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ABSTRACT Despite the significant advancements in fuzzy set theory, existing similarity measures for
complex picture fuzzy sets (CPFSs) often result in impractical results in real-world scenarios. This presents a
critical gap in accurately modeling and analyzing CPFSs, particularly in applications like pattern recognition
and medical diagnosis. The present work addresses this problem by introducing various novel similarity
measures for CPFSs, accompanied by rigorous axiomatic validation and a thorough discussion of their
properties. Different sets of CPFSs have been empirically evaluated using both existing and proposed
similarity measures, demonstrating the practical applicability and superiority of the latter. Based on the
principle of maximum similarity, a comprehensive methodology involving these proposed measures has
been illustrated, along with their implementation in solving different problems in pattern recognition and
medical diagnosis. Additionally, a comparative analysis has been conducted to provide better clarity and
understanding of the effectiveness of these measures. The results indicate that the proposed similarity
measures offer significant advantages and improved accuracy for pattern recognition and medical diagnosis
problems.

INDEX TERMS Picture fuzzy sets, complex picture fuzzy sets, similarity measures, pattern recognition,
medical diagnosis.

I. INTRODUCTION
In day-to-day real-life situations various decision-making
strategies need the techniques of pattern recognition for
a consistent realization in order to handle the uncertainty
and imprecision [1], [2], [3]. The automated recognition
of patterns is widely applicable in the field of engineering
science, network analysis and the problem of medical
diagnosis [4], [5]. The systematic study of pattern recognition
problems has many implementations in the field of signals
and systems, image processing, assembly robot design
evaluation [6], [7], [8], bio-informatics andmachine learning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wojciech Sałabun .

In spite of having various extensions of fuzzy sets such
as intuitionistic fuzzy sets (IFSs), Pyhtagorean fuzzy sets
(PyFSs), and picture fuzzy sets (PFSs), these extensions
are not sufficient to address the uncertainty and vagueness
occurring due to periodicity in the data. Such complex data
sets normally get originated in the field of medical research,
biometric/facial recognition, audio/images which encounter
deviations under the given phase of time. In order to handle
such circumstances so that the best precise information can
be projected in one go for avoiding the loss of information
content, we should suitably signify the amplitude/phase term
using the complex extensions of fuzzy sets [9], [10]. The
application in the field of electromagnetic signals and solar
activities can been by the cohesiveness of the fuzzy sets [11].
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Tomeasure uncertainty/fuzziness associated with any real-
life modeling, the role of different types of similarity/distance
measures and entropy/inclusion measures has been explored
by different researchers in different capacities. It may be
noticed that similarity/distance measures mathematically
provide the degree of similarity/discrimination among two
sets of information [12]. For the sake of a brief review
of the literature available, Szmidt [13] provided some
distance/similarity measures for the intuitionistic fuzzy
information set up and utilized in the field of decision-
making problems. Further, Shen et al. [14] incorporated a
new distance measure for intuitionistic fuzzy sets with its
different properties and proposed a ‘‘modified technique for
order preference by similarity to ideal solution (TOPSIS)’’.
Next, Ye [15] presented two novel similarity measures on
the basis of cosine functions very effectively and com-
pared them with the existing other trigonometric measures.
In further deliberations, on the basis of direct operations
of membership/non-membership/hesitation, Song et al. [16]
proposed a similarity measure for IFSswith application to the
problem of medical diagnosis. Also, Singh and Kumar [17]
put forward a new intuitionistic fuzzy similarity measure with
applications to the field of pattern/face recognition problems.

Upon the introduction of picture fuzzy sets (PFSs)
in literature, Cuong and Kreinovich [18] proposed the
Hamming/Euclidean distance measures for the picture fuzzy
environment. Next, Son [19] presented the generalization
of some distance measures between PFSs with application
in the field of clustering analysis while Dutta [20] marked
out that Son’s measure has some flaw and provided a new
measure. Further, the normalized and parametric form of the
Hamming/Euclidean/Haussdorff distance measures for PFSs
were proposed by Singh et al. [21] with application to risk
analysis of flood disaster. Also, Dinh and Thao [22] proposed
some new distance/dissimilarity measures between PFSs and
utilized them in the problems of ‘‘pattern recognition and
decision-sciences’’. Also, Akram et al., [23] presented the
modified version of MARCOS decision-making techniques
under q-rung picture fuzzy environment to overcome the
limitations of other fuzzy extensions. Further, a new para-
metric information measure was given on the q-rung picture
fuzzy set which was applied in the green supply chain
management sector [24]. Wei [25] provided the concept of
picture fuzzy cross-entropy, and further proposed picture
fuzzy cosine similarity measure [26] and utilized them
accordingly/respectively in the decision-making problems.
Akram et al., [27] studied theDijkstra algorithm for a network
for the best possible optimization study in trapezoidal picture
fuzzy environment. Further, for solving the buildingmaterials
recognition problems, Wei and Gao [28] presented the
normalized/parametric form of the dice similarity measure
for the PFSs. Also, based on the cosine function & the
four standard uncertainty components of picture fuzzy
information, Wei [29] presented a new similarity measure for
dealing with the problems of ‘‘strategic decision making’’.

The parameterizations of the attributes have also been
successfully implemented in the renewable energy source
selection problem with the incorporation of the matrix
theory of picture fuzzy information [30]. In literature,
the applications of distance/similarity measures are widely
popularized by various researchers in the field of ‘‘data-
mining, medical diagnosis, decision-making and pattern
recognition’’. On the basis of cosine/cotangent functions,
[29] have given some similarity measures for picture fuzzy
sets dealing with the ‘‘strategic decision-making problem’’.
Further, Wei [31] discussed some new cosine/weighted
cosine, set-theoretic/grey similarity measures with their
weighted form and incorporated into the problem of pattern
recognition. An integrated (EDAS/ELECTRE) decision-
making approach with the picture fuzzy information in
the field of green production of gold mines have been
presented by Liang et al. [32]. Different researchers utilized
distance/entropy/dissimilarity measures for picture fuzzy
information differently in linear-programming based TOPSIS
method [33], in multi-attribute, decision-making problems
[34], [35], [36] projection model [26], [37] etc. In the
field of ‘‘clustering analysis’’, ‘‘pattern recognition’’ and
‘‘medical diagnosis’’, Son [38] discussed the generalized
picture distance/association measures and Ganei et al. [39]
introduced some new correlation coefficients in the picture
fuzzy information setup. The parametric form of information
measures has also been studied in the picture fuzzy setup
and applied in the technology of hydrogen fuel cells while
deploying VIKOR and TOPSIS decision-making techniques
[40], [41].

In view of the understanding at this stage, it is being
observed that the extended versions of fuzzy sets and
picture fuzzy sets can address the inconsistency, vague-
ness/ambiguity of the information in the application fields but
the non-inclusiveness in the time period and robustness of the
data sometimes would not be possible to deal with these kinds
of models. However, the periodicity/repeatedness and the
uncertainty/inexactness of the data can be dealt with the help
of the complex number framework at the same time. Initially,
the concept of a complex fuzzy set was given by Ramot et al.
[42] for handling such situations. It was proposed that the
value of the membership degree range be extended to the unit
disk of the complex plane. A variety of applications of CFSs
have been brought into the literature by different researchers
in the field of audio databases, biometric/medical studies,
etc. In a systematic extension of complex fuzzy sets, the
literature comes across the complex intuitionistic fuzzy set
(CIFS) [43] and complex picture fuzzy set (CPFS) [44]. The
complex neutral membership degree widens the applicability
of uncertain information and keeps it more manageable
for an expert. Akram et al. [44] proposed the concept
of CPFS and introduced new Hamacher weighted/ordered
weighted averaging aggregation operators along with geo-
metric operators and application to some MCDM problems.
Mahmood et al. [45] joined the notion of CPFS and N-soft
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sets to introduce the concept of complex picture fuzzy N -soft
sets along with various algebraic operations and solved the
problem of ‘‘e-waste recycling program and prediction about
the FIFA world cup championship through audience poll’’.
Also, Mahmood et al. [46] presented the new concept of
‘‘complex picture fuzzy soft aggregation operators’’ and
applied in the problem of ‘‘multi-attribute decision-making
(MADM )’’ problems. Further, Liu et al., [47] presented the
complex picture fuzzy based power aggregation operators
for a multi-criteria decision-making problem to cover the
time period parameter of data. In addition to this, various
decision-making models have been given for complex
intuitionistic and complex Pythagorean fuzzy environments
with the inclusion of Hamacher and Yager aggregation
operators [48], [49].

