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ABSTRACT The Open Radio Access Network (RAN) emerges as a revolutionary architecture promising
unprecedented levels of openness, flexibility, and intelligence within radio access networks. Central to
this innovation is the integration of Machine Learning (ML) and Artificial Intelligence (AI) within
the RAN Intelligent Controller (RIC), aimed at optimizing network operations and enhancing control
mechanisms. This paper undertakes a thorough examination of Open RAN, particularly focusing on its
energy consumption aspects, which are pivotal for ensuring the sustainability of future wireless networks.
In this paper, we review and compare Open RAN architecture with previous network architectures.
In particular we focus on O-RAN Alliance specifications. Additionally, we explore the deployment of
ML across various facets of Open RAN and highlights how to estimate the energy consumption of
ML models. Through constructing explicit energy consumption models for key O-RAN components,
we provide a granular analysis of their energy profiles. Finally we compare the energy dynamics of O-RAN
against traditional RAN architectures, delineating the impact of virtualization and disaggregation on energy
efficiency.

INDEX TERMS Open radio access network (Open RAN), energy efficiency, machine learning,
disaggregation.

I. INTRODUCTION
Fifth Generation (5G) cellular networks are engineered to
greatly increase the speed and responsiveness of wireless
networks. The services provided by the 5G cellular networks
can be divided into three main categories, including enhanced
Mobile Broadband (eMMB), Ultra-Reliable Low-Latency
Communication (URLLC) and massive Machine-Type Com-
munication (mMTC). Each service corresponds to a network
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slice and different requirements, and the standards for
5G networks need to meet these various demands. These
advancements come with substantial energy requirements.
By 2025, it is projected that the telecommunications industry
will consume around 30% of global energy consumption [1].
The denser placement of 5G Base Station (BS), which
are necessary to ensure network coverage and capacity,
will result in a significant increase in energy consumption.
In fact, approximately 80% of energy consumption in cellular
mobile networks is attributed to BS [2]. A recent analysis
conducted by the Global System forMobile Communications
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Association (GSMA) reveals that, on average, network
operations are responsible for 90% of a mobile operator’s
energy consumption, with the RAN contributing to over 80%
of this network-related energy usage [3]. Therefore, attaining
optimization in energy efficiency constitutes a pivotal
advancement in the evolution of the telecommunications
industry. The energy efficiency-related requirements are even
tighter in Sixth Generation of Mobile Networks (6G) [4].

Another critical concern to consider is that the current
5G cellular architecture is still far away from supporting
multiple services and meeting their Quality of Service (QoS)
due to its inherent design and operation. In the current stage
of RAN development, the provision of RAN components,
both hardware and software, is predominantly controlled
by a single vendor. This arrangement significantly restricts
the flexibility and adaptability of the system. Furthermore,
the absence of standardized interfaces between various net-
work nodes hampers their interactivity and interoperability.
Compounding these issues, the black-box nature of the
operating system further complicates efforts to reconfigure
nodes to support diverse deployments and meet varying
traffic demands in different scenarios. Consequently, in such
an architecture, the task of achieving dynamic resource
allocation and real-time energy efficiency optimization
becomes a formidable challenge [5].

The evolution of cellular network architectures is an
inevitable consequence of the ever-growing network service
demands and emerging technologies. Among the proposed
models for future RAN development, Open RAN stands
out as a prominent approach. Open RAN introduces various
concepts, including virtualization, disaggregation, intelligent
and optimized management, and open interfaces [6], [7],
to address the evolving requirements of the network. To work
on this concepts, a world-wide community of mobile network
operators, vendors, and research and academic institutions
operating in the RAN industry formed O-RAN Alliance. The
O-RAN Alliance defined specifications for next generation
RAN which is known as O-RAN. In the rest of this paper,
by the term ‘‘Open RAN’’ we refer to the general concept
and in places where we use ‘‘O-RAN’’ we refer to the O-RAN
Alliance one.

By leveraging virtualization technology, Open RAN
enables flexible resource allocation and efficient utilization
through the virtualization of network functions. Disaggre-
gation breaks down the traditional monolithic approach
by splitting the BS functionalities into Central Unit (CU),
Distributed Unit (DU), and Radio Unit (RU) [6], allowing
for the independent development and deployment of RAN
components. Therefore, the characteristic of disaggregation
leads to a distinct energy consumption model for Open-RAN
compared to traditional Base Stations (BSs). This difference
arises due to the virtualization of BS functions, with the
DU and CU, and even parts of the RU, being deployed
in the O-Cloud. Consequently, the energy consumption of
DU and CU is generated by servers. In contrast, the energy

consumption of RU can draw parallels to traditional BSs since
they are physical entities. Moreover, the varied deployment
locations of DU, CU, and RU also contribute to differences
in energy consumption [8]. The integration of intelligent
and optimized management techniques are supported by
RAN Intelligent Controllers (RICs) [9], [10] empowering
the network to dynamically adapt to changing conditions,
optimize resource allocation, and enhance overall perfor-
mance. Furthermore, the adoption of open interfaces fosters
interoperability and allows for the integration of diverse
components from multiple vendors, promoting innovation
and avoiding vendor lock-in.

In the context of O-RAN, the integration of AI and ML
models is facilitated by two RICs, namely Near-RT RIC and
Non-RT RIC, which enable enhanced operational capabilities
throughout the O-RAN architecture. The Near-RT RIC
encompasses xApps where trained ML models are deployed
to control near-real-time network operations with time scales
ranging from 10ms to 1s [11]. The Non-RT RIC utilizes
AI/ML for non-real-time intelligence functions that operate
on larger time scales, typically exceeding 1s [12]. These
functions encompass predictive maintenance and capacity
planning. The Non-RT RIC is particularly suitable for
training AI/ML models based on longer data paths, allowing
for the identification of data trends and behavioral patterns
over time. Detailed discussions on the AI/ML workflow and
ML-based O-RAN applications will be provided in subse-
quent sections. To meet the high energy efficiency goals of
new generations, traditional numerical optimization schemes
are limited due to their high computing power requirements
and lack of adaptability to the dynamic and evolving network
environment. In contrast, ML-based optimization methods
offer a promising range of applications. These methods can
handle real-time problems and achieve their objectives using
simpler optimization models, thereby reducing computing
power and energy consumption to a certain extent [13].
O-RAN provides an exceptionally conducive environment
and framework for both the training and inference phases
of ML models.As presented the suitability of O-RAN for
incorporating ML in the new generations of mobile networks
and its effect on energy efficiency motivated us for this
review paper. The work presented in [8] reviews power
consumption models and energy efficiency techniques for O-
RAN, identifies challenges in optimizing enregy efficiency,
and suggests future research directions. It also delves into
the components and power consumption models of O-RAN.
However, the introduction of some formulas for power con-
sumption models is missing and does not visually represent
the differences between different energy models. It also
lacks a detailed description of the O-RAN structure. The
paper [5] provides a detailed tutorial on O-RAN, discussing
its architecture, interfaces, and challenges, emphasizing
the importance of understanding O-RAN for the wireless
community. It explores the experimental research platforms
for testing O-RAN networks. But still not consider about the
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energy consumption of O-RAN components. Next we present
our contributions and the organisation of the paper.

A. CONTRIBUTIONS
The emergence of the O-RAN architecture is driving a
significant evolution of the RAN towards virtualization
and intelligence. This transformative shift brings about
heightened network flexibility, improved interactivity, and
disrupts the existing vendor monopoly.

• This article focuses on exploring the technical speci-
fications of O-RAN, elucidating its architectural com-
ponents, and delving into the open interfaces that
interconnect the various O-RAN nodes.

• This paper also presents the ML background and the
currentMLmethods employed in O-RAN. Furthermore,
the paper provides a comprehensive review of recent
research on energy consumption generated by ML
models during the training and inference phase.

• This study reviews the ML-based approaches adopted
by previous generation RANs for improving energy
efficiency. With previous RANs, paper also highlights
how energy efficiency improvement can be achieved in
O-RAN architecture.

• Our work delves into the specifics of power con-
sumption associated with key O-RAN components,
including the RU, CU, and DU. By dissecting these
models, we identify the elements that significantly
impact energy usage and how they interplay within the
O-RAN structure.

• The paper features a practical case study by comparing
the energy consumption of conventional BS and O-RAN
architecture, shedding light on real-world energy con-
sumption scenarios in O-RAN.

B. PAPER STRUCTURE
The paper is structured as follows to provide a comprehensive
understanding of the subject matter. Section II presents an
overview of the evolution of RAN, tracing its progres-
sion from Distributed-RAN (D-RAN) to Vritualized-RAN
(v-RAN). This serves as a foundation for comprehending
the innovations introduced by O-RAN, which are discussed
in Section III. Moving forward Section IV and V introduce
the architecture of both Near-RT and Non-RT RIC, delving
into their respective functionalities and interfaces. Section VI
provides an in-depth analysis of the background of ML,
encompassing classic algorithms. In Section VII,energy
consumption of ML model during training and inference
and multiple measurement applications to estimate the
energy consumption. In section VIII, AI/ML workflow is
introduced and the paper also explores applications that
combine ML techniques with O-RAN. In Section IX, the
paper overviews energy efficiency approaches in previous
RAN and in Section X it examines the approaches and
strategies employed to optimize energy consumption in
O-RAN. Following this, Section XI introduces a energy
consumption model applicable to O-RAN, elaborating on its

parameters and utility. Concluding the paper, Section XII
features a case study, wherein we draw a direct comparison
between the energy expenditures of traditional BSs and
O-RAN systems, highlighting the distinctions and analyzing
their implications.

II. OVERVIEW OF RAN EVOLUTION
This section will review the evolution of RAN architecture,
starting from D-RAN to Cloud RAN (C-RAN) and then
through v-RAN, for a better understanding of the structure
of O-RAN and how some innovations came about in the next
section.

