategy with fewer driving nodes can better
ensure the effectivenesswhen the control energy is required to
be as small as possible; But when the feedback control gain
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amplitudes of the driving nodes are required to be as small
as possible, the specific pinning strategy with more driving
nodes can better ensure the effectiveness. For a specific
pinning strategy with a certain number of driving nodes,
a smaller coupling strength between neural populations
can better ensure its effectiveness, because the smaller the
coupling strength, the less control energy and smaller control
gain amplitudes are required to achieve the modulation target.
Additional Explanation: Firstly, for the neural population

networks as shown in Figures 6, 7, 8, the increase of
the coupling strength will lead to the generation and
intensification of spikes. From this perspective, it is not
difficult to understand the phenomenon that the control
gain amplitudes and control energy required to achieve
the modulation goal will increase with the increase of the
coupling strength. Secondly, since the work considers that the
large-scale spikes generated by networks are mainly triggered
by a hyper-excitatory neural population, and the coupling
strength between populations is maintained within a range
that has a small impact on the network output, the spikes
generated by the network will not be infinitely intensified,
so the control gain amplitudes required by driving nodes will
not be infinitely increased either.

IV. DISCUSSION
Neurostimulation has gradually become one of the most
promising methods for treating neurological and psychiatric
diseases due to its advantages of reversibility and small
side effects [41], [42]. Considering the significant individual
differences among patients with neurological and psychi-
atric diseases, it may be necessary to conduct extensive
experiments to accurately select the stimulus position and
determine the optimal stimulus intensity and other param-
eters. However, limitations in understanding the dynamic
mechanisms of neural oscillations in direct animal and
clinical trials, as well as immaturity of medical techniques
and experimental conditions, may lead to irreversible brain
injury and secondary damage. Mina et al. pointed out that
control schemes developed based on neural computational
models can simulate changes in brain dynamics under
external stimulation [43]. Over the past few decades, two
complementary neural computational models have been
developed to simulate brain dynamics. Different from the
FitzHugh-Nagumo model [44], Hidmarsh-Rose model [45],
Hodgkin-Huxley model [46] and other neuron models that
describe the activity of brain neurons at the cellular level,
the neural population model that describes the activity of
brain neuron populations at the level of cell set is both
simple and more physiologically meaningful, balancing
ease of processing and practicality, and more conducive
to exploring the generation and evolution mechanisms of
neural oscillations in depth. So the networks in the paper
are constructed using the neural population model shown
in equation (1) as nodes. We simulated the pathogenesis
of neurological and psychiatric diseases by increasing the
excitatory parameter of the first neural population. Under

this condition, the established neural population network
models generated abnormal neural oscillations with a large
number of spikes. The output-feedback control scheme based
on the fuzzy regulator and CKF algorithm was adopted to
automatically adjust the control gain (used to predict the
stimulus intensity), and different pinning control strategies
(that help predict stimulus positions) were further adopted
according to the degree distribution of nodes to simulate the
response of brain dynamics to neurostimulation, which has a
positive effect on predicting the optimal stimulus parameters
for the treatment of neurological and psychiatric diseases
caused by local hyper-excitatory brain regions.