Certainly, in some real-life day-to-day situations,
it becomes very important to append the other dimension to
the natural degree of membership/non-membership so that
the complete information may be incorporated to avoid the
natural loss of information. For this, the notion of phase term
in the information becomes significant. We can illustrate this
with an example. Let us suppose that there is an operational
unit where the fingerprint attendance management machines
(FAMMs) are functional in their offices. Suppose that the
unit manager gets into consultation with an expert who
provides necessary inputs for the models of FAMMs &
their manufacturing period. The manager is supposed to
identify the most optimal/dependable model of FAMMs in
view of its manufacturing period at the same time. Such
problems are two-dimensional which cannot be properly
and accurately modeled with picture fuzzy sets with the
twin-dimensionality at the same time. In such a situation,
the optimal/best approach to encounter/address the complete
information to the expert would be by utilizing the notion of
complex picture fuzzy sets (CPFSs). The amplitude term in
the CPFS may be utilized to represent the final plan of the
company regarding the FAMMs and the phase term could
be utilized to address the manager’s judgment in view of the
manufacturing period of the FAMMs.

A. NOVELTY
The novelties of the presented study lie in proposing a new
kind of similarity measure for complex picture fuzzy sets for
the modeled decision-making problems. Presently, there is no
study available for the similarity measures of complex picture
fuzzy sets. The proposed similarity measures for complex
picture fuzzy sets are successfully applied in the decision
making problems of pattern-recognition. The addition of
uncertainty components and time period factor involvement
in the complex picture fuzzy sets makes this set robust enough
to cover uncertainty problems.

B. MOTIVATION & RESEARCH GAP
In view of the existing literature and characteristics of the
CPFSs, the prime objective of the manuscript would be

to introduce some similarity measures for the first time
under a complex picture fuzzy environment for addressing
the widely applicable pattern recognition problems having
multi-dimensional complex nature of the information. The
motivations behind the present research work are enumerated
below:

• Develop and introduce the theory of similarity measures
for CPFSs with their proof of validation and algebraic
properties.

• To have a suitable comparison between the existing
similarity measures vs the proposed similarity measures
under a picture fuzzy environment and present their
advantages.

• Implementation of the proposed similarity measures
in different pattern recognition problems with due
comparative analysis in view of existing literature.

The proposed contribution in this communication has been
developed as follows: In Section II, some fundamental
definitions/preliminaries in accordance with the present work
have been provided. The formal definitions and notion of
similarity measures (seven different) for the complex picture
fuzzy sets have been introduced with proof of their validity
in III along with some important properties. In Section IV,
a characteristic and empirical comparative analysis of some
existing similarity measures with the proposed one has been
suitably carried out in detail for establishing the prominency
of the proposed one with the help of deterministic values.
On the basis of these deliberations and the principle of
maximum similarity, Section V presents the utilization of the
proposed similarity measures in different problems of pattern
recognition and medical diagnosis. In addition to this, a
similar comparative analysis with the help of these problems
has been accordingly presented and discussed for better
understanding and clarity to the readers. Also, we precisely
present the advantages and effectiveness of the proposed
work under the discussion section (Section VI). Finally, the
paper has been duly concluded with the scope of future work
in Section VII.

II. PRELIMINARIES
In this section, we revisit some fundamental notions in
connection with PFSs and CPFSs with some of their binary
operations over the universe of discourse U .
Definition 1: Picture Fuzzy Set (PFS) [18] ‘‘A PFS A on

U is defined as A = {< u, ρA(u), τA(u), ωA(u) >| u ∈

U}, where ρA : U → [0, 1], τA : U → [0, 1] and
ωA : U → [0, 1] is the degree of membership, degree of
neutral membership (abstain) and degree of non-membership
respectively and satisfies the condition ρA(u) + τA(u) +

ωA(u) ≤ 1 with the degree of refusal given by πA(u) =

1 − (ρA(u) + τA(u) + ωA(u)).’’
Definition 2: Complex Fuzzy Set (CFS) [42] ‘‘A CFS A

onU is a set of ordered pairs, which is givenA = {(u, ρA(u)) |

u ∈ U}, where ρA : U → {c : c ∈ C, |c| ≤ 1}
is a complex-valued membership function and for u ∈ U ,
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the value of ρA(u) is given as ρA(u) = sA(u)eiθsA(u), where
i =

√
−1, 0 ≤ sA(u) ≤ 1 and 0 ≤ θsA(u) ≤ 2π .’’

Definition 3: Complex Picture Fuzzy Set (CPFS)
[44] ‘‘A CPFS A defined on U is defined as A =

{(u, ρA(u), τA(u), ωA(u)) | u ∈ U}, where ρA, τA(u), ωA(u) :

U → {c : c ∈ C, |c| ≤ 1} is a complex-
valued membership, neutral and non-membership functions,
respectively and are given as ρA(u) = sA(u)eiθsA(u), τA(u) =

tA(u)eiθtA(u), ωA(u) = mA(u)eiθmA(u), where i =
√

−1, 0 ≤

sA(u), tA(u),mA(u) ≤ 1; 0 ≤ sA(u) + tA(u) + mA(u) ≤

1 and 0 ≤ θsA(u), θtA(u), θmA(u) ≤ 2π; 0 ≤ θsA(u)+θtA(u)+
θmA(u) ≤ 2π for all u ∈ U .’’
Note: For the ease of computations, we shall denote CPFS

A as {(u, (sA(u), θsA(u)), (tA(u), θtA(u)), (mA(u), θmA(u))) |

u∈U}.

Definition 4: [44] ‘‘Let A = (u, (sA(u), θsA(u)), (tA(u),
θtA(u)), (mA(u), θmA(u))) | u∈U and B ={(u, (sB(u), θsB(u)),
(tB(u), θtB(u)), (mB(u), θmB(u))) | u ∈ U} be two CPFSs
defined on U . Then,

• A ⊆ B if and only if sA(u) ≤ sB(u), tA(u) ≤ tB(u),
mA(u) ≤ mB(u) for amplitude terms and θsA(u) ≤ θsB(u),
θtA(u) ≤ θtB(u), θmA(u) ≤ θmB(u),

• Ac

= {(u, ((mA(u), θmA(u)), (tA(u), θtA(u)), (sA(u), θsA(u)))),
| u ∈ U},

• A ∪ B = {(u, (max(sA(u), sB(u)),max(θsA(u), θsB(u))),
(min(tA(u), tB(u)),min(θtA(u), θtB(u))),
(min(mA(u),mB(u)),min(θmA(u), θmB(u)))) | u ∈ U},

• A ∩ B = {(u, (min(sA(u), sB(u)),min(θsA(u), θsB(u))),
(max(tA(u), tB(u)),max(θtA(u), θtB(u))),
(max(mA(u),mB(u)),max(θmA(u), θmB(u)))) | u ∈ U}.’’

Definition 5: [44] ‘‘Let A = {(u, (sA(u), θsA(u)), (tA(u),
θtA(u)), (mA(u), θmA(u))) | u ∈ U} and B =

{(u, (sB(u), θsB(u)), (tB(u), θtB(u)), (mB(u), θmB(u))) | u ∈ U}

be two CPFSs defined on U . Then,
• A+B= {(u, (sA(u)+sB(u)−sA(u)sB(u), θsA(u)+θsB(u)−

θsA(u)θsB(u)
2π ),

(tA(u)tB(u),
θtA(u)θtB(u)

2π ), (mA(u)mB(u),
θmA(u)θmB(u)

2π )) |

u ∈ U},
• A.B = {(u, (sA(u)sB(u),

θsA(u)θsB(u)
2π ), (tA(u) + tB(u) −

tA(u)tB(u), θtA(u) + θtB(u) −
θtA(u)θtB(u)

2π ),
(mA(u) + mB(u) − mA(u)mB(u), θmA(u) + θmB(u) −
θmA(u)θmB(u)

2π )) | u ∈ U}.’’