A. DISTRIBUTED RAN (D-RAN)
In 2G networks, both baseband and radio signals were
processed by the BSs, enabling digital voice transmission
and basic data services for mobile devices. However, the
evolution to 3G/4G networks introduced a new architecture
called Distributed RAN (D-RAN) [14], which replaced the
unified BS function of 2G RAN with separate components:
the Base BandUnit (BBU) and the Remote Radio Unit (RRU)
or Remote Radio Head (RRH). In D-RAN, each cell site
is equipped with its own BBU, responsible for processing
the baseband signals. The RRU, located at the cell site,
connects to the mobile devices for receiving and transmitting
signals under the control of the BBU. To ensure efficient
communication between the BBU and RRU, a high-capacity
fronthaul link, often implemented using technologies like
optical fibers, is employed. This fronthaul link facilitates high
data rates and low latency between the BBU and the RRU,
enabling seamless communication.

B. CENTRALIZED RAN (C-RAN)
Unlike the traditional distributed cell site-based architecture,
the C-RAN adopts a centralized approach where baseband
processing and control protocol operations are consolidated
in a BBU pool located at a central site. The C-RAN
architecture offers several advantages, including significant
cost and energy efficiency gains resulting from hardware
consolidation [15]. The centralized approach enables coop-
erative radio resource management, leading to improved
network performance and resource utilization. Additionally,
C-RAN provides scalability and flexibility to accommodate
fluctuations in network traffic and emerging technologies.
However, the adoption of C-RAN also introduces chal-
lenges [16], particularly the requirement for high-capacity
and low-latency fronthaul connections to ensure seamless
communication between the RRHs and the centralized
BBU pool [17]. These connections play a crucial role
in maintaining the synchronization and timely delivery
of data between the network elements. Overall, C-RAN
represents a transformative network architecture that delivers
cost savings, improved performance, and energy efficiency
through centralized baseband processing and cooperative
resource management. While it presents challenges related

VOLUME 12, 2024 81891



X. Liang et al.: Energy Consumption of Machine Learning Enhanced Open RAN

to fronthaul connectivity, C-RAN offers a promising solution
for addressing the evolving needs of mobile networks.

C. VIRTUALIZED RAN (V-RAN)
To address the diverse requirements of 5G networks, the
concept of v-RAN has been proposed, incorporating key
technologies such as Network Function Virtualization (NFV)
and Software Defined Network (SDN) [18]. NFV enables the
decoupling of network functions from dedicated hardware,
allowing them to be implemented as software applications
on standard servers. SDN, on the other hand, separates the
network control plane from the data plane, enabling cen-
tralized control and dynamic resource management. These
technologies play a crucial role in the scalability, flexibility,
and efficiency of V-RAN. In a V-RAN architecture [19], [20],
the traditional BBU functions are virtualized and referred
to as the V-BBU. These virtualized BBUs run as software
on commodity servers within a data center environment.
To ensure the necessary processing power, these servers are
often organized in clusters, forming a cloud-based BBU pool
or Cloud-RAN. The Cloud-RAN is connected to the cell sites
(network edge) where the RRHs are located. The crucial
link between the Cloud-RAN and the RRHs is established
through Fiber Ethernet links. These fronthaul links are
essential to support real-time processing requirements in
mobile networks.

III. OPEN RAN KEY INNOVATIONS
Building on the section above, this section takes a closer look
at key innovations in the Open RAN architecture to adapt
to the ever more complex network environment including
disaggregation, RAN Intelligent controllers and closed-Loop
control, virtualisation and open interfaces.

A. DISAGGREGATION
The first characteristic of RAN is disaggregation. It splits
the BS into units with different functions. The structure
corresponds to the New Radio (NR) Next Generation Node
Bases (gNBs) defined by 3GPP. The gNB is split into CU,
DU and RU. where CU is further divided into two distinct
parts, Control Plane (CP) and User Plane (UP). This splitting
method allows each part to exist independently of the other.
Different functions can therefore be located in different parts
of the network or on different hardware platforms, making
the whole network more flexible and versatile. The different
functions of those three parts are as follows. The interfaces of
them will be given in later section.

1) OPEN-RADIO UNIT (O-RU)
RUs, typically constructed using Field Programmable Gate
Arrays (FPGAs) and Application-specific Integrated Circuits
(ASICs) without virtualization, are situated in proximity
to the RF antennas, as highlighted by [5]. The O-RAN
Alliance has undertaken comprehensive assessments of
various 3GPP-endorsed RU and DU partitioning protocols,
showing a particular inclination towards the 7.2x division [5],

given it balances the time delay with inter-network traffic.
This specific split entails a distribution of the physical layer
across the RU and DU. In this arrangement, the RU manages
solely the lower level PHY layer processing (PHY-low)
functions, encompassing tasks such as Fast Fourier Trans-
form (FFT)/ IFFT and cyclic prefix manipulation, aiming to
mitigate deployment complexities and associated expenses.
Beyond PHY-low operations, RU’s architecture integrates
Radio Frequency (RF) processing elements, including power
amplifiers, beamformers, and transceivers, to constitute a
comprehensive operational unit.

2) DISTRIBUTED UNIT (O-DU)
The DU is responsible for the remaining higher level physical
layer processing (PHY-high) such as channel modulation,
part of precoding, andmapping into physical resource blocks,
the Medium Access Control (MAC) layer and the Radio Link
Control (RLC) layer. These three layers are generally closely
synchronized due to the MAC layer generate Transport
Blocks for physical layer by using the data buffered in RLC
layer.

3) CENTRAL UNIT (O-CU)
The CU being placed higher up the 3GPP stack [21],
which takes care of Radio Resource Control (RRC) layer,
Packet Data Convergence Protocol (PDCP) layer and Service
Data Adaptation Protocol (SDAP) layer. O-CU in O-RAN
performs a wide range of radio functions, including effi-
cient resource management, signal processing, connection
management, quality of service optimization, network slicing
support, and interface coordination [6]. Its comprehensive
role is vital for enhancing the performance, efficiency, and
flexibility of the RAN within the O-RAN architecture.

B. RAN INTELLIGENT CONTROLLERS AND CLOSED-LOOP
CONTROL
Open RAN’s notable second innovation is the RIC, a pro-
grammable entity designed to navigate the increasing
complexities within network frameworks, thereby enhancing
both accuracy and operational efficiency. By serving as a
central network abstraction, the RIC compiles comprehensive
Key Performence Measurements (KPMs) data, reflecting
various facets of network infrastructure status (for instance,
user metrics, traffic burdens, and throughput capacities)
and information from resources outside of RAN. This
comprehensive data spectrum is analyzed through AI and
ML methodologies, facilitating decision-making pertaining
to RANpolicies and operational strategies [22]. The non-Real
Time (RT) RIC and near-RTRIC are the two primarymodules
of RIC that O-RAN Alliance has introduced [6]. The control
loop with RAN components is carried out by a near-RT RIC
with a time scale between 10ms and 1s, while a non-RT RIC
is in charge of operations on a time scale larger than 1s, such
as training AI and ML models as mentioned above. Figure 1
provides an overview of the closed-loop control implemented
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by the RICs across the disaggregated O-RAN infrastructure
and the real-time extensions that need to be considered in
the future. In the following paragraphs we will discuss the
functionality of the different RICs and the closed-loop control
associated with them.

1) NON-REAL-TIME RIC AND CONTROL LOOP
The non-RT RIC constitutes an integral segment of the
Service Management and Orchestration (SMO) framework,
maintaining a direct connection with the A1 interface
to near-RT RIC, as illustrated in Figure 1. Rather than
operating through mutual interfacing within the SMO, the
non-RT RIC exists as a specialized subset, executing only
select functions of the broader SMO capabilities [10]. This
component monitors operations related to RAN constituents
on a temporal scale exceeding 1 second and facilitates
AI/ML workflows, encompassing aspects like model training
and configuration. Furthermore, it provides guidance and
enrichment information to the Near-RT RIC utilizing a
non-real-time control loop. Its connection, both direct and
collateral, with interfaces like A1, O1, and O2 through the
SMO, empowers the non-RT RIC to administer and configure
RAN elements efficiently. An extensive discussion regarding
the non-RT RIC and SMO is deferred to Section V.

2) NEAR-REAL-TIME RIC AND CONTROL LOOP
The near-RT RIC, functioning as a specialized Open-RAN
network function, orchestrates near real-time supervision
and enhancement of E2 Node resources and services.
This is achieved through fine-grained data gathering and
subsequent operations executed via the E2 interface, with
control loops operating within an expedited 10 ms to 1-
second timeframe. The near-RT RIC consists of multiple
applications to support network functions, called xApps.
An xApp hosts multiple microservices such as mobility
management, traffic steering, radio connection management,
and QoS management. Normally, an xApp receives the data
from RAN components (i.e. CUs and DUs ) and xApp sends
back the action result after computing. At the same time,
near-RT RIC also provides a range of functionality to support
xApp, which will be mentioned in section IV.

C. VIRTUALIZATION
The third characteristic of Open-RAN is the O-Cloud which
is a cloud computing platform to manage and optimize
the network infrastructure and operations, changing the
network from edge system to virtualization platform. All
the components mentioned in Figure 1, can be deployed
in the O-Cloud Platform, which includes the following
characteristics [23]:

• The O-Cloud platform combines hardware and software
components that support cloud computing capabilities to
execute RAN network functions.

• The cloud platform hardware is standardized to support
the requirement of RAN functions to satisfy their
performance objectives.

• The software in the O-Cloud platform exposes the open
and well-defined Application Programming Interface
(API) to manage and orchestrate life cycle of network
functions and O-Cloud as well.

• The software is decoupled from the hardware, which
means it is available from a variety of vendors.

The virtualization of O-RAN components and internal
network functions plays a crucial role in energy conservation.
Virtualization enables the flexible allocation of network
resources based on user demands, optimizing the use
of network functions and, consequently, reducing energy
consumption [24]. Furthermore, through the application
of closed-loop control, as discussed earlier, dynamic cell
activation and deactivation are facilitated, contributing to
additional reductions in power consumption [25].