From the perspective of complex network control theory,
the design of local control schemes is an important aspect
in solving the modulation problem of brain dynamics.
It has been reported that the application of feedback
strategies in epilepsy control can overcome the drawbacks
that the selection of neurostimulation parameters depends
entirely on the experience and level of the rehabilitation
therapists. Its potential benefits include ensuring treatment
effectiveness, improving response by providing intermittent
or minimal stimulation, minimizing side effects, reducing
damage, minimizing power consumption, and extending
the battery life of implanted devices [47]. The basic
requirement for implementing brain dynamics modulation
through output-feedback control is that the output signal
used to construct the control law can accurately reflect
the functional state of the brain tissue [48]. However,
the neural oscillation activity recorded by EEG, MEG,
fMRI, LFP and other techniques may become inaccurate
due to neuron and amplifier noise, as well as uncertain
factors such as electrode resistance and capacitance in
recording devices [49], so that the brain dynamic modulation
system produces unexpected control behaviors. Therefore,
it is of great significance to obtain useful information
reflecting the actual activity state of the brain from the
collected original data for designing output-feedback brain
dynamic modulation systems. In addition, in view of the
self-regulation characteristics of the brain system, if timely
measures can be taken to suppress spikes and restore them
to the brain self-regulation range as soon as possible (of
course, the definition of this range is also one of the issues
that urgently need to be solved by the majority of scientific
research and medical personnel), which has a great potential
to promote the restoration of normal brain function. That is
to say, in addition to making the output of the controlled
system track the expected alpha oscillation, suppressing
spikes can also be used as the modulation target of the
control system. The Schiff team first utilized the Unscented
Kalman Filter (UKF) to estimate the actual output of the
spatiotemporal model of the cerebral cortex from signals
affected by measurement noise, and verified the superiority
of the UKF based output-feedback control scheme in
suppressing the abnormal activity of cortical neurons through
numerical simulations [50]. The extended application of
UKF based output-feedback control in the Hodgkin-Huxley
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neuron model further demonstrates the feasibility of this
approach in suppressing pathological brain activity, such as
epilepsy [51]. Inspired by this, Liu and Gao designed an
UKF based output-feedback control scheme to modulate the
dynamics of the neural population model, thereby achieving
the goal of suppressing persistent spikes [52]. Thus, for
neural population network models whose output is affected
by measurement noise, various nonlinear Kalman filter
algorithms are the preferred algorithms for designing brain
dynamic modulation schemes if the modulation target is to
suppress spikes. Considering that the CKF exhibits better
stability than the UKF in solving high-dimensional nonlinear
problems, the work adopts CKF as the local controller. It has
been confirmed that the fuzzy controller can be used as a
regulator to adjust control parameters of the PID algorithm
adaptively [53]. So we further introduced a fuzzy regulator
into the local output-feedback control framework based on
the CKF algorithm to adaptively adjust the control gain to
ensure the modulation effect of brain dynamics.

Of course, it must be acknowledged that there are
still some areas for improvement in the research work.
1) The models are still not perfect enough. Firstly, from
the functional perspective, the perception and encoding of
visual, auditory, and other signals by neurons in different
regions of the cerebral cortex may need to be simulated
by mathematical models with specific functions, rather
than the universal neural population models; Secondly,
neural population networks with 10 nodes still struggle to
adequately describe the super complexity and high variability
of the brain; Thirdly, the magnitude of coupling strength
can affect the effectiveness of pinning control strategies,
but we have not found selection rules for the coupling
strength of neural population network models in existing
references. In the paper, some coupling strengths that can
ensure the effectiveness of pinning control strategies are
selected through numerical simulations, which may not be
very representative. Afterwards, we will attempt to construct
a more realistic neural population network to simulate the
generation and evolution mechanism of neural oscillations
by modifying the differential equation form that describes
the dynamic characteristics of neural populations, increasing
the number of neural populations, and changing the coupling
strength between neural populations. 2) The work has certain
limitations in the hypothesis of the mechanism that triggers
the onset of neurological and psychiatric diseases. Researches
on human brain connectivity omics based on neuroimaging
and electrophysiological techniques have shown that changes
in the brain functional network connectivity may lead to
the onset of neurological and psychiatric diseases. Liu et al.
indicated that the ‘‘small-world’’ is the optimal connection
mode for the brain functional network, and the disruption
of this mode is the basis for the onset of schizophrenia
[54]. The Stam team’s research has demonstrated that
the general feature of Alzheimer’s patients is the loss
of ‘‘small-world’’ characteristics in the brain functional
network [55]. They also confirmed that patients exhibited

significant randomization characteristics in their brain func-
tional connectivity structures during seizures compared to
normal individuals by analyzing the topological structure
of brain functional networks in epilepsy patients [56].
Therefore, changes of structure characteristics in the brain
functional networks are expected to become new indicators
for diagnosing and monitoring the onset of neurological
and psychiatric diseases. Obviously, under this assumption,
research on network structure characteristics is crucial, and
it is also necessary to take ‘‘random’’ neural population
networks as the research object. 3) The research depth
is insufficient. From the perspective of complex network
control, it is very meaningful to determine the minimum
number of nodes in the neural population network that require
exerting external control. Taking the neural population
networks such as ‘‘nearest-neighbor’’, ‘‘scale-free’’ and
‘‘small-world’’ as research objects, we will attempt to quan-
titatively calculate the minimum number of driving nodes
required to achieve brain dynamic modulation targets under
different topological structures using tools such as structural
controllability theory andmaximummatching principle in the
future.