III. SIMILARITY MEASURES FOR COMPLEX PICTURE
FUZZY SETS
In this section, we introduce the notion of similarity measures
for CPFSs for the first time and discuss their important
properties. Further, we shall denote2(U ) be the collection of
all the nonzero CPFSs defined on the universe of discourse
U = {u1, u2, u3, . . . , un, }.
Definition 6: For any two sets A and B ∈ 2(U ), similarity

measure S : 2(U ) × 2(U ) −→ [0, 1] is a real-valued which
satisfies the following conditions:
(a) 0 ≤ S(A,B) ≤ 1,

(b) S(A,B) = 1 if A = B,
(c) S(A,B) = S(B,A),
(d) If A ⊆ B ⊆ C , then S(A,C) ≤ S(A,B) and S(A,C) ≤

S(B,C), where C ∈ 2(U ).

Definition 7: Let A = {(u, (sA(u), θsA(u)), (tA(u), θtA(u)),
(mA(u), θmA(u))) | u ∈ U} and B = {(u, (sB(u), θsB(u)),
(tB(u), θtB(u)), (mB(u), θmB(u))) | u ∈ U} be two CPFSs on
U . Based on various parameters, we propose some of the
similarity measures as follows:
(i) S1(A,B)

=
1
n

n∑
j=1

{
min(sA(uj), sB(uj)) +

1
2π min(θsA(uj), θsB(uj))

+min(tA(uj), tB(uj)) +
1
2π min(θtA(uj), θtB(uj))

+ min(mA(uj),mB(uj)) +
1
2π min(θmA(uj), θmB(uj))

}
{
max(sA(uj), sB(uj)) +

1
2π max(θsA(uj), θsB(uj))

+max(tA(uj), tB(uj)) +
1
2π max(θtA(uj), θtB(uj))

+ max(mA(uj),mB(uj)) +
1
2π max(θmA(uj), θmB(uj))

}


,

(1)

(ii) S2(A,B)

=

∑n
j=1


{
min(sA(uj), sB(uj))+ 1

2π min(θsA(uj), θsB(uj))

+min(tA(uj), tB(uj)) +
1
2π min(θtA(uj), θtB(uj))

+min(mA(uj),mB(uj))+ 1
2π min(θmA(uj), θmB(uj))

}


∑n
j=1


{
max(sA(uj), sB(uj)) +

1
2π max(θsA(uj), θsB(uj))

+max(tA(uj), tB(uj)) +
1
2π max(θtA(uj), θtB(uj))

+max(mA(uj),mB(uj))+ 1
2π max(θmA(uj), θmB(uj))

}


,

(2)

(iii) S3(A,B)

=
1
n

n∑
j=1



{
min(sA(uj), sB(uj))

+
1
2π min(θsA(uj), θsB(uj))

+min(1 − tA(uj), 1 − tB(uj))
+

1
2π min(2π − θtA(uj), 2π − θtB(uj))
+ min(1 − mA(uj), 1 − mB(uj))

+
1
2π min(2π − θmA(uj), 2π − θmB(uj))

}
{
max(sA(uj), sB(uj))

+
1
2π max(θsA(uj), θsB(uj))

+max(1 − tA(uj), 1 − tB(uj))
+

1
2π max(2π − θtA(uj), 2π − θtB(uj))
+ max(1 − mA(uj), 1 − mB(uj))

+
1
2π max(2π − θmA(uj), 2π − θmB(uj))

}



,

(3)
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(iv) S4(A,B)

=

∑n
j=1



{
min(sA(uj), sB(uj))

+
1
2π min(θsA(uj), θsB(uj))

+min(1 − tA(uj), 1 − tB(uj))
+

1
2π min(2π − θtA(uj), 2π − θtB(uj))
+ min(1 − mA(uj), 1 − mB(uj))

+
1
2π min(2π − θmA(uj), 2π − θmB(uj))

}



∑n
j=1



{
max(sA(uj), sB(uj))

+
1
2π max(2π − θsA(uj), 2π − θsB(uj))

+max(1 − tA(uj), 1 − tB(uj))
+

1
2π max(2π − θtA(uj), 2π − θtB(uj))
+ max(1 − mA(uj), 1 − mB(uj))

+
1
2π max(2π − θmA(uj), 2π − θmB(uj))

}



,

(4)

(v) S5(A,B)

= 1 −
1
6n

n∑
j=1

{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}
 , (5)

(vi) S6(A,B)

= 1 −
1
6

n∑
j=1



{
maxj |sA(uj) − sB(uj)|

+
1
2π maxj |θsA(uj) − θsB(uj)|
+maxj |tA(uj) − tB(uj)|

+
1
2π maxj |θtA(uj) − θtB(uj)|

+ maxj |mA(uj) − mB(uj)|

+
1
2π maxj |θmA(uj) − θmB(uj)|

}


, (6)

(vii) S7(A,B)

=1 −

∑n
j=1


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+|mA(uj)−mB(uj)|+ 1
2π |θmA(uj)−θmB(uj)|

}


∑n
j=1


{
|sA(uj) + sB(uj)| +

1
2π |θsA(uj) + θsB(uj))

+|tA(uj) + tB(uj)| +
1
2π |θtA(uj) + θtB(uj)|

+|mA(uj) + mB(uj)|+ 1
2π |θmA(uj)+θmB(uj)|

}


,

(7)

Theorem 1: The proposed similarity measures St (t =

1, 2, . . . , 7) satisfies the following conditions:
(a) 0 ≤ St (A,B) ≤ 1,
(b) St (A,B) = 1 if A = B,
(c) St (A,B) = St (B,A),
(d) If A ⊆ B ⊆ C , then St (A,C) ≤ S≈(A,B) and St (A,C) ≤

St (B,C), where A,B, C ∈ 2(U ).
Proof: As per the definitions, the conditions ‘‘(a)-(c)’’

are simple to prove for the similarity measures St (t =

1, 2, . . . , 7). Hence, we will focus on proving the criteria

given by ‘‘(d)’’ for the similarity measure S5 and S7. On the
basis of these deliberations, similar proofs can be done for the
other similarity measures. For the proof of the this, let C =

{(u, (sC (u), θsC (u)), (tC (u), θtC (u)), (mC (u), θmC (u))) |u∈U}.
If A ⊆ B ⊆ C . It implies that sA(uj) ≤ sB(uj) ≤ sC (uj);
tA(uj) ≤ tB(uj) ≤ tC (uj); mA(uj) ≥ mB(uj) ≥ mC (uj) and
θsA(uj) ≤ θsB(uj) ≤ θsC (uj); θtA(uj) ≤ θtB(uj) ≤ θtC (uj);
θmA(uj) ≥ θmB(uj) ≥ θmC (uj).
(i)

S1(A,B) =
1
n

n∑
j=1



{
min(sA(uj), sB(uj))

+
1
2π min(θsA(uj), θsB(uj))
+min(tA(uj), tB(uj))

+
1
2π min(θtA(uj), θtB(uj))

+ min(mA(uj),mB(uj))

+
1
2π min(θmA(uj), θmB(uj))

}
{
max(sA(uj), sB(uj))

+
1
2π max(θsA(uj), θsB(uj))
+max(tA(uj), tB(uj))

+
1
2π max(θtA(uj), θtB(uj))

+ max(mA(uj),mB(uj))

+
1
2π max(θmA(uj), θmB(uj))

}


=

1
n

n∑
j=1



{
sA(uj) + tA(uj) + mB(uj)

+
1
2π (θsA(uj) + θtA(uj) + θmB(uj)){
sB(uj) + tB(uj) + mA(uj)

+
1
2π (θsB(uj) + θtB(uj) + θmA(uj))

}


and S1(A,C)

=
1
n

n∑
j=1



{
min(sA(uj), sC (uj))

+
1
2π min(θsA(uj), θsC (uj))
+min(tA(uj), tC (uj))

+
1
2π min(θtA(uj), θtC (uj))

+ min(mA(uj),mC (uj))

+
1
2π min(θmA(uj), θmC (uj))

}
{
max(sA(uj), sC (uj))

+
1
2π max(θsA(uj), θsC (uj))
+max(tA(uj), tC (uj))

+
1
2π max(θtA(uj), θtC (uj))

+ max(mA(uj),mC (uj))

+
1
2π max(θmA(uj), θmC (uj))

}


=

1
n

n∑
j=1



{
sA(uj) + tA(uj) + mC (uj)

+
1
2π (θsA(uj) + θtA(uj) + θmC (uj)){
sC (uj) + tC (uj) + mA(uj)

+
1
2π (θsC (uj) + θtC (uj) + θmA(uj))

}
 .