D. OPEN INTERFACES
Lastly, the O-RAN Alliance in order to overcome the
limitation of RAN has introduced well-defined specifications
that uses open interfaces to connect different O-RAN
elements. Figure 1 demonstrates the open interfaces defined
by O-RAN and internal interfaces as defined by 3GPP.
Open interfaces allow for diversity of options and operators
can choose from a variety of vendors in different locations
which breaks up vendor monopolies and increases market
competitiveness.

As shown in Figure 1, F1 and E1 interfaces are defined
from 3GPP. F1 interface builds the connection between DUs
and CUs. E1 interface likes a bridge binding the user planes
and control planes at CU. The rest interfaces are all defined
by the O-RAN Alliance, the E2 interface connects near-RT
RIC to RAN nodes. The DU and CU send measurements
to the near-RT RIC through the E2 interface and then the
configuration command back to the CU and DU to form
a near-real-time control loop shown in Figure 1. The A1
interface [7] facilitating information exchange between the
near-RT and non-RT RIC, which enables AI/ML related
parameters or models deploy on the near-RT RIC. Besides,
the non-RT RIC and SMO also connect to the O-Cloud via
O2 interface for SMO to intelligently manage and operate
each O-RAN node running on the top of the O-Cloud
platform. Finally the O1 interface, which is standardized by
the 3GPP [21], is used for management and optimization
of the RAN nodes.

The open interface characteristic of Open-RAN notably
enhances its adaptability, permitting a flexible arrangement of
components within the O-RAN architecture. This flexibility
eliminates the need for a set location for network elements,
enabling a configuration that is tailor-made to the specific
demands of the network. For instance, the work in [26]
positions the CUs and DUs at the network edge, with the
RUs situated at the cell sites. Alternatively, there exists a
scenario where the DUs and RUs are jointly situated at cell
sites [27], leaving only the CUs at the edge, specifically to
accommodate services sensitive to delays.
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FIGURE 1. O-RAN architecture, with components and interfaces from O-RAN and 3GPP. O-RAN interfaces are drawn as solid lines,
3GPP ones as dashed lines. And three different control loops.

FIGURE 2. Near-RT RIC internal architecture.

IV. NEAR-RT RIC
The near-RT RIC is the core for control and optimization
of the RAN through the E2 interface. It is illustrated in
Figure 2which is showing thewhole internal function of near-
RT RIC. The xApps deployed on the near-RT RIC are the
significant part to run intelligent control of the near-real-time
control loop. xApps could be provided by the third parties to
support a variety of functions. According to O-RANAlliance
specification [28], an xApp consists of xApp descriptor and
xApp software image which includes a set of files to support
deployment of xApp. The xApp descriptor includes necessary
information about xApps enables management of xApps,
such as health management (e.g. autoscaling the policy when
xApps are under excessive loads or unhealthy situations),
deletion and update information. In addition, the xApp
descriptor shall contain the data type generated or consumed
by the xApps, in order to support control capabilities. In next
subsection, based on O-RANAlliance specification [9], [28],
the internal functions and E2 interface of Near-RT RIC will
be discussed.

A. NEAR-RT RIC INTERNAL FUNCTIONS
1) NETWORK INFORMATION BASE DATABASE AND SHARED
DATA LAYER API
There are two types of Network Information Base (NIB)
database, UE-NIB database and R-NIB database respectively.
The former stores a list of UEs and UE identity. The UE
identity is a really important and sensitive information in
the RIC, because it allows UE-specific control, but at the
same time it can expose sensitive information on the users.
Therefore, UE-NIB database keeps tracking and correlation
of the UE identities with their connected E2 nodes. The
R-NIB database contains information (e.g. configurations
and real-time information) on E2 nodes and the mapping
between them. Shared Data Layer (SDL) API makes it
possible to expose information from UE-NIB, R-NIB and
other specific use case to each other, which facilities the
development of a white-box system.

2) MESSAGING INFRASTRUCTURE
The internal messaging infrastructure in O-RAN specifica-
tion [9] connects every components in near-RT RIC with low
latency message delivery. It supports registration, discovery
and deletion of endpoints (i.e. xApps and internal RIC
components). And it also provides the APIs to transmit and
receive messages in point-to-point mode or public/subscribe
mode. It also provides routing and to avoid the data loss.

3) CONFLICT MITIGATION
This function addresses issues arising from conflict between
different xApps. Such mitigation is essential since distinct
xApps, executing diverse network functions, may initiate
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FIGURE 3. Non-RT RIC and SMO internal architecture.

configurations that clash, leading to a decline in overall
performance. Conflicts may target various elements such as
a cell, a bearer, or a UE and can involve any actions in
radio resource control management. The O-RAN Alliance
specifications categorize conflict control into three types:
direct, indirect, and implicit conflicts. Direct conflicts are
those that the mitigation function can immediately identify.
These occur, for example, when two or more xApps set
differing parameters for a single control target or when there
is a discrepancy in the active configurations among xApps.
On the other hand, neither indirect nor implicit conflicts
are directly observable. However, indirect conflicts can be
discerned through the interrelations between different xApps.
An instance of this would be configurations that enhance
certain users’ performance while concurrently causing a
non-apparent decline in others. Resolution for these issues
might involve post-action verification methods, such as
reverting specific xApps’ actions based on comprehensive
system observations. Implicit conflicts, regarded as the most
challenging, are conflicts where the source is difficult to
pinpoint. Mitigating these conflicts may necessitate the
deployment of ML strategies to diminish the likelihood of
their emergence.

4) SUBSCRIPTION MANAGEMENT
The subscription management enables the subscription from
xApps to E2 nodes. It also authorizes xApps to access E2
messages, and can merge multiple identical subscription
from different xApps to a single subscription request to the
E2 node.

5) SECURITY
The security function to Near-RT RIC is going to prevent
malicious xApps from leaking network information to
unauthorized external systems or from overusing the RAN
functions, affecting RAN performance. The detail of this
components are still need further studies [29].

B. E2 INTERFACE
The E2 interface is an open interface connects the near-RT
RIC and E2 nodes (i.e. DUs, CUs, and O-RAN-compliant
LTE eNBs) supplied by the different vendors. The main
function of E2 interface is to telemetry the information

on E2 nodes (e.g. configuration information, network
measurements, etc.) and then forward them to the near-
RT RIC. Therefore, The E2 interface enables the near-RT
RIC to control the E2 nodes. According to the O-RAN
specifications [30], there are four categories RIC services
provided by the E2 nodes and E2 interface.

1) REPORT
The report service is the E2 nodes send RIC Indication
message includes the data, information or the measurements
from E2 node to the near-RT RIC. But the E2 nodes are
required to send a REPORT message contains the event
trigger to the near-RT RIC by the near-RT RIC, before the
RIC indication message is sent out. And the relevant produce
continues when the event is occurred.

2) INSERT
The insert service is when the E2 nodes send an INSERT
message to the near-RT RIC for the purpose of RIC
subscription and the near-RT RIC suspends all relevant
produces after the pre-defined event trigger is occurred. After
the time wait timer has expired. The near-RT RIC will decide
whether to stop or continue the relevant produces.

3) CONTROL
The control service is the near-RT RIC sends a RIC control
request message to the E2 nodes. Then, the E2 nodes should
delete the current produce or resume the setting of previous
produce.

4) POLICY
The policy service is the near-RT RIC sends specific policy
that the E2 nodes need to apply on ongoing produces when
the relevant event trigger is occurred. But the E2 nodes should
send the report message to the near-RT RIC to do the RIC
subscription before the policy service happens.

V. SERVICE MANAGEMENT AND ORCHESTRATION (SMO)
FRAMEWORKS
The second key element of the O-RAN architecture is the
SMO framework. This component is in charge of handling
all orchestration, management and automation produces to
monitor and control RAN components. The SMO perform
these services through four interfaces as shown in Figure 1
to the RAN elements [6]. A1 interface between the non-RT
RIC in the SMO and the near-RT RIC for RAN optimization.
O1 interface between the SMO and the O-RAN Network
Functions for FCAPS support. Open Fronthaul M-Plane
interface between SMO and O-RU for FCAPS support. O2
interface between the SMO and the O-Cloud to provide
platform resources and workload management.The non-RT
RIC is the functionality internal to the SMO framework
as we mentioned in the Section II, and provides policy-
based guidance, enrichment information, and AI/ML model
management to the near-RT RIC via the A1 interface.

VOLUME 12, 2024 81895



X. Liang et al.: Energy Consumption of Machine Learning Enhanced Open RAN

The architecture of the SMO illustrated in Figure 3, which
includes the main functionalities and will be detailed in
the later of this section. According to O-RAN Alliance
specification, there is no specific standard to separate non-RT
RIC and SMO functions. However, the specifications group
divides such functionalities into three categories. The first
set is identified such interfaces and functionalities are
anchored inside the non-RT RIC framework. The second
set is the opposite of the first one, which identifies the
functionalities anchored outside the non-RT RIC. The last
set is the non-anchored functions refer to those components
or functionalities that are not exclusively tied to either the
Non-RT RIC or the SMO’s core management capabilities.
The goal of next subsection is going to introduce these
functionalities and interfaces of non-RT RICs.

A. NON-RT RIC
Similarly to the near-RT RIC, the non-RT RIC is one of the
core components of the Open RAN architecture, it enables
the closed-loop control of the RAN with the time scale larger
than 1s and it also supports the execution of third-party appli-
cations, i.e. rApps, which are similar to the xApp, to provide
RAN optimization and operations, including policy guidance
enrichment information, configuration management and data
analytic.

As shown in Figure 3. The non-RT RIC hosts the R1
termination, which allows rApps could exchange the message
with the non-RT RIC framework. This allows the rApps
enable access to data management and exposure service,
AI/ML functionalities as well as A1, O1, O2 interfaces. It is
worth mentioning that the rApp can not only support the same
control functionalities provided by the xApps at the large
timescale, but can realize management and orchestration
at a higher level and affect a large number of users
and nodes, including frequency and interface management,
RAN sharing, end to end Service Level Agreement (SLA)
assurance and network slicing.