V. CONCLUSION
The paper proposes different pinning control strategies to
modulate brain dynamics simulated by ‘‘nearest-neighbor’’,
‘‘scale-free’’ and ‘‘small-world’’ neural population networks
whose outputs are affected by measurement noise. The
simulation results show that, in addition to the need for the
hyper-excitatory neural population to serve as a driving node,
striving for a uniform distribution of driving nodes (uniform
distribution pinning control method) can better ensure the
effectiveness of the modulation strategy for the ‘‘nearest-
neighbor’’ neural population network; selecting the nodes
with the highest degree in networks in sequence as the
driving nodes (specific pinning control method) can better
ensure the effectiveness of modulation strategies for both
‘‘scale-free’’ and ‘‘small-world’’ neural population networks.
Because these methods obviously require shorter adjustment
time to achieve the modulation target of suppressing spikes.
Meanwhile, statistical data further indicates that the number
of driving nodes and coupling strength between neural
populations not only affect the effectiveness of the uniform
distribution and specific pinning control strategies, but also
affect the control gain amplitude and control energy. For
the ‘‘nearest-neighbor’’ neural population network, while
ensuring the effectiveness of the uniform distribution pinning
strategy, when the coupling strength is constant, the control
energy will increase with the increase of the number of
driving nodes, and control gain amplitudes will decrease
with the increase of the number of driving nodes; when the
number of driving nodes is constant, the control energy and
control gain amplitudes will increase with the increase of
the coupling strength. Therefore, for the ‘‘nearest-neighbor’’
neural population network with a certain coupling strength,
the uniform distribution pinning strategy with fewer driving
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nodes can better ensure effectiveness when the control energy
is required to be as small as possible, but the uniform
distribution pinning strategy with more driving nodes can
better ensure effectiveness when the control gain amplitudes
of driving nodes are required to be as small as possible.
For the uniform distribution pinning strategy with a certain
number of driving nodes, the effectiveness can be better
ensured when the coupling strength between populations
in the ‘‘nearest-neighbor’’ neural population network is
relatively small. For the ‘‘scale-free’’ neural population
network, while ensuring the effectiveness of the specific
pinning strategy, when the coupling strength is constant,
the control energy and control gain amplitudes will increase
with the increase of the number of driving nodes; when
the number of driving nodes is constant, the control energy
and control gain amplitudes will increase with the increase
of the coupling strength. Therefore, for the ‘‘scale-free’’
neural population network with a certain coupling strength,
the specific pinning strategy with fewer driving nodes can
better ensure effectiveness. For the specific pinning strategy
with a certain number of driving nodes, the effectiveness
can be better ensured when the coupling strength between
populations in the ‘‘scale-free’’ neural population network
is relatively small. For the ‘‘small-world’’ neural population
network, while ensuring the effectiveness of the specific
pinning strategy, when the coupling strength is constant, the
control energy will increase with the increase of the number
of driving nodes, and control gain amplitudes will decrease
with the increase of the number of driving nodes; when the
number of driving nodes is constant, the control energy and
control gain amplitudes will increase with the increase of the
coupling strength. Therefore, for the ‘‘small-world’’ neural
population network with a certain coupling strength, the
specific pinning strategy with fewer driving nodes can better
ensure effectiveness when the control energy is required to
be as small as possible, but the specific pinning strategy
with more driving nodes can better ensure effectiveness when
the control gain amplitudes of driving nodes are required
to be as small as possible. For the specific pinning strategy
with a certain number of driving nodes, the effectiveness
can be better ensured when the coupling strength between
populations in the ‘‘small-world’’ neural population network
is relatively small.
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