As mC (uj) ≤ mB(uj; θmC (uj) ≤ θmB(uj; tB(uj) ≤ tC (uj;
θtB(uj) ≤ θtC (uj and sB(uj) ≤ sC (uj; θsB(uj) ≤ θsC (uj.
Therefore, S1(A,C) ≤ S1(A,B). On the similar lines
S1(A,C) ≤ S1(B,C).
(ii) A ⊆ B ⊆ C gives |sA(uj) − sB(uj)| ≤ |sA(uj) −

sC (uj)|;|tA(uj)−tB(uj)| ≤ |tA(uj)−tC (uj)|; |mA(uj)−mB(uj)| ≤
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|mA(uj) − mC (uj)| and |θsA(uj) − θsB(uj)| ≤ |θsA(uj) −

θsC (uj)|;|θtA(uj) − θtB(uj)| ≤ |θtA(uj) − θtC (uj)|; |θmA(uj) −

θmB(uj)| ≤ |θmA(uj) − θmC (uj)|. Therefore,

S5(A,C)

= 1 −
1
6n

n∑
j=1



{
|sA(uj) − sC (uj)|

+
1
2π |θsA(uj) − θsC (uj)|
+|tA(uj) − tC (uj)|

+
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)|

+
1
2π |θmA(uj) − θmC (uj)|

}


≤ 1 −

1
6n

×

n∑
j=1


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}
 .

= S5(A,B)

Hence, S5(A,C) ≤ S5(A,B). On the similar lines, S5(A,C) ≤

S5(B,C) can be proved.
(iii) Now, we have

{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


≤


{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


⇒
1

{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


≤
1

{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


⇒

2 ×
{
sA(uj) + tC (uj) + mC (uj)

+
1
2π (θsA(uj) + θtC (uj) + θmC (uj))

}


{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


≤

2 ×
{
sA(uj) + tB(uj) + mB(uj)

+
1
2π (θsA(uj) + θtB(uj) + θmB(uj))

}


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


⇒ 1 +

2 ×
{
sA(uj) + tC (uj) + mC (uj)

+
1
2π (θsA(uj) + θtC (uj) + θmC (uj))

}


{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


≤ 1 +

2 ×
{
sA(uj) + tB(uj) + mB(uj)

+
1
2π (θsA(uj) + θtB(uj) + θmB(uj))

}


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


⇒


{
|sA(uj) + sC (uj)| +

1
2π |θsA(uj) + θsC (uj)|

+|tA(uj) + tC (uj)| +
1
2π |θtA(uj) + θtC (uj)|

+ |mA(uj) + mC (uj)| +
1
2π |θmA(uj) + θmC (uj)|

}


{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


≤


{
|sA(uj) + sB(uj)| +

1
2π |θsA(uj) + θsB(uj)|

+|tA(uj) + tB(uj)| +
1
2π |θtA(uj) + θtB(uj)|

+ |mA(uj) + mB(uj)| +
1
2π |θmA(uj) + θmB(uj)|

}


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


⇒ 1 −


{
|sA(uj) − sC (uj)| +

1
2π |θsA(uj) − θsC (uj)|

+|tA(uj) − tC (uj)| +
1
2π |θtA(uj) − θtC (uj)|

+ |mA(uj) − mC (uj)| +
1
2π |θmA(uj) − θmC (uj)|

}


{
|sA(uj) + sC (uj)| +

1
2π |θsA(uj) + θsC (uj)|

+|tA(uj) + tC (uj)| +
1
2π |θtA(uj) + θtC (uj)|

+ |mA(uj) + mC (uj)| +
1
2π |θmA(uj) + θmC (uj)|

}


≤ 1 −


{
|sA(uj) − sB(uj)| +

1
2π |θsA(uj) − θsB(uj)|

+|tA(uj) − tB(uj)| +
1
2π |θtA(uj) − θtB(uj)|

+ |mA(uj) − mB(uj)| +
1
2π |θmA(uj) − θmB(uj)|

}


{
|sA(uj) + sB(uj)| +

1
2π |θsA(uj) + θsB(uj)|

+|tA(uj) + tB(uj)| +
1
2π |θtA(uj) + θtB(uj)|

+ |mA(uj) + mB(uj)| +
1
2π |θmA(uj) + θmB(uj)|

}


.

Therefore, S7(A,C) ≤ S7(A,B). and on the similar lines
S7(A,C) ≤ S7(B,C).
Next, we discuss some important properties of these

proposed similarity measures as given below:

Property 1: For A, B ∈ 2(U ) and t = 1, 2, . . . , 7,
we have
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(i) St (A,Bc) = St (Ac,B), t ̸= 3, 4;
(ii) St (Ac,Bc) = St (A,B), t ̸= 3, 4;
(iii) St (A ∩ B,A ∪ B) = St (A,B).

Proof: Here, we will prove part (i) only, on similar lines
other parts can be proved. Let us consider two CPFSs A =

{(u, (sA(u), θsA(u)), (tA(u), θtA(u)), (mA(u), θmA(u))) | u ∈ U}

and

B = {(u, (sB(u), θsB(u)), (tB(u), θtB(u)), (mB(u), θmB(u))) |

u ∈ U} .

(i) Now, we shall make use of similarity measure S1 given in
equation (1),

S1(A,Bc) =
1
n

n∑
j=1



{
min(sA(uj),mB(uj))

+
1
2π min(θsA(uj), θmB(uj))
+min(tA(uj), tB(uj))

+
1
2π min(θtA(uj), θtB(uj))

+ min(mA(uj), sB(uj))

+
1
2π min(θmA(uj), θsB(uj))

}
{
max(sA(uj),mB(uj))

+
1
2π max(θsA(uj), θmB(uj))
+max(tA(uj), tB(uj))

+
1
2π max(θtA(uj), θtB(uj))

+ max(mA(uj), sB(uj))

+
1
2π max(θmA(uj), θsB(uj))

}


= S1(Ac,B).

Therefore, S1(A,Bc) = S1(Ac,B). Similar can be done for
St (A,Bc) = St (Ac,B) for t = 2, 5, 6, 7.
Property 2: For A, B ∈ 2(U ) and t = 5, 6, we have

(i) St (A,A ∪ B) = St (B,A ∩ B);
(ii) St (A,A ∩ B) = St (B,A ∪ B);
(iii) St (A,A+ B) = St (B,A.B);
(iv) St (A,A.B) = St (B,A+ B).

Proof: Here, we will prove part (i) and (iii) only, on the
similar lines other parts can be proved.