According to the [31], the non-RT RIC architecture could
be described by using two different versions, a functional
approach architecture and a service-based approach archi-
tecture. The functional architecture represents all required
functionalities of combination of non-RT RIC and SMO
framework, which is similar to the architecture of Figure 3.
All functions are fixed and are divided into three categories
based on the position of the functional blocks. In functional
approach, logic entities are well-defined and connect with
interfaces. However in order to provide a more flexible
architecture that the behaviors of logic entities or network
components are not based on the fixed functions but can be
changed in real time and make service as the central point
of the architecture. In this [5] paper,the author summarized
two intelligent services for the non-RT RIC. The first is
intent-based network management, which allows operators
could use human-machine interface to express their intents
to the non-RT RIC. Then, the new configurations will be

deployed on the rApps and xApps after the procession of
the non-RT RIC. The intelligence orchestration is another
non-RT RIC high-level service. The growth in complexity
of network control is inevitable with the development of the
O-RAN. This calls for the solutions enable orchestration of all
xApps and rApps. The non-RT RIC is charge of coordinating
selected applications to make sure that each application
operate in an orderly manner that meets the requirements of
the operators.

B. A1 INTERFACE
The A1 interface makes the direct connection between the
non-RT RIC and near-RT RIC. As mentioned earlier, the
SMO layer is charged with high-level orchestration or opti-
mization and AI/ML workflow. Therefore, the main function
of A1 interface [32] is to provide policy-based guidance,
MLmodel management and enrichment information from the
non-RT RIC to the near-RT RIC so that the RAN components
can get the proper configurations. The A1 interface is applied
on the A1 Application Protocol (A1AP) which is defined
by the 3GPP service framework for network functions [33].
The A1AP contains APIs over Hypertext Transfer Protocol
(HTTP) for the A1 interface services [5].In each service, the
A1AP contains service provider and service consumer. Both
of them have a HTTP client and HTTP server, which are used
to support the services [33].

1) A1 POLICY MANAGEMENT SERVICE
The non-RT RIC defines or modifies policies that are
transmitted to the near-RT RIC via the A1 interface based
on the intents from RAN components and the measurement
data from O1 interface. A1 polices are charged with ensuring
the RAN performance meets the RAN intents. On top of
this, the non-RT RIC modifies policies based on the A1
policy feedback and the result fromO1 interface. Besides, the
non-RT RIC can provide enrichment information to strength
the policy in the near-RT RIC, which I will discuss in the next
section.

2) A1 ENRICHMENT INFORMATION SERVICE
The A1 enrichment information service is in order to improve
the performance of RAN tasks by providing information from
external and internal sources of O-RAN. When the SMO
collects information from those sources and then the non-RT
RIC provide new configurations and policies to the near-RT
RIC after processing. Note that the A1 interface is responsible
for enrichment information from internal sources normally.
But A1 interface could be used for discover external
information which is authorised by the non-RT RIC.

3) A1 ML MODEL MANAGEMENT SERVICE
According to the O-RAN specification [34], the ML model
is trained in the SMO layer with its internal functions but
can be executed in the different places (i.e. non-RT and near-
RT RIC). When the ML model is used by the near-RT RIC
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to improve the performance of RAN, the A1 interface is
charged with providing training data to the SMO layer and
also receiving the feedback or enrichment information from
SMO layer after its processing.

VI. MACHINE LEARNING BACKGROUND
Before delving into the Open RAN energy efficiency using
ML, we will have a brief overview of ML; for more detail
about any of the mentioned ML approaches please check the
references cited. ML is a collection of methods that allows
computers to be able to learn based on huge data sets or
the previous experience and then achieves optimisation [35].
ML is the key feature of the O-RAN to achieve automation
and intelligent radio resources management. The non-RT
or near-RT RIC enable extension of their functionalities
based on using different ML approaches. ML is traditionally
divided into three main categories Supervised Learning (SL),
Unsupervised Learning (UL), Reinforcement Learning (RL)
and other secondary categories like the Deep Learning (DL)
which is typically chosen to address 4G/5G RAN or O-RAN
issues. In the remainig of this section, we will discuss each of
the ML categories.

A. SUPERVISED LEARNING
Supervised learning algorithms leverage labeled datasets,
consisting of input features and corresponding outputs,
to develop models capable of inferring unseen data points.
These datasets, comprising distinctive features and training
examples, are strategically partitioned into subsets for train-
ing and validation purposes. The primary objective of such a
model is the accurate prediction of outputs, approximating as
closely as possible the actual values.

SL plays a crucial role, particularly in intelligent network
management and optimization, by facilitating the estimation,
prediction, and classification of diverse variables. Funda-
mental to SL are regression and classification techniques,
pivotal for understanding complex data relations [36]. Clas-
sification pertains to the categorization of new observations
within predefined classes, utilizing a labeled training set
to discern patterns indicative of various class distinctions.
This methodology encompasses a spectrum of algorithms,
including decision trees [37], support vector machines [38],
and neural networks [39]. Conversely, regression analyzes the
correlation between dependent and independent predictors,
aspiring to forecast or elucidate variations in a continuous
outcome variable. This statistical approach employs several
techniques [40], such as linear and logistic regression, along-
side random forests, asserting the predictive relationship by
fitting the data within the model.

B. UNSUPERVISED LEARNING
Unsupervised learning encompasses computational methods
that operate on datasets without labeled responses, typically
discovering hidden patterns or intrinsic structures within the
input data. It plays a crucial role in various academic and
research domains, especially where the data lack explicit

annotations. The algorithms in [41] involved in unsupervised
learning achieve this by discerning and exploiting data
distributions and properties. Techniques such as clustering
and dimensionality reduction are paramount [42]. Clustering,
including methods like k-means [43] and hierarchical clus-
tering, involves grouping data points into subsets or clusters,
such that items in the same cluster are more similar to
each other than to those in different clusters. Dimensionality
reduction, illustrated by methods like Principal Component
Analysis (PCA) [44] and t-distributed Stochastic Neighbor
Embedding (t-SNE), reduces the number of random variables
under consideration, deriving a set of principal variables.

C. REINFORCEMENT LEARNING
Unlike the SL and UL, the RL needs to find the optimal
solution or achieve a certain goal through autonomous
interacting with the environment. The goal of the RL is to
take action to maximize expected reward. The agent in RL
acts the learner or decision maker to map observed states
of the environment to corresponding actions. The function
which maps the particular state to specific action is known
as the policy function. It is updated through an trial-and-error
process in which various actions are tried in each state. Each
state of environment responds rewards to different actions
with numerical value. Another important function is the value
function which is used to determine if the reward is good in
the current state. In contrast to the reward function, the value
function reflects the total cumulative expected reward rather
than an immediate return [45].

In RL, the agent always faces the problem of trade-off
between exploration and exploitation. There are two options:
the first is called greedy action which means the agent
selects the action that receives the greatest reward among
previous actions. In this case, the agent is exploiting the
knowledge it knows. In another case, the agent try to explore
new possibilities for better actions and higher rewards.
RL identifies the problem as Markov Decision Process
(MDP) [46] {S,A, T ,R, γ }, where the S is a collection
of states of the environment S = { s1, s2, . . . , sm}. A is a
collection of possible actions A = { a1, a2, . . . , am}. Then
the transition function, T (s′ | s, a), identifies the probability
to the state s′ based on the current state and action.R = (s, a)
is reward function which indicates the feedback performance
of algorithm for the current state-action pair, and 0 ≤ γ ≤ 1 is
discount factor.

D. DEEP LEARNING
Deep learning, a specialized segment of machine learning,
characterizes a class of advanced algorithms that intuitively
mimic the mechanism of the human brain, facilitating
the modeling of complex, hierarchical representations of
data [47]. It is anchored in the use of artificial neural networks
with multiple processing layers (hence the term ‘‘deep’’),
which autonomously extract features from raw input, tran-
sitioning from simple to increasingly abstract and complex
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concepts. -Deep learning excels with high-dimensional,
unstructured data, offering state-of-the-art performance in
tasks such as image and speech recognition, natural language
processing, and audio analysis, among others. Architectures
such as Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and more recently, Transformer
models, represent deep learning’s application versatility, each
with structural attributes catering to specific types of data
input.

Deep Neural Network (DNN) is the foundation of deep
learning and consists of an input layer, an output layer and
multiple hidden layers. DNNs are sometimes calledMultiple-
layer Perceptron (MLP) [48]. Each layer has multiple units
perform the nonlinear processing of the input data called
neurons. Each neuron that is an input has a corresponding
weight to a different neuron in the next layer. After the
weighted summation of the inputs, the bias value is added.
The activation function, e.g., a sigmode function is then used
to finally process the data and produce the output.

E. FEDERATED LEARNING
Federated learning is one of state-of-the-art distributed
ML approach which allows multiple devices or servers
to collaboratively train a shared model without sharing
raw data. Each individual device only updates local model
with central server after training with its own data. The
central server aggregates these updates to improve the
global model, which is then distributed back to the devices
for the further training. The whole process does not end
until the model converges. Federated learning helps to
address the problem of data security and privacy due the
raw data remains on local devices. However, with a training
paradigm based on federated learning, the cost and capacity
of communication [49] and energy consumption is a serious
issue as the number of user devices, network slices increases.

In O-RAN architecture [34], the Non-RT RIC can act as a
central server and distributes the AI/ML model to the Near-
RT RICs. Both Non-RT and Near-RT RIC can upload and
download updated model through A1/O1 interface. In [50],
the authors use federated learning to train two different
RL model in RAN slicing, which has the better network
performance than typical RL.