(i) Let us consider two CPFSs A = {(u, (sA(u), θsA(u)),
(tA(u), θtA(u)), (mA(u), θmA(u))) | u ∈ U} and B =

{(u, (sB(u), θsB(u)), (tB(u), θtB(u)), (mB(u), θmB(u))) | u ∈

U}. Now, we shall make use of similarity measure S5 given
in equation (5),
(i) S5(A,A ∪ B)

= 1 −
1
6n

n∑
j=1



{
|sA(uj) − max(sA(uj), sB(uj))|

+
1
2π |θsA(uj) − max(θsA(uj), θsB(uj))|
+|tA(uj) − min(tA(uj), tB(uj))|

+
1
2π |θtA(uj) − min(θtA(uj), θtB(uj))|

+ |mA(uj) − min(mA(uj),mB(uj))|

+
1
2π |θmA(uj) − min(θmA(uj), θmB(uj))|

}



= 1 −
1
6n

n∑
j=1



{
|min(0, sA(uj) − sB(uj))|

+
1
2π |min(0, θsA(uj) − θsB(uj))|
+|max(0, tA(uj) − tB(uj))|

+
1
2π |max(0, θtA(uj) − θtB(uj))|

+ |max(0,mA(uj) − mB(uj))|

+
1
2π |max(0, θmA(uj) − θmB(uj))|

}


.

and S5(B,A ∩ B)

= 1 −
1
6n

n∑
j=1



{
|sB(uj) − min(sA(uj), sB(uj))|

+
1
2π |θsB(uj) − min(θsA(uj), θsB(uj))|
+|tB(uj) − max(tA(uj), tB(uj))|

+
1
2π |θtB(uj) − max(θtA(uj), θtB(uj))|

+ |mB(uj) − max(mA(uj),mB(uj))|

+
1
2π |θmB(uj) − max(θmA(uj), θmB(uj))|

}



= 1 −
1
6n

n∑
j=1



{
|max(0, sB(uj) − sA(uj))|

+
1
2π |max(0, θsB(uj) − θsA(uj))|
+|min(0, tB(uj) − tA(uj))|

+
1
2π |min(0, θtB(uj) − θtA(uj))|

+ |min(0,mB(uj) − mA(uj))|

+
1
2π |min(0, θmB(uj) − θmA(uj))|

}



= 1 −
1
6n

n∑
j=1



{
|min(0, sA(uj) − sB(uj))|

+
1
2π |min(0, θsA(uj) − θsB(uj))|
+|max(0, tA(uj) − tB(uj))|

+
1
2π |max(0, θtA(uj) − θtB(uj))|

+ |max(0,mA(uj) − mB(uj))|

+
1
2π |max(0, θmA(uj) − θmB(uj))|

}


.

= S5(A,A ∪ B).

Therefore, S5(A,A∪ B) = S1(A,A∩ B). Similar can be done
for S6(A,A ∪ B) = S6(A,A ∩ B).
(ii) Again, we shall make use of equation (5), we get

S5(A,A + B) = 1 −
1
6n , as shown at the bottom of the next

page.
Hence, S5(A,A+B) = S5(B,A.B). On the similar lines we

can prove S6(A,A+ B) = S6(B,A.B).

IV. EMPIRICAL COMPARISON OF THE PROPOSED
SIMILARITY MEASURES
In this section, we explain the rationality of the introduced
similarity measures on the account of the comparisons with
the existing similarity measures in the literature on the basis
of numerical computations.
Example 4.1: For illustrating the effectiveness of the

introduced similarity measure S1, a comparative analysis
between the existing similarity measures in the literature and
the introduced similarity measures has been done. Some of
the existing similarity measures in the literature are listed in
Table 1 with their proper references.
Let Ai and Bi are the distinct CPFSs as shown in

Table 2. In order to evaluate the effectiveness and feasibility
of the presented similarity measures with some of the
existing measures, we first convert the complex picture fuzzy
information into the simple picture fuzzy by taking the phase
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terms corresponding to every complex picture fuzzy set equal
to zero. Table 2 provides an overview of the outcomes for both
the proposed and the existing similarity measures.
Note: The values of Ai and Bi for the different cases in

Table 2 are given as below:

(a) Case 1. A1 = {(0.5, 0.3π ), (0.1, 0.5π ), (0.4, 0.1π )},
{(0.4, 0.3π ), (0.2, 0.1π ), (0.3, 0.2π )}
B1 = {(0.4, 0.6π ), (0.1, 0.5π ), (0.4, 0.3π )},
{(0.5, 0.9π ), (0.1, 0.4π ), (0.4, 0.3π )},

(b) Case 2. A2 = {(0.5, 0.3π ), (0.1, 0.5π ), (0.4, 0.1π )},
{(0.4, 0.3π ), (0.2, 0.1π ), (0.3, 0.2π )}
B2 = {(0.5, 0.9π ), (0.1, 0.2π ), (0.3, 0.2π )},
{(0.3, 0.9π ), (0.3, 0.1π ), (0.2, 0.2π )},

(c) Case 3. A3 = {(0.0, 1.1π ), (1.0, 0.2π ), (0.0, 0.1π )},
{(0.0, 0.4π ), (0.0, 1.1π ), (1.0, 0.1π )}
B3 = {(0.5, 0.4π ), (0.0, 1.2π ), (0.2, 0.1π )},
{(0.6, 0.7π ), (0.3, 0.2π ), (0.0, 0.3π )},

(d) Case 4. A4 = {(0.0, 1.1π ), (1.0, 0.2π ), (0.0, 0.1π )},
{(0.0, 0.4π ), (0.0, 1.1π ), (1.0, 0.1π )}
B4 = {(0.9, 0.6π ), (0.0, 0.3π ), (0.1, 0.5π )},
{(0.7, 0.4π ), (0.1, 1.1π ), (0.0, 0.1π )},

From Table 2, we observe that for first pair of CPFSs
{A1,B1} and {A2,B2}, SSM1 (A1,B1) = SSM1 (A2,B2) when
A1 = A2, B1 ̸= B2, which results in an unreasonable/counter-
intuitive situation. This situation also exists for other existing
similarity measures such as SSM2 , SSM3 , SSM4 , SSM5 , SW2 ,
SW3 , SW4 , SW5 , SDT1 , SDT2 . On the similar lines, by taking
the second pair CPFSs {A3,B3}, {A4,B4}, we also get some
irrelevant results for the similarity measures SSM1 , SSM3 ,
SSM4 , SW1 , SW2 , SW3 , SW4 , SW5 , SWG1 , SWG2 . Now, it is

clear from Table 2, that the proposed similarity measure has
overcome the limitations of the existing similarity measure
and gives the most reasonable results.

V. UTILIZATION OF PROPOSED SIMILARITY MEASURES
IN PATTERN RECOGNITION PROBLEMS
In this section, the introduced similarity measure has been
applied especially in the problems of ‘‘pattern recognition and
medical diagnosis’’. Also, the introduced similarity measures
are compared with the existing measures in the literature.

A. STEPS OF PROCEDURE FOR PATTERN RECOGNITION
LetU = {u1, u2, u3, . . . , un} be a universal set, suppose there
are m distinct patterns Pi = {< ρAi (uj), τAi (uj), ωAi (uj) >|

uj ∈ U}(i = 1, 2, . . . ,m) and a completely unknown pattern
Q = {< ρQ(uj), τQ(uj), ωQ(uj) >| uj ∈ U}. The steps
involved in this methodology are given as follows:
Step 1: Computing the values of the similarity measure

S1(Pi,Q)(i = 1, 2, . . . ,m) between Pi & Q.
Step 2: Select the maximum value S1(Pi0,Q) from

S1(Pi,Q) i.e., S1(Pi0,Q) = max1≤i≤m S1(Pi,Q). After doing
the necessary computations, the unknown pattern Q is
classified to the pattern Pi0 bymaking use of the ‘‘principle of
the maximum of similarity measures’’. Also, the procedural
steps for pattern recognition problems are shown in Figure 1.
Now, these steps are applied in the following examples.
Example 5.1.1:Consider three unknown patternsP1,P2,P3

and the pattern to be tested isQ, are given in the Table 3 under
complex picture fuzzy environment.

n∑
j=1


{
|sA(uj) − (sA(uj) + sB(uj) − sA(uj).sB(uj))|

+|tA(uj) − tA(uj).tB(uj)| + |mA(uj) − mA(uj).mB(uj)|
+

1
2π (|θsA(uj) − (θsA(uj) + θsB(uj) −

θsA(uj).θsB(uj)
2π )|

+ |θtA(uj) −
θtA(uj).θtB(uj)

2π )| + |θmA(uj) −
θmA(uj).θmB(uj)

2π )|)
}


= 1 −

1
6n

n∑
j=1


{
|sB(uj)(1 − sA(uj))| + |tA(uj)(1 − tB(uj))|

+|mA(uj)(1 − mB(uj))| +
1
2π (|θsB(uj)(1 −

θsA(uj)
2π )|

+ |θtB(uj)(1 −
θtA(uj)
2π ) + |θmB(uj)(1 −

θmA(uj)
2π )|)

}
.

and S5(B,A.B) = 1 −
1
6n

n∑
j=1



{
|sB(uj) − sA(uj).sB(uj))|

+|tB(uj) − (tA(uj) + tB(uj) − tA(uj).tB(uj))|
+|mB(uj) − (mA(uj) + mB(uj) − mA(uj).mB(uj))|

+
1
2π (|θsB(uj) −

θsA(uj).θsB(uj)
2π |

+|θtB(uj) − (θtA(uj) + θtB(uj) −
θtA(uj).θtB(uj)

2π )|

+ |θmB(uj) − (θmA(uj) + θmB(uj) −
θmA(uj).θsB(uj)

2π )|)
}


= 1 −

1
6n

n∑
j=1


{
|sB(uj)(1 − sA(uj))| + |tA(uj)(1 − tB(uj))|

+|mA(uj)(1 − mB(uj))| +
1
2π (|θsB(uj)(1 −

θsA(uj)
2π )|

+ |θtB(uj)(1 −
θtA(uj)
2π ) + |θmB(uj)(1 −

θmA(uj)
2π )|)

}


= S5(A,A+ B).

VOLUME 12, 2024 83111



H. Dhumras et al.: On Similarity Measures of CPFSs

TABLE 1. Existing similarity measures for PFSs.

The results of the classification of various similarity
measures are given in Table 4, and S1(P3,Q) < S1(P1,Q) <

S1(P2,Q). From this, we conclude that the unknown pattern
matches with the pattern P2 and the proposed similarity
measure S1 gives consistent results along with SWG1 , SWG2 .
The other existing similarity measures in the literature are
unable to classify the unknown pattern Q because either
they are giving the same values or the values cannot be
calculated. Therefore, our proposed similarity measures are
able to overcome the limitations of the existing similarity in
an effective and superior manner.
Example 5.1.2. [29]: Consider a company that devises a

new product and is looking for the best approach to increase
sales. Now, there are four distinct possible approaches: Q1:
develop a product which is more wealthy customers oriented,
Q2: develop a product which is more intended towards middle
and lower middle-class customers, Q3: develop a product

TABLE 2. Comparisons with different similarity measures(unreasonable
results are in bold-type).

FIGURE 1. Procedural steps for solving a pattern recognition problem.

TABLE 3. Patterns and unknown pattern.

which is suitable to all customer types, Q2: do not develop
a product. After a thorough evaluation of the information, the
approaches are condensed into the six characteristic features
Ci(i = 1, 2, . . . , 6). Now, the four distinct approaches Qi(i =
1, 2, 3, 4) and a complete;y unknown approach D under the
six characteristics are converted in the complex picture fuzzy
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TABLE 4. Pattern recognition results for different similarity measures.

TABLE 5. Patterns and unknown pattern.

TABLE 6. Comparison with existing measures.

information given in Table 5. Further, by making use of
the ‘‘principle of the maximum of similarity measures’’,
the measure with the maximum value gives the optimal
production approach.

From Table 6, we see that the results of the proposed
similarity measure are equally consistent as those with
the [29] and the unknown approach D matches with the
approach Q4.

B. APPLICATION IN MEDICAL DIAGNOSIS
Further, the proposed measure has been applied to the
problems of medical diagnosis along with comparisons with
the existing similarity measures in the literature. The steps
involved in the methodology are given in Figure 2.
Example 5.2.1. [20]: Let us consider the set P =

{P1,P2,P3,P4} be the set of four patients and let S be the
set of symptoms given as S = {Temperature, Headache,
Stomach pain, Cough, Chest pain}. Let D = {Viral fever ,

FIGURE 2. Procedural steps for solving a medical diagnosis problem.

Malaria, Typhoid , Stomach problem, Chest pain} be the
set of diagnoses. Now, the corresponding symptoms of the
patients and diseases are given in Table 7 and Table 8
respectively. The information in the respective tables are
stored in the form of complex picture fuzzy information.
Now, we utilize the proposed similarity measure S1 for the
diagnosis of the patients. Similarly, other proposed similarity
measures can also be utilized.

Further, with the help of the ‘‘principle of the maximum of
similarity measures’’, the maximum value of the similarity
measure gives us the proper diagnosis. From Table 9,
we conclude that the patient P1 is suffering from Viral fever,
P2 is suffering from Chest problem, P3 is suffering from
Typhoid, P4 is suffering from stomach problem.
Example 5.2.2: Let us consider the set P = {P1,P2,P3}

be the set of four patients and let S be the set of symptoms
given as S = {S1, S2, S3, S4, S5}. Let D = {D1, D2, D3, D4}
be the set of diagnoses. Now, the corresponding symptoms of
the patients and diseases are given in Table 10 and Table 11
respectively. The information in the respective tables is stored
in the form of complex picture fuzzy information. Now,
we again utilize the similarity measure S1 for the diagnosis
of the patients.

Further, with the help of the ‘‘principle of the maximum
of similarity measures’’, the maximum value of the similarity
measure gives us the proper diagnosis.
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TABLE 7. Characterization of symptoms for the patients.

TABLE 8. Characterization of symptoms for the diagnoses.

TABLE 9. Results obtained from the proposed similarity measure.

From Table 12, we conclude that the patient P1 is suffering
from D2, P2 is suffering from D4, P3 is suffering from
D3. From Table 13, we see that the results of the proposed
similarity measure are equally consistent as those with the

TABLE 10. Characterization of symptoms for the patients.

TABLE 11. Characterization of symptoms for the diagnoses.

TABLE 12. Results obtained from the proposed similarity measure.

TABLE 13. Medical diagnoses results for different similarity measures.

SW1 ,SWG1 and SWG2 , where other similarity measures are
unable to diagnose the diseases.

VI. DISCUSSION ON ADVANTAGE OF SIMILARITY
MEASURES FOR CPFSS
It has been duly explained in the introduction section
regarding the advantages of utilizing complex picture fuzzy
information in real-life applications such as fingerprint
attendance management machines and other pattern recog-
nition/medical diagnosis problems. Upon introducing the
concept of similarity measures for complex picture fuzzy sets
for the first time in literature, we have applied them in two
different hypothetical problems of pattern recognition and
medical diagnosis. The respective results of the problems
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under consideration have been already pointed out along with
its computational part. In addition to this, we discuss and
explicitly point out the important advantageous remarks as
follows:

• The effectiveness of the similarity measures for CPFSs
clearly gets reflected while dealing with the problems
of time-periodicity and handling the 2-dimensional data
set. Additionally, it incorporates all four components of
uncertainty inherited in a picture-fuzzy environment.

• In the problem taken in Example 5.2.2, the superiority
of the proposed measures has been illustrated with the
help of a suitable comparative analysis.

• It may also be noted that the problem taken in
Example 5.1.1 could not be addressed with the help of
the existing similarity measures while this can be solved
with the utilization of the proposed similarity measures.

• Overall, it has also been shown in Section IV that the
values of the existing similarity measures are observed
to be unreasonable in comparison with the values of
introduced similarity measures.

Remark: The constraint on the sum of uncertainty compo-
nents (i.e. one) is the limitation of the proposed model, the
decision-makers have to choose the values so that the sum of
all the uncertainty components remains one.

VII. CONCLUSION AND FUTURE WORK
The systematic notional deliberation of novel similarity
measures under the complex picture fuzzy information
setup has been successfully presented with proper proofs
of validation and their properties. The empirical compar-
ative analysis and comparison with similarity measures
given by [50] and [51] depict that the existing similarity
measures for complex picture fuzzy sets compute counter-
intuitive values, which are not quite reasonable in real
situations. However, the proposed measures show reasonably
better acceptable values/ranges, illustrating their prominence.
The implementation process of the proposed measures
for different problems of pattern recognition is found to
be computationally and effectively applicable. The other
comparative analysis presented in the manuscript provides a
better prospect with advantageous features for the problems
under consideration. It may also be observed that the
methodology containing the proposed similarity measures
better handles problems of time-periodicity and manages
2-dimensional data sets more efficiently. In the literature,
for the sake of further extension of the work, the notion of
complex q-rung picture fuzzy sets can be introduced with
their important algebraic operations, similarity measures, and
various types of aggregation operators. Additionally, similar
work can be done for complex q-rung picture fuzzy sets, and
the measures can be applied to machine learning problems.
Accordingly, the application field can be selected for some
deterministic results and orientation.