VII. ENERGY CONSUMPTION OF MACHINE LEARNING
A pivotal innovation within the Open RAN architecture lies
in its capacity to configure and enhance network performance
through the deployment of two RICs. Furthermore, a central
tenet of Open RAN’s evolution is the intelligent orchestration
of the network, achieved by training and implementing
ML models within the RICs. However, it is critical to
acknowledge the energy implications of these ML models,
a factor often sidelined in current research to prioritize
the models’ accuracy. This oversight underscores the need
for a nuanced understanding of the energy expenditure
these models incur. Consequently, this part is dedicated to
introducing diverse methodologies for estimating the energy

consumption attributable to ML models, thereby proposing a
more holistic view of their operational impact.

Basically, ML models such as deep neural networks are
consisted of two phase of computation, training phase and
inference phase respectively. The pursuit of deeper and more
precise models necessitates a substantial training dataset.
Presently, the training of these models is predominantly
conducted on desktops or servers, implicating specific
components in energy consumption. Notably, the CPU, GPU,
and DRAM emerge as the principal consumers of energy
in the training process [51]. The energy consumption of
each component within the system comprises both static and
dynamic components. Static energy consumption refers to
the energy utilized by the circuit when it is idle and not
actively processing information. In contrast, dynamic energy
consumption pertains to the energy expended during the
operation of the circuit’s capacitors, which occurs when the
circuit is actively engaged in processing tasks, as formulated
below [52]:

Pd = α · C · V 2
dd · f . (1)

In (1), α represents the activity factor, which signifies the
circuit’s load, namely, the proportion of the circuit that is
being utilized. C denotes the capacitance, Vdd the supply
voltage, and f the clock frequency. Consequently, accurately
determining the activity factor of these components while
an application is executing is essential for calculating the
dynamic energy consumption. A prevalent approach for
determining the activity coefficients involves the utilization
of performance counters (PMCs), which are hardware-based
counters that are present in most modern microprocessors to
measure the performance of various aspects of the processor’s
operation. These counters provide a low-overhead, high-
resolution method for collecting measurements about the
processor’s behavior and the system’s overall performance.
Subsequently, the aggregate energy consumption is computed
by deriving the power weights corresponding to each PMC
through methodologies such as linear regression, as illus-
trated below [53]:

Ptot = (
ncomponent∑

i=1

ARi · ωi) + Pstatic, (2)

where ARi is the activity ratio of component i, ωi is the power
weight corresponded to component i, and Pstatic indicates
static energy consumption of all components.

Initial approaches to calculating the energy consump-
tion of neural network models focused on tallying the
Multiply-Accumulate operations, representing the count
of floating-point computations on CPUs or GPUs. This
method also involved enumerating the weights to simulate
the primary memory access events for a pre-configured
model, serving as energy proxies [54]. Considering the
significant energy demands associated with loading weights
from DRAM, especially relative to Multiply-Accumulate
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FIGURE 4. O-RAN AI/ML general procedure.

operations. Numerous optimization strategies, including
pruning [55], have emerged.

However, the study in [56] posits that for DNNs, the
predominant factor in energy consumption is attributable
to data movement, superseding the actual computations
involved. This is particularly evident in fully connected
layers, where the absence of convolutional reuse leads to
energy expenditure primarily for weight handling. Inter-
estingly, the paper underscores that deeper networks with
fewer weights do not inherently guarantee lower energy
consumption compared to their shallower, more heavily-
weighted counterparts. Introducing an innovative strategy
known as Energy-Aware Pruning (EAP), the methodology
leverages estimated energy metrics to navigate a systematic,
layer-specific pruning process. This technique involves a
hierarchical assessment of layers based on their energy
profiles, prioritizing the pruning of higher-consuming layers.
Unique to EAP is its nuanced approach to weight pruning,
which assesses the collective impact of weights on feature
maps, acknowledging their interdependencies. This holistic
view facilitates a more aggressive pruning strategy while
preserving the integrity of the model’s accuracy, presenting
a marked improvement over conventional magnitude-based
methods. Furthermore, themethod introduced accommodates
the nuanced influences of bitwidth and sparsity on the energy
dynamics. It recognizes a linear relationship between compu-
tation energy and input bitwidth, and a quadratic relationship
when considering the bitwidths of interactive components.
Additionally, the approach capitalizes on sparsity within
feature maps and filters, bypassing certain multiplications

contingent upon zero input, thereby enhancing energy
efficiency.

The energy measurement model proposed in [57] is called
SyNERGY. It integrates the Caffe deep learning frame-
work and vendor-specific tools such as ARM Streamline
Performance Analyzer to measure and predict the energy
consumption of CNN on the Nvidia Jetson TX1 embedded
platform. The model focuses on fine-grained energy mea-
surement, specifically at the per-layer level of the neural
network. It utilizes the onboard power monitoring sensor
(TI-INA3221x) available on the Jetson TX1 to measure
power consumption during single image inferences on the
CPU using an optimized OpenBLAS library. The authors
provide a breakdown of the energy consumed in each layer
of the CNNmodels. They use Streamline’s annotation library
to mark the beginning and end of each layer’s execution and
collect power samples using a power sampler script. The
energy consumption is calculated by summing the rectangular
areas of the power samples over the duration of the inference.
To predict the energy consumption, the authors develop a
regression model based on hardware performance counters
such as Single Instruction, Multiple Data (SIMD) instruction
executed and bus accesses. They train the model using a set of
CNN models and their corresponding energy measurements.
The regression model captures the relationship between
the performance counters and energy consumption at the
per-layer level.

The authors of [58] introduced NeuralPower, a predictive
framework that employs sparse polynomial regression to esti-
mate the energy consumption of CNNs across various GPU
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platforms, by layer by layer means. This method facilitates
precise predictions and detailed analyses of power and exe-
cution time for all CNN layers, encompassing convolutional,
pooling, and fully-connected layers. The research utilizes
power metrics derived from the nvidia-smi tool [59], gathered
from an NVidia GTX1070 GPU. Rather than adopting
hardware-level specifics, the model incorporates application-
level characteristics, such as kernel size and layer count,
as determinants in the power estimation. Notably, to maintain
controlled conditions, the influence of voltage and frequency
variations was neutralized by sustaining a consistent GPU
state. Furthermore, the study pioneers the ‘‘energy-precision
ratio’’ as a novel metric, guiding practitioners towards
more energy-conservative CNN configurations. Comparative
analyses reveal that NeuralPower significantly surpasses its
contemporaries in predictive accuracy, a testament to its
efficacy underscored through rigorous testing on multiple
GPU platforms and deep learning applications.

VIII. APPLICATIONS OF ML IN OPEN RAN
The integration of AI/ML into Open RAN architecture
aims to transform RAN into more intelligent, efficient and
adaptable system and even some of the theoretical ideas can
be implemented in reality. By automating network resource
allocation, optimizing traffic steering, enhancing security,
etc. AI/ML indeed facilitate management of increasingly
complex wireless networks. This section is going to provide
an overview of AI/ML procedure and AI/ML deployment
scenarios, which are being standardized by O-RAN alliance
in [34].

Figure 4 illustrates the AI/ML general workflow of
O-RAN architecture. First, O-RAN infrastructure provides
data through O-RAN interfaces (O1, A1 and E2) to the
data collection block. This could be the network usage,
throughput, latency, channel quality information and other
relevant parameters, since different AI/ML solutions might
require different data collection. The data is then structured
and transformed as needed for specific used AI/MLmodels in
the data preparation block. All AI/ML solutions that have col-
lected data require to be trained before the deployment [34]
while ensuring the accuracy and reliability to avoid outages or
inefficiencies in the network. Then trained models are going
through the validation phase in AI/ML model management
section to determine if the models perform as required when
executing different network tasks. After that, the validated
models are published in the SMO/Non-RT RIC catalogue.
If the validation fails, they have to be re-trained or re-
designed until pass the validation. The trained model in
the AI/ML marketplace can be selected and deployed via
containerized image to the execution node which refers to
the inference host. Based on the output of the deployed
ML model, actor in AI/ML assisted solution is informed
to perform some control tasks including policy delivering
(over A1 and E2 interfaces), configuration management (over
O1 interface) and control action (over E2 interface). The
last segment is AI/ML continuous operation, which has a

FIGURE 5. O-RAN AI/ML deployment scenarios.

crucial role in the overall workflow. It has the ability to
detect and analyse intelligentmodels deployed throughout the
network. In the event that models are not up to expectation
in terms of reliability, accuracy or efficiency, it has the
power to make those poorly performing models change their
parameters and retrain them until they regain their original
functionalities. In the 5G networks, it is impossible to handle
all the problems in one solution. Therefore, O-RAN alliance
has defined five different deployment scenarios which are
shown in Figure 5, to support wide range of user cases and
applications by placing the AI/ML workflow components in
different places. While most practical cases can be covered
by these deployment options, in practice they still need to be
tailored to the specific requirements of the operator [5].

The subsequent section elucidates the integration of ML
with O-RAN for the implementation and optimization of
network functions, thereby enhancing network performance.

A. NETWORK FUNCTION RELOCATION AND DU-CU
PLACEMENT
The placement of DU and CU, along with the relocation
of Network Function (NF), constitutes a critical aspect of
optimizing the performance of specific applications within
the O-RAN architecture. This optimization is necessitated
by the fact that different layers of the O-RAN architecture
are designed to manage distinct operational objectives. For
instance, CU, typically housed in data centers, possess supe-
rior computing capabilities compared to DU. This distinction
renders CU more adept at processing complex network
functions, while DUs are more suited to executing algorithms
of relative simplicity. Consequently, the strategic allocation
of network functions to their appropriate computational
units, ensuring that each function is executed within the
optimal environment, enhances the overall efficiency and
performance of the network. This paper [60] considers the
CU-DU placement and user association as a multi-objective
optimization problem. a novel DQN-based algorithm is
proposed to reduce the cost of the O-RAN deployment and
the end-to-end latency of UE by placing the DU-CU network
functions in the regional and edge O-Cloud nodes, while
jointly link users to RU. The aim of this paper is to enable
RU to find the optimal O-Cloud node to run the network
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functions of DU and CU and the UE can also be assigned the
most appropriate RU. In [61], authors add traffic type, delay
budget and other requirements in to consideration. In this
paper, two actor-critic learning based algorithm are proposed
to decide resource allocation intelligently and relocate the
resource allocation function dynamically at proper place (CU
orDU). The aim of this paper is not only allocating the limited
resources to the users but further improve the performance of
NF by the proper CU-DU selection. Based on [61] and [62],
the authors propose an upgraded version in [63]. In addition
to the previous requirements, the agent in this paper needs
to consider the propagation delay and energy consumption at
the same time before choosing the proper location at DUs.