DECLARATIONS AND COMPLIANCE WITH ETHICAL
STANDARDS
Ethical approval: This article does not contain any studies
with human participants or animals performed by any of the
authors.
Conflict of interest: The authors declare that they have no
known competing financial interests or personal relationships
that could have appeared to influence thework reported in this
article.
Authorship contributions: All authors have equally con-
tributed to the design and implementation of the research,
to the analysis of the results, and to the writing of the
manuscript.

REFERENCES
[1] A. Ferchichi, W. Boulila, and I. R. Farah, ‘‘Propagating aleatory and

epistemic uncertainty in land cover change prediction process,’’ Ecol.
Informat., vol. 37, pp. 24–37, Jan. 2017.

[2] W. Boulila, Z. Ayadi, and I. R. Farah, ‘‘Sensitivity analysis approach
to model epistemic and aleatory imperfection: Application to land cover
change prediction model,’’ J. Comput. Sci., vol. 23, pp. 58–70, Nov. 2017.

[3] A. Ferchichi, W. Boulila, and I. R. Farah, ‘‘Reducing uncertainties in land
cover change models using sensitivity analysis,’’ Knowl. Inf. Syst., vol. 55,
no. 3, pp. 719–740, Jun. 2018.

[4] M. Luo and J. Liang, ‘‘A novel similarity measure for interval-valued
intuitionistic fuzzy sets and its applications,’’ Symmetry, vol. 10, no. 10,
p. 441, Sep. 2018.

[5] M. Luo and R. Zhao, ‘‘A distance measure between intuitionistic fuzzy
sets and its application in medical diagnosis,’’ Artif. Intell. Med., vol. 89,
pp. 34–39, Jul. 2018.

[6] B. Pekala, U. Bentkowska, J. Fernandez, and H. Bustince, ‘‘Equivalence
measures for Atanassov intuitionistic fuzzy setting used to algorithm
of image processing,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., Jun. 2019,
pp. 1–6.

[7] P. MeloPinto, P. Couto, H. Bustince, E. Barrenechea, M. Pagola, and
J. Fernandez, ‘‘Image segmentation using Atanassov’s intuitionistic fuzzy
sets,’’ Expert Syst. Appl., vol. 40, pp. 15–26, Jan. 2013.

[8] H. Dhumras and R. K. Bajaj, ‘‘On assembly robotic design evaluation
problem using enhanced quality function deployment with q-rung
orthopair fuzzy set theoretic environment,’’ J. Inf. Sci. Eng., vol. 39, no. 3,
pp. 623–636, May 2023.

[9] N. Jamal, M. Sarwar, P. Agarwal, N. Mlaiki, and A. Aloqaily, ‘‘Solutions
of fuzzy advection-diffusion and heat equations by natural adomian
decomposition method,’’ Sci. Rep., vol. 13, no. 1, p. 18565, Oct. 2023.

[10] A. Shahzad, A. Shoaib, N. Mlaiki, and S. Subhi Aiadi, ‘‘Results for fuzzy
mappings and stability of fuzzy sets with applications,’’Fractal Fractional,
vol. 6, no. 10, p. 556, Sep. 2022.

[11] X. Xue, M. Poonia, G. M. Abdulsahib, R. K. Bajaj, O. I. Khalaf,
H. Dhumras, and V. Shukla, ‘‘On cohesive fuzzy sets, operations
and properties with applications in electromagnetic signals and solar
activities,’’ Symmetry, vol. 15, no. 3, p. 595, Feb. 2023.

[12] M. Saeed, M. Ahsan, and T. Abdeljawad, ‘‘A development of complex
multi-fuzzy hypersoft set with application in MCDM based on entropy and
similarity measure,’’ IEEE Access, vol. 9, pp. 60026–60042, 2021.

[13] E. Szmidt, Distances and Similarities in Intuitionistic Fuzzy Sets. Cham,
Switzerland: Springer, 2014.

[14] F. Shen, X. Ma, Z. Li, Z. Xu, and D. Cai, ‘‘An extended intuitionistic fuzzy
TOPSIS method based on a new distance measure with an application to
credit risk evaluation,’’ Inf. Sci., vol. 428, pp. 105–119, Feb. 2018.

[15] J. Ye, ‘‘Similarity measures of intuitionistic fuzzy sets based on cosine
function for the decision making of mechanical design schemes,’’ J. Intell.
Fuzzy Syst., vol. 30, no. 1, pp. 151–158, Sep. 2015.

[16] Y. Song, X. Wang, W. Quan, and W. Huang, ‘‘A new approach to construct
similarity measure for intuitionistic fuzzy sets,’’ Soft Comput., vol. 23,
no. 6, pp. 1985–1998, Nov. 2017.

[17] A. Singh and S. Kumar, ‘‘A novel dice similarity measure for IFSs and its
applications in pattern and face recognition,’’ Expert Syst. Appl., vol. 149,
Jul. 2020, Art. no. 113245.

VOLUME 12, 2024 83115



H. Dhumras et al.: On Similarity Measures of CPFSs

[18] B. C. Cuong and V. Kreinovich, ‘‘Picture fuzzy sets—A new concept
for computational intelligence problems,’’ in Proc. 3rd World Congr. Inf.
Commun. Technol. (WICT ), Hanoi, Vietnam, Dec. 2013, pp. 1–6.

[19] L. H. Son, ‘‘Generalized picture distance measure and applications to
picture fuzzy clustering,’’ Appl. Soft Comput., vol. 46, pp. 284–295,
Sep. 2016.

[20] P. Dutta, ‘‘Medical diagnosis via distance measures on picture fuzzy sets,’’
AMSE J.-AMSE Lieta, vol. 54, pp. 137–152, Sep. 2017.

[21] P. Singh, N. K. Mishra, M. Kumar, S. Saxena, and V. Singh, ‘‘Risk
analysis of flood disaster based on similarity measures in picture fuzzy
environment,’’ Afrika Matematika, vol. 29, nos. 7–8, pp. 1019–1038,
May 2018.

[22] N. Van Dinh and N. Xuan Thao, ‘‘Some measures of picture fuzzy sets
and their application in multi-attribute decision making,’’ Int. J. Math. Sci.
Comput., vol. 4, no. 3, pp. 23–41, Jul. 2018.

[23] M. Akram, A. Khan, A. Luqman, T. Senapati, and D. Pamucar, ‘‘An
extended MARCOS method for MCGDM under 2-tuple linguistic q-rung
picture fuzzy environment,’’ Eng. Appl. Artif. Intell., vol. 120, Apr. 2023,
Art. no. 105892.

[24] H. Dhumras, R. K. Bajaj, and V. Shukla, ‘‘On utilizing modified TOPSIS
with R-norm q-rung picture fuzzy information measure green supplier
selection,’’ Int. J. Inf. Technol., vol. 15, no. 5, pp. 2819–2825, Jun. 2023.

[25] G. Wei, ‘‘Picture fuzzy cross-entropy for multiple attribute decision
making problems,’’ J. Bus. Econ. Manage., vol. 17, no. 4, pp. 491–502,
Jul. 2016.

[26] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, ‘‘Projection models for
multiple attribute decision making with picture fuzzy information,’’ Int.
J. Mach. Learn. Cybern., vol. 9, no. 4, pp. 713–719, Sep. 2016.

[27] M. Akram, A. Habib, and J. C. R. Alcantud, ‘‘An optimization study
based on Dijkstra algorithm for a network with trapezoidal picture fuzzy
numbers,’’Neural Comput. Appl., vol. 33, no. 4, pp. 1329–1342, Feb. 2021.

[28] G. Wei and H. Gao, ‘‘The generalized dice similarity measures for picture
fuzzy sets and their applications,’’ Informatica, vol. 29, no. 1, pp. 107–124,
Jan. 2018.

[29] G. Wei, ‘‘Some cosine similarity measures for picture fuzzy sets and their
applications to strategic decision making,’’ Informatica, vol. 28, no. 3,
pp. 547–564, Jan. 2017.

[30] H. Dhumras and R. Bajaj, ‘‘On renewable energy source selection
methodologies utilizing picture fuzzy hypersoft information with choice
and value matrices,’’ Scientia Iranica, pp. 1–28, Dec. 2022, doi:
10.24200/SCI.2022.60529.6847.