B. RESOURCE ALLOCATION AND O-RAN SLICING
O-RAN slicing is a significant application that offers
more flexibility and precise network services, playing a
crucial role in end-to-end network slicing. However, resource
management, which involves allocating limited available
resources to users while considering their QoS requirements
and dynamic network situations, poses a challenging issue
in RAN slicing [64]. In [22], an approach that combines a
data-driven DRL-based algorithm deployed in as an xApp
in the Near-RT RIC with the Colosseum open cellular stack.
This integration enables the selection of the best-performing
scheduling policy for each RAN slice, considering variations
in the number of resource blocks allocated to each slice
at different times, thereby ensuring enhanced scheduling
accuracy. To address the allocation of communication and
computational network resources for URLLC end devices,
[65] proposes a two-level O-RAN slicing system. They treat
the communication and computation resources as resource
blocks from BSs and the CPU usage of MEC servers. In [50],
two different xApps are designed for power and resource
allocation based on RL, along with a federated learning
approach to coordinate the two xApps agents. This enables
achieving higher maximum throughput for eMMB slices and
lower latency for URLLC slices. Reference [66] propose
a policy-gradient based RL to address the allocation of
computing resources. The objective is to maximize equitable
allocation and optimize the QoS of the users, leading to
superior performance compared to conventional methods.
Similarly, [67] develops an edge network simulator based on
the Q-Learning RL to demonstrate the performance improve-
ment achieved by efficiently allocating resources. Overall,
these studies contribute to the advancement of resource
management in O-RAN slicing, utilizing RL algorithms and
data-driven approaches to ensure more efficient and effective
allocation of network resources.

C. TRAFFIC STEERING
In the intricate and multi-faceted ecosystem of an O-RAN,
the Traffic Steering (TS) acts as an intelligent manager,
responsible for optimizing complex data flows across diverse
network elements while balancing the distribution of network

resources to prevent overloading. Its primary objective is
to enhance end-user experience by facilitating seamless and
efficient data transmission. ML-based TS deployed at the
near-RT RIC proves more suitable for adapting to evolving
network conditions compared to traditional solutions, thanks
to its centralized abstraction of the network that learns
potential associations between different RAN parameters.
In [68], a two-tiered ML algorithm combining Navie Bayes
Classifier (NBC) and deep Q-learning is presented for
traffic congestion prediction. This method employs SL to
predict congestion in each Network Function Virtualization
(VFN) and feeds the output data to a Deep Reinforcement
Learning (DRL) agent, which dynamically steers traffic
to avoid congestion, reduce queuing time, and ensure
reliability. Similarly, in [69], an Long Short-Term Memory
(LSTM) method and an SCA-based iterative algorithm are
introduced for long and short sub-problem traffic prediction,
respectively. Handover management, known as Radio Access
Technology (RAT) allocation, is another significant use case
of O-RAN, particularly crucial as the 5G system supports
multiple access technologies, each with different access
types. In [70], a Federated Meta-Learning (FML) algorithm
is proposed for RAT allocation, significantly improving
RL agents’ training efficiency and adaptability to dynamic
environments. This algorithm achieves a higher caching
rate compared to a single RL agent while meeting UE
demands. In comparison, [71] propose a comprehensive
O-RAN-compliant framework for handover management
and dual connectivity in the 3GPP network. To optimize
the Traffic Scheduler, Conservative Q-Learning (CQL) and
Random EnsembleMixture (REM) techniques are employed,
maximizing throughput and connecting O-RAN to the ns-3
simulation environment to obtain a vast training dataset, thus
improving model accuracy.

IX. ENERGY EFFICIENCY OF PREVIOUS RAN
TECHNOLOGIES
Research into the energy efficiency of Open RAN is currently
in a nascent stage, with only a limited number of studies
specifically focusing on this area. In contrast, there is
an extensive body of work dedicated to reducing power
consumption in legacy RAN architectures. Therefore, this
section is going to introduce how the energy efficiency in
previous generation and previous RAN.

A. ENERGY EFFICIENCY IN PREVIOUS GENERATIONS
In the era of 3G, energy efficiency wasn’t a primary
design consideration [72]. 3G networks used Code Division
Multiple Access (CDMA) technology, which was more
energy-efficient than the Time Division Multiple Access
(TDMA) used in 2G networks but it still had significant
limitations. Although in [73], the first joint energy-aware
Radio Resources Management (RRM) and BS sleeping
mechanism is proposed to reduce the energy consumption
while ensuring the QoS of subscriber, the power usage
in 3G networks was still relatively high due to factors
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TABLE 1. O-RAN based ML applications.

such as inefficient hardware and a lack of sophisticated
energy-saving techniques.

In 4G networks, energy efficiency has emerged as a
significant consideration. The implementation of advanced
techniques such as Orthogonal Frequency-Division Multiple
Access (OFDMA), Multiple Input Multiple Output (MIMO)
antennas or multi-user MIMO, and improved modulation
schemes has contributed to enhanced spectral efficiency.
Consequently, the energy efficiency per transmitted bit has
improved. Reference [74] provides an extensive survey on
energy-saving aspects in 4G wireless networks. The survey
covers various aspects, including energy-saving models and
energy efficiency metrics, the correlation between energy
saving and Qos of user, and the application of energy-saving
techniques in different scenarios.

B. ENERGY EFFICIENCY IN DISTRIBUTED/ CLOUD/
VIRTUAL-RAN
The RAN architecture in 5G and 6G networks have witnessed
notable advancements in energy conservation with two
notable approaches are the centralization and virtualization of
network functions through structures like C-RAN and v-RAN
(mentioned in Section II). These architectures facilitate
efficient energy utilization by consolidating and optimiz-
ing network operations. Additionally, AI/ML are deployed
for intelligent network management and operation leading
to improved energy efficiency by dynamically adjusting
resources based on network conditions and user demands.
In this section, AI/ML based energy efficiency algorithm
deployed on the RAN will be introduced.

1) BS SWITCHING OFF/ON MECHANISMS
The energy consumption of BSs constitutes a significant
portion of the total energy consumed by cellular networks.
In addition, an adequate number of BSs are deployed
to meet the peak traffic demand in a given area [75],
[76]. However, during periods of low traffic demand, the

continuous operation of numerous BSs results in wasted
energy. To address this issue, dynamically switching BSs on
and off based on traffic demand has become a widely adopted
energy-saving strategy. However, this approach presents an
immediate challenge in terms of the potential degradation
of QoS for subscribers. In this section, we will explore
several ML-based methods that aim to mitigate network
energy consumption while simultaneously ensuring the QoS
for users. In [77], the authors optimise the overall energy
consumption of the network by thinking simultaneously
about the conflicting issues of BS sleep control and reducing
transmission energy consumption. A deep learning based
model is proposed to optimise the activation mode and
beamforming weights of the BSs by learning the transmission
channel coefficients between the RRH and the user, which
reduces the computational complexity and optimises the
network energy consumption compared to the traditional
numerical approach. In [78], authors address the problem of
joint optimization in v-RAN, focusing on BS sleeping and
functional split orchestration to reduce energy consumption.
Additionally, they take into consideration routing and cov-
erage costs as important factors in the optimization process.
When a BS is planned to enter a sleep mode, the traffic
within its coverage area needs to be efficiently reassigned to
other BS areas to ensure minimal energy consumption while
maintaining satisfactory network performance. Another limi-
tation pertaining to the dormancy time of the BS is associated
with the period of the synchronisation signal burst, which
exhibits variations ranging from 5 to 160 ms, depending on
specific requirements. To address this challenge, the authors
of [79] propose a classification of the BS’s sleep modes into
three distinct categories based on the varying signaling burst
periods. Subsequently, they employ Distributed Q-learning
techniques to enable the BS to dynamically select the
optimal sleep mode, taking into account diverse network
requirements. The objective is to strike a balance between
achieving energy savings andmanaging the potential increase
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in system latency resulting from the implementation of
energy-saving measures.

2) ML-BASED DATA-DRIVEN ENERGY EFFICIENCY
OPTIMIZATION
The previous section highlighted the multifaceted nature of
5G wireless networks, characterized by increased network
complexity and stochastic behavior. These networks face
challenges such as fluctuating data demands, user mobility,
and environmental variables, necessitating adaptive solutions
capable of accommodating the inherent dynamism of 5G.
However, traditional optimization algorithms often require
recomputation when the network environment changes,
resulting in high computing overhead [75]. In contrast,
ML algorithms offer a promising approach to managing these
complexities by leveraging data-driven decision-making and
predictive analysis. ML algorithms enable energy optimiza-
tion under varying conditions while minimizing computing
and signaling overhead. Their flexibility allows for efficient
adaptation to dynamic network environments. Reference [80]
introduces a novel approach for energy-efficient resource
allocation in C-RAN using a DDQN. While ML-based
intelligent resource allocation algorithms have been previ-
ously discussed, the objective of this paper is to maximize
energy-efficient rewards while considering constraints on
transmission power selection and user rates. By employing
DDQN, the paper addresses the overestimation problem
encountered in traditional DQN algorithms and achieves
superior performance. The proposed method leverages
DDQN to optimize the allocation of network resources in
C-RAN, thereby improving energy efficiency and overall
network performance. In addition to determining user data
rates for resource allocation, [81] this paper introduces amore
advanced approach that leverages stacked and bidirectional
LSTM as a deep learning method, along with A3C as a DRL
method. By utilizing these techniques, resource allocation
is conducted in a more refined manner, considering both
large and small time intervals. The proposed approach signif-
icantly enhances energy efficiency, improves the accuracy of
resource allocation, and increases the utilization of network
slices. By combining deep learning andDRL, [81] contributes
to the optimization of resource allocation in terms of energy
consumption, precision, and overall network slice utilization.

X. ENERGY EFFICIENCY IN OPEN RAN
Within the context of Open RAN, transformative develop-
ments like open interfaces and disaggregation, as discussed
in Section III, have contributed to the overall enhancement
of energy efficiency across the network. Through these
innovations, RICs are empowered to monitor and access
information from various nodes within the network via
open interfaces. Consequently, decisions pertaining to energy
efficiency can be made from a global perspective, tran-
scending local optimization efforts. To achieve this, AI/ML
models are deployed within the RICs, leveraging predictive
capabilities to anticipate future traffic demand, user mobility

patterns, resource utilization, and other relevant factors.
By harnessing these AI/ML models, the RICs can make
informed optimization decisions, thereby fostering improved
energy efficiency within the Open RAN ecosystem. This
approach enables a more holistic and proactive approach to
energy optimization by taking into account various network
dynamics and future trends.This paper [82], authored by
prominent European telecoms operators and targeted towards
Open RAN vendors, addresses the crucial aspect of energy
efficiency in Open RAN systems. The article focuses on four
key categories for energy optimization. The first category
emphasizes the need for energy-efficient hardware, partic-
ularly power amplifiers that can be selectively activated or
deactivated based on the traffic volume. The second category
highlights the importance of open interfaces within the Open
RAN framework, enabling the measurement and monitoring
of KPIs related to energy consumption, throughput, traffic
load, and more. Furthermore, network hardware components
should have the capability to enter sleep mode during
periods of low load, adhering to the principle of zero
consumption when there is no load. Lastly, intelligent control
and optimization of energy efficiency are crucial, achievable
through AI/ML models. For instance, this can involve cell
switching on or off to directly save energy, or indirectly
through efficient resource allocation and traffic steering. The
O-RANAlliance, WG1, presented three different approaches
to improve the energy efficiency of O-RAN. These are
explained in the following subsections.

A. CARRIER AND O-RU SWITCH OFF/ON
Open Radio Access Network (O-RAN), through its RIC
and open interfaces, enables energy consumption assessment
across the entire network rather than merely facilitating
localized optimization. Typically, multiple carriers are used to
cover the same geographical region. Consequently, in scenar-
ios of low traffic/demands, O-RAN is capable of deactivating
one or multiple carriers, or even shutting down an entire O-
RU, to achieve energy savings. The maximum power saving
is obtained by entirely switching off the O-RU, but this
comes with drawbacks, such as introducing difficulties for
other network units to discover the O-RU. To address this
issue, instead of shutting down an entire O-RU, some network
functionalities remain operational tomaintain discoverability.

Based on the energy efficiency improvements outlined
in [83] for switching off/on carriers or cells, within a setup
featuring 4-transmit-4-receive (4T4R) antennas, four layers,
a bandwidth of 100MHz, operating at 3.5GHz, and with each
antenna transmitting at 30W, shutting down O-RUs during
periods of low demand can lead to a reduction in energy
consumption by 150-180W for eachO-RU.With an expanded
deployment of 10,000 O-RUs, and assuming each O-RU is
deactivated for merely 3 hours daily, the total annual energy
savings could range between 1643 to 1971 MWh. Further-
more, escalating the antenna configuration to 64-transmit-
64-receive (64T64R) antennas enhances the potential energy
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savings per O-RU to 260-340W, culminating in an annual
reduction of 2847 to 3723 MWh in energy consumption.

B. RF CHANNEL RECONFIGURATION OFF/ON
To boost the throughput and capacity of O-RUs, beamforming
stands as a prevalent strategy in mobile networks with
massive MIMO (mMIMO) antennas. Energy efficiency can
be optimized during low-traffic periods (such as nighttime)
by turning off specific segments of the Tx/Rx arrays.
Subsequent to the partial deactivation of O-RU Tx/Rx arrays,
adjustments must be made to the configurations related to
these arrays, including modifications to the transmit power
of the O-RU antennas and the quantity of Synchronization
Signal Block (SSB) beams, among other parameters.

In O-RAN, through RF channel reconfiguration, reducing
the antenna configuration from 4T4R to 2T2R within the
same O-RU setup as discussed in the previous section
can achieve up to 80W of energy savings per O-RU.
Similarly, decreasing the antenna configuration from 64T64R
to 32T32R can result in a maximum energy saving of 230W
per O-RU [82].

C. ADVANCED SLEEP MODE
Advanced Sleep Modes (ASMs) are a feature in cellular
networks that involve the gradual deactivation of different
components of a O-RU based on the time needed for
each component to deactivate and reactivate, known as the
transition time [84], [85]. ASMs allow for the definition of
different levels with varying characteristics such as duration
and power consumption. These modes are highly efficient
in terms of energy conservation, capable of reducing energy
consumption by up to 90% [86] at low loads. However, the
trade-off is an increase in latency due to the waiting time
for a user requesting a service while the O-RU is in sleep
mode. To optimize this trade-off between energy conservation
and delay. [87] proposes a framework dynamically adjusts
ASMs by implementing the Delay Conservative Advanced
Sleep Modes (DCASM) approach for BS operation. This
approach involves deriving proper ASM parameter settings
based on traffic predictions to meet specific delay constraints
while optimizing energy savings. By using a closed-form
expression, the framework ensures that ASMs parameters
are tailored to the needs of Mobile Network Operators
(MNOs) and vertical industries, allowing for estimation of
power consumption based on traffic prediction and real-
time adjustments. The DCASM approach guarantees the
desired average reactivation delay, such as 1 ms, under any
predetermined arrival rate, ensuring compliance with delay
requirements.

In the O-RAN framework, it is imperative for O-RUs to
share their ASM settings with O-DUs. This encompasses
the durations of various sleep phases, transition intervals
between these modes, and the requisite activation times.
Subsequently, the O-DU communicates this data to both the
RIC and SMO. Unlike in conventional networks operated

by a single vendor, where internal data flows seamlessly
enabling straightforward sleep mode management, O-RAN’s
disaggregated architecture implies a lack of direct awareness
about O-RU specifics by the E2 node [82]. Therefore,
the deployment of ASMs in O-RAN demands that details
regarding the O-RU’s sleep management be disseminated
across the network’s components via open interfaces. With
this information at hand, the RIC proceeds to train models
aimed at optimizing the trade-off between sleep mode
durations and the latency associated with reactivation.

XI. POWER CONSUMPTION MODEL IN O-RAN
A. POWER CONSUMPTION MODELS OF RU
1) EARTH MODEL OF RU
The study in [88] defines power consumption model known
as EARTH1 model for a single BS that can be widely used.
This is a typical BS consists of multiple transceivers, each of
which serves one transmit antenna element. Therefore, power
consumption of a BS can be regarded as the power consump-
tion of all transceivers, each one including a Power Amplifier
(PA), a RF module and a BBU, a DC-DC power supply,
an active cooling system, and mains supply for connection
to the electrical power grid. This BS power consumption is
given by

PBS = NTRX ∗

Pout
ηPA(1−σfeed)

+ PBB + PRF

(1 − σco) (1 − σDC ) (1 − σMS)
(3)

where NTRX denotes the total number of RF transceivers in
a BS. Pout is the transmission power, scaling with traffic
load, ηPA is the PA efficiency, σfeed is the power losses by
antenna feeder since the location of the macro BS is often
different from its antenna, but this problem was addressed by
having the RRH in the same site. PBB and PRF are the power
consumption of BBU and RFmodule respectively. The power
losses in active cooling system, DC-DC power supply and
main power supply are denoting σco, σDC and σMS .

The simulation in [88] shown that only PA scales with
BS load, other components hardly scale with the load.
So the relation between BS power consumption Pin and RF
output power Pout are nearly linear and the equation can be
simplified into

P =

{
NTRX ∗ P0 + ξPPout 0 < Pout < Pmax
NTRX ∗ Psleep Pout = 0

(4)

where P0 and ξP indicate the fixed power consumption
and the slope of the load-dependent power consumption
in different cell type, respectively. Reference [88] argues
that putting BS into sleep mode when its has no service
to offer is critical to energy efficiency. Therefore, the
Psleep

(
Psleep < Pout

)
indicates the power consumption when

BS is entering sleep mode when there is no traffic to transmit.
In the context of O-RAN, RU is a physical node [6]

and a major power consumption of RU is related to RF

1Energy Aware Radio and neTwork tecHnologies (EARTH) was an
EU FP7 multi national project (2010-2012) which investigated the energy
consumption of different network components.
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functionalities and power amplification [8]. Therefore, the
power consumption of RU can be formulated as follow base
on the EARTH model:

PRU =

PRF +
Pout
η

0 < Pout < Pmax

Psleep Pout = 0
(5)

where η is the power amplifier drain efficiency. PRF is refer
to fixed power consumption of RU such as RF circuits power
consumption. Psleep is the power consumption when RU is
sleep.