[31] G. W. Wei, ‘‘Some similarity measures for picture fuzzy sets and their
applications,’’ Iranian J. Fuzzy Syst., vol. 15, no. 1, pp. 77–89, 2018.

[32] W.-Z. Liang, G.-Y. Zhao, and S.-Z. Luo, ‘‘An integrated EDAS-electre
method with picture fuzzy information for cleaner production evaluation
in gold mines,’’ IEEE Access, vol. 6, pp. 65747–65759, 2018.

[33] M. S. Sindhu, T. Rashid, and A. Kashif, ‘‘Modeling of linear programming
and extended TOPSIS in decision making problem under the frame-
work of picture fuzzy sets,’’ PLoS ONE, vol. 14, no. 8, Aug. 2019,
Art. no. e0220957.

[34] N. X. Thao, ‘‘Similarity measures of picture fuzzy sets based on entropy
and their application in MCDM,’’ Pattern Anal. Appl., vol. 23, no. 3,
pp. 1203–1213, Dec. 2019.

[35] N. T. Le, D. V. Nguyen, C.M. Ngoc, and T. X. Nguyen, ‘‘New dissimilarity
measures on picture fuzzy sets and applications,’’ J. Comput. Sci. Cybern.,
vol. 34, no. 3, pp. 219–231, Nov. 2018.

[36] H. Dhumras, R. K. Bajaj, and V. Shukla, ‘‘On picture fuzzy information-
based hybrid cryptographic TOPSIS approach for best suitable cloud
storage and security level,’’ in Cryptology and Network Security With
Machine Learning. Cham, Switzerland: Springer, 2023, pp. 125–134.

[37] H. Dhumras, G. Garg, and R. K. Bajaj, ‘‘On clustering and pattern
recognition techniques utilizing bi-parametric picture fuzzy (R, S)-norm
discriminant information measure,’’ Scientia Iranica, pp. 1–25, Nov. 2023.

[38] L. H. Son, ‘‘Measuring analogousness in picture fuzzy sets: From picture
distance measures to picture association measures,’’ Fuzzy Optim. Decis.
Making, vol. 16, no. 3, pp. 359–378, Sep. 2016.

[39] A. H. Ganie, S. Singh, and P. K. Bhatia, ‘‘Some new correlation coefficients
of picture fuzzy sets with applications,’’ Neural Comput. Appl., vol. 32,
no. 16, pp. 12609–12625, Jan. 2020.

[40] H. Dhumras and R. K. Bajaj, ‘‘On prioritization of hydrogen fuel cell
technology utilizing bi-parametric picture fuzzy information measures
in VIKOR and TOPSIS decision-making approaches,’’ Int. J. Hydrogen
Energy, vol. 48, no. 96, pp. 37981–37998, Dec. 2023.

[41] H. Dhumras and R. K. Bajaj, ‘‘On various aggregation operators for picture
fuzzy hypersoft information in decision making application,’’ J. Intell.
Fuzzy Syst., vol. 44, no. 5, pp. 7419–7447, May 2023.

[42] D. Ramot, R. Milo, M. Friedman, and A. Kandel, ‘‘Complex fuzzy sets,’’
IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 171–186, Aug. 2002.

[43] A. J. S. Alkouri and A. R. Salleh, ‘‘Complex intuitionistic fuzzy sets,’’ in
AIP Conf. Proc., 2012, pp. 464–470.

[44] M. Akram, A. Bashir, and H. Garg, ‘‘Decision-making model under
complex picture fuzzy Hamacher aggregation operators,’’ Comput. Appl.
Math., vol. 39, no. 3, p. 226, Jul. 2020.

[45] T. Mahmood, U. U. Rehman, and J. Ahmmad, ‘‘Complex picture fuzzy
N-soft sets and their decision-making algorithm,’’ Soft Comput., vol. 25,
no. 21, pp. 13657–13678, Aug. 2021.

[46] T. Mahmood, Z. Ali, and M. Aslam, ‘‘Applications of complex picture
fuzzy soft power aggregation operators in multi-attribute decision mak-
ing,’’ Sci. Rep., vol. 12, no. 1, p. 16449, Sep. 2022.

[47] P. Liu, M. Akram, and A. Bashir, ‘‘Extensions of power aggregation oper-
ators for decision making based on complex picture fuzzy knowledge,’’
J. Intell. Fuzzy Syst., vol. 40, no. 1, pp. 1107–1128, Jan. 2021.

[48] M. Akram, X. Peng, and A. Sattar, ‘‘A new decision-making model
using complex intuitionistic fuzzy Hamacher aggregation operators,’’ Soft
Comput., vol. 25, no. 10, pp. 7059–7086, May 2021.

[49] M. Akram, X. Peng, and A. Sattar, ‘‘Multi-criteria decision-making model
using complex Pythagorean fuzzy yager aggregation operators,’’ Arabian
J. Sci. Eng., vol. 46, no. 2, pp. 1691–1717, Feb. 2021.

[50] M. Luo and W. Li, ‘‘Some new similarity measures on picture fuzzy sets
and their applications,’’ Soft Comput., vol. 27, no. 10, pp. 6049–6067,
May 2023.

[51] R. Verma and B. Rohtagi, ‘‘Novel similarity measures between picture
fuzzy sets and their applications to pattern recognition and medical
diagnosis,’’ Granular Comput., vol. 7, no. 4, pp. 761–777, Oct. 2022.

HIMANSHU DHUMRAS received the B.Sc.
degree (Hons.) in mathematics from Government
Degree College, Sanjauli, Himachal Pradesh,
in 2016, and the M.Sc. degree from Himachal
Pradesh University, Himachal Pradesh, in 2018.
He is currently pursuing the Ph.D. degree in math-
ematics from the Jaypee University of Information
Technology (JUIT), Waknaghat. His research
interests include fuzzy decision-making, pattern
recognition, and soft computing techniques.

VARUN SHUKLA received the M.Tech. degree
from RGTU and the Ph.D. degree from Dr. A.P.J.
AKTU, Lucknow. He is currently a Professor and
the Dean of Research with the Electronics and
Communication Department, Allenhouse Institute
of Technology, Kanpur, India. His research inter-
ests include wireless communication, cryptology,
communication protocols, and security. He is
a fellow of the Institution of Electronics and
Telecommunication Engineers and a member of

the Cryptology Research Society of India, the Institution of Engineers, and
Indian Science Congress.

83116 VOLUME 12, 2024

http://dx.doi.org/10.24200/SCI.2022.60529.6847


H. Dhumras et al.: On Similarity Measures of CPFSs

RAKESH KUMAR BAJAJ received the B.Sc.
degree (Hons.) from BHU, Varanasi, in 2000,
the M.Sc. degree from IIT Kanpur, in 2002,
and the Ph.D. degree in mathematics from the
Jaypee University of Information Technology
(JUIT), Waknaghat, Solan, Himachal Pradesh,
India. He has been a Professor and the Head of
the Department of Mathematics, JUIT, since 2003.
His research interests include fuzzy decision-
making, pattern recognition, and soft computing
techniques.

MAHA DRISS (Senior Member, IEEE) received
the Ph.D. degree. She is currently an Assistant
Professor with the Computer Science Department,
College of Computer and Information Sciences,
Prince Sultan University, Saudi Arabia. Her
research interests include software engineering,
service computing, distributed systems, the IoT
and IIoT, artificial intelligence, and security engi-
neering. She is a member of the ACM Professional
Chapter.

WADII BOULILA (Senior Member, IEEE)
received the Ph.D. degree. He is currently an
Associate Professor of computer science with
Prince Sultan University, Saudi Arabia; a Senior
Researcher with the RIOTU Laboratory, Prince
Sultan University; and a Senior Researcher with
the RIADI Laboratory, University of Manouba,
Manouba, Tunisia. His research interests include
data science, computer vision, big data analytics,
deep learning, cybersecurity, artificial intelligence,

and uncertainty modeling. He is an ACM Member and a Senior Fellow of
the Higher Education Academy, U.K.

VOLUME 12, 2024 83117