2) CARRIER AGGREGATION POWER CONSUMPTION MODEL
OF RU
Carrier Aggregation (CA), introduced in the 3GPP Long
Term Evolution Advanced (LTE-A) standard, serves as a piv-
otal feature to enhance cell throughput [89]. Fundamentally,
CA permits the aggregation of multiple Carrier Components
(CCs), thereby expanding bandwidth and augmenting data
rates formobile devices. Thismechanism optimizes the use of
the available spectrum by amalgamating carriers from either
identical or disparate frequency bands. In its early stages, CA
supported the aggregation of a maximum of 5 CCs with a
bandwidth of up to 20 MHz. However, with the advent of 5G
NR, its capabilities have been broadened to accommodate up
to 16 CCs with a bandwidth reaching 1 GHz. This versatile
technology has been instrumental in various areas, encom-
passing capacity augmentation, coverage enhancement, and
facilitation of advanced functionalities such as Licensed
Assisted Access (LAA) and dual connectivity [75].
Given this context, when constructing a power consump-

tion model for RU utilizing CA, it becomes imperative to
formulate a function that captures the power consumption’s
correlation with the number of active CCs, denoted as Ncc.
Integrating insights from both the O-RAN framework and
the study by [90], energy model for the RU is illustrated as
follow:

PRU =

Ncc∑
j=1

(PTXj + BjPCACPj ) + PCAiCP , (6)

where PTXj =
Poutj

η
denotes the effective transmit power

used by CC j. Bj and PCACPj are represented as the bandwidth
of CC j and the variable circuit power consumption, which
scales linearly with both the number of active CCs, and
their bandwidth, Bj. However, PCAiCP is the static circuit power
consumption of CA system.

B. POWER CONSUMPTION MODELS OF DU AND CU
Within the paper [91], two distinct power consumption
models are delineated. The first centers on processing and
is built upon the foundations of the EARTH model. This
model seeks to establish a function representing the average
CPU load, denoted as l, for each Edge Processing Module
(EPM) in a time slot t over a duration T . The modeling of

this equation is presented as follows:

Epepm,j(t) = (I(ltepm,j>0)Pepm + P′
epm ·

l
t
epm,j

Cepm
)T , (7)

where Pepm is the power consumption of EPM where
DUs are implemented, which represents the fixed costs of
running the server, such as cooling, power amplification, and
network switches. P′

epm is dynamic or load-dependent power
consumption increases linearly with the EPM’s load(i.e.,
average CPU load). I(ltepm,j>0) is an indicator variable that
takes the value 1 when EPM j is busy and 0 when it is idle.
Similarly, the energy consumption of a Central Processing

Module (CPM) k where CUs are implemented is given as:

Epcpm,k (t) = (I
(l
k
cpm,j>0)

Pcpm + P′
cpm ·

l
t
cpm,k

Ccpm
)T , (8)

where Pcpm and P′
cpm are static and dynamic power

consumption respectively.
While the EARTH model offers insights into power

consumption, it is not directly applicable for estimating the
energy usage of the DU/CU. This limitation arises primarily
for two reasons [92], [93]. Firstly, considering that multiple
DU/CUs operate within a cloud infrastructure, the energy
footprint of an individual DU/CU is expected to be reduced.
Secondly, due to the dynamic resource allocation inherent in
O-RAN systems, applications residing on the DU/CU aren’t
continuously active.

Consequently, in the context of the O-RAN framework
where the DU/CU essentially constitutes a segment of
the virtualized BS, the primary determinant of its power
consumption is attributed to the utilization of CPU cores [93].
Thus, the power consumption model of a DU/CU for a given
time slot t can be articulated as follows:

PtDU/CU = Nc(PDU/CU ,min + 1PDU/CU δcsβ ), (9)

where 1PDU/CU is denoted as follow:

1PDU/CU =
(
PDU/CU ,max − PDU/CU ,min

)
/sβ0 (10)

In this model, the power consumption of DU is linear with
the number of active CPU cores and CPU load as well.
Where, Nc represents the number of active CPU cores in DU,
Pm,min andPm,max are denoted as theminimum andmaximum
power consumption of each CPU core.δc is the percentage of
CPU load on active cores, s is the CPU speed and s0 is the
reference CPU speed. β is the exponential coefficient of CPU
speed. 1Pm indicates the slope of the load-dependent power
consumption of DU.

The percentage of CPU load on active cores, denoted as δc,
can be ascertained through the subsequent function: [93]:

δc =
Q(r)
Ncs

=
c0 + kr
Ncs

(11)

where Q(r) is the actual instructions per unit time and Ncs
represents the maximum instructions available per unit time.
c0 is constant coefficient of instruction speed. k is rate varying
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coefficient of instruction. r is transmission rate. Base on
eq (9) and eq (11), the power consumption model can be
modeled as:

PtDU/CU = NcPDU/CU ,min + 1PDU/CU c0s
β−1

+ 1PDU/CU krs
β−1 (12)

In [94], the authors proposed an energy consumption
model of activating servers and instantiating O-RAN
applications, representing as follows:

Es(xs, ys) = xs ∗ Ebases +

∑
a∈A

∑
r∈R

yr,a,sea,s, (13)

where xs indicates the server activation profile and Ebases
represents the fixed energy consumption when the server s is
active. ys = (yr,a,s)(r,a)∈R×A which is an allocation variable
indicates the load of server s, that is how many instances
of app a with request r have been deployed on that server.
ea,s shows the energy consumption of an application a which
scales linearly with the server load.

Energy efficiency studies based on O-RAN are still in
their nascent stages. Currently, only a few articles have
considered and analyzed the Energy efficiency of O-RAN.
Current analyses of O-RAN energy consumption models
primarily rely on models developed for C-RAN and v-RAN.
Although these network structures share similarities with
O-RAN, they do not fully meet all the requirements of
O-RAN. Therefore, further research is needed to delve into
energy efficiency optimization that aligns with O-RAN’s
unique characteristics, aiming to directly reduce the overall
energy consumption of O-RAN. For example, developing a
distinct power consumption model unique to O-RAN, which
includes the energy used during transmission and operation
by various hardware and software components, rather than
merely adopting or slightly modifying the existing EARTH
model.

TABLE 2. Simulation parameters [92].

XII. CASE STUDY
In this section, we illustrate the numerical results in Figure 6,
highlighting the difference in power consumption between
a traditional integrated BS such as eNodeB and an O-RAN

TABLE 3. Power model parameters for different BS types [88].

configuration under various transmission power scenarios.
The power consumption of O-RAN is estimated using (5)
and (7). (5), derived from the EARTH’s model, calculates
the energy utilization of RUs, while (7) assesses the energy
demands of DUs and CUs based on CPU core usage. For
simplicity, we assume they have equal CPU utilisation, hence
equal power consumption. The specific parameters applied
in the O-RAN energy simulation are detailed in TABLE 2.
For the conventional BS, we employ the EARTH model as
illustrated at (4), selecting a macro BS configuration that
incorporates RRHs located at the BS sites to eliminate feeder
losses. The relevant parameters are provided in TABLE 3.
However, it is important to note that we have opted for a single
RF transceiver in a BS for this model, with NTRX = 1.
Figure 6 distinctly illustrates that the initial energy

consumption of a conventional BS significantly exceeds
that of the O-RAN. Both of them have same radio head
and same RF circuit power consumption. The disparity
is primarily due to the BBU in the conventional setup,
which consume approximately 29.6 watts [88] in their
active state, even during periods of idle time. Contrastingly,
O-RAN’s energy expenditure in idle states is significantly
reduced due to its architectural design that inherently
incorporates virtualization of network functions. This design
not only allows for more efficient energy use when network
components are inactive but also provides a more dynamic
and responsive energy utilisationmodel that adapts to varying
network demands [11]. Another observation is the curvilinear
nature of O-RAN’s energy consumption. This characteristic
shape arises because O-RAN’s energy usage is bifurcated into
two distinct segments (RUs and DUs,CUs). The segment to
the energy utilized by the DUs and CUs, correlating with the
CPU core load relative to the transmission rate, as detailed
in (12). Given that the transmission rate is computed using
a logarithmic function (log2), the relationship between the
transmission rate and energy consumption doesn’t follow
a linear trajectory but exhibits a curved pattern instead.
The crossover in energy consumption between O-RAN and
conventional BSs occurs at a transmission power threshold
of roughly 14 W. Beyond this point, O-RAN begins to
consume more energy. This phenomenon is attributed to
the inherent energy consumption characteristics of the two
systems. In conventional BSs, energy usage is a fixed
value that scales with the number of RF transceivers, with
the exception of power amplifiers (PAs) that vary based
on transmission power. In contrast, O-RAN experiences a
dual variability: not only does the energy consumption of
the PAs fluctuate with transmission power, but the CPU
load also scales in response to these power adjustments.
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FIGURE 6. Comparison of power consumption of O-RAN and eNodeB
with transmission power variation.

Consequently, as transmission power escalates, O-RAN’s
energy consumption trajectory steepens more drastically
compared to that of its traditional counterparts, owing to its
compounded sensitivity to changes in transmission power.
In conclusion, while virtualization is a common factor in
both O-RAN and non-ORAN systems, O-RAN’s default
incorporation of this technology, coupled with its open
architecture, offers a more integrated and efficient approach
to energy management. This inherent capability of O-RAN to
dynamically adjust network functions and manage resources
smartly positions it as a more energy-efficient solution in the
evolving landscape of network technologies.’

XIII. CONCLUSION
This paper thoroughly investigated Open RAN architectures,
tracing the development of RAN technologies from D-RAN
to v-RAN. It highlighted the new features that Open RAN
brings to the table. Detailed explanations were provided
about the roles and connections of the Near-RT RIC and
Non-RT RIC within the SMO framework, as well as the
essential AI/ML processes they support. The investigation
then advanced into an exploration of ML technologies,
spotlighting their role in infusing intelligence and automa-
tion into O-RAN operations, and highlighted the energy
implications of deploying ML models. It offered a detailed
look at different ML applications and research related
to O-RAN. Additionally, it reviewed how ML methods
developed over time to improve energy efficiency in various
network designs and how these methods fit into O-RAN’s
framework. A pivotal aspect of this study was the in-depth
case study examining the energy consumption profiles of
RU and DU/CU, employing the EARTH model alongside
a CPU core power model respectively. This case study
facilitated a comparative analysis with traditional BSs,
elucidating the energy efficiency advantages inherent in
O-RAN architectures. This paper not only offered a detailed
exploration of Open RAN and its underpinning technologies

but also underscored the critical role of ML in optimizing
network operations and energy consumption.
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