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ABSTRACT Unsupervised feature selection methods can be more efficient than supervised methods, which
rely on the expensive and time-consuming data labeling process. The paper introduced skewness as a
novel, unsupervised, and computationally efficient feature ranking metric, suitable for both classification
and regression tasks. Its feature selection effectiveness is compared to several state-of-the-art supervised
and unsupervised feature ranking and selection methods. Both theoretical analysis and empirical evaluation
on several popular classification and regression algorithms show that statistical moment-based feature
selection algorithms are competitive in terms of accuracy and mean squared error (MSE) with the state-
of-the-art supervised approaches for feature ranking and selection, including Fast Correlation Based Filter
(FCBF), Minimum Redundancy Maximum Relevance (MRMR), and Mutual Information Maximization
(MIM). We also present a mathematical proof based on some common assumptions, which explains the high
effectiveness of statistical moments in the feature ranking procedure. Moreover, statistical moment-based
feature selection is shown empirically to run faster, on average, than the supervised approaches and
the unsupervised Laplacian Score method. Additionally, skewness-based feature selection, in contrast to
variance-based selection, does not depend on data normalization that requires additional computational time
and may affect the feature ranking results.

INDEX TERMS Feature ranking, unsupervised feature selection, skewness, variance.

I. INTRODUCTION
The tremendous growth in the volume of available data
creates challenges for machine-learning algorithms in terms
of scalability, processing times, predictive performance, and
explainability. Therefore, feature selection is an essential
pre-processing step in machine learning tasks when dealing
with high-dimensional data. In [1], a risk curve was proposed
to qualitatively describe the out-of-sample prediction accu-
racy of variably parameterized machine learning models. The
risk peaks when the number of features becomes close to
the sample size. This behavior resembles some key patterns
observed in large models and reinforces the fact that it is still
important to apply feature selection as a pre-processing step.

Feature selection methods can be classified as super-
vised [2], semi-supervised [3] or unsupervised [4], depending
on the information they use in the feature selection process.
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Supervised feature selection relies only on labeled data
instances, while semi-supervisedmethods utilize both labeled
and unlabeled records. In contrast, unsupervised feature
selection (UFS) methods do not require a labeled dataset at
all.

Many feature selection algorithms, a.k.a variable selection
algorithms, build upon feature ranking as a principle or
secondary selection process, since it is scalable, simple,
and empirically successful in most cases. In feature ranking
algorithms, each one of the original features of a dataset
is scored based on some statistical or information-theoretic
measures of its importance. Then, the features are sorted by
their scores and the top-ranking features can be selected using
a predefined threshold. Moreover, in practical situations, the
aim is not restricted to predicting the true class of a given
observation, but rather it also involves recognizing the input
characteristics that play a vital role in a specific behavior. For
instance, in the case of a gene expression profile, the initial
goal could be to predict the patient’s response to a particular
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therapy, while the secondary objective could be to determine
the section of the genome that is accountable for the favorable
or detrimental reaction [5].

Supervised feature selection methods depend on the
availability of true and reliable class labels. However, there
are many real-world scenarios where data labeling may
be delayed. Moreover, feature selection approaches based
on actual labels can be time-consuming and expensive.
Consequently, unsupervised feature selection methods are
becoming increasingly preferable.

In this work, we explore the use of two statistical moments,
variance and skewness, as unsupervised and scalable feature
ranking and selection metrics, which are shown theoretically
and empirically to produce effective feature subsets.

The main contributions of this paper are:

• We introduce skewness as a novel unsupervised and
computationally efficient feature ranking metric, suit-
able for both classification and regression tasks.

• We compare the effectiveness of variance-based and
skewness-based feature selection procedures to super-
vised FS methods using 40 benchmark datasets, four
classification algorithms, and three regression algo-
rithms.

• We present a mathematical proof that under some
common assumptions, the probability distribution of a
predictive variable is related to its discriminative power,
which may explain the high effectiveness of statistical
moments in the feature ranking procedure.

• Finally, we discuss the advantages of using skewness
rather than variance for unsupervised feature ranking.

This paper is organized as follows: First, we present a
literature review, then we present the goal of this work
and provide a formal problem definition. Next, we describe
the statistical moment-based feature ranking and selec-
tion methodology and explore its effectiveness using both
mathematical analysis and evaluation experiments. Finally,
we present our main conclusions and suggested directions for
future research.

II. RELATED WORK
We here go through relevant topics in the scope of
feature selection and more specifically, feature ranking as
a primary or a secondary feature selection mechanism. The
first sub-section explains the motivation of applying such
methods and reviews some feature selection approaches
for classification and regression tasks, using labeled and
unlabeled data. Since the proposed feature selection method
is based on feature ranking, sub-section II-C discusses feature
ranking methods focusing on filter-based approaches and
their use.

A. FEATURE SELECTION OVERVIEW
Feature selection is a process of choosing a subset of original
features such that the feature space is optimally reduced
according to certain evaluation criteria [6].

We are facing a continuous increase in data volumes,
both in terms of the number of instances and number
of features in such applications as genome projects [7],
text categorization [8], image retrieval [9], and customer
relationship management [10]. This data abundance may
cause some problems for scalability and learning perfor-
mance of many machine-learning algorithms, especially
when high-dimensional data contains a significant amount
of irrelevant and redundant features. Therefore, feature
selection is crucial for machine learning tasks handling high-
dimensional data.

However, there are claims that the use of feature selection
methods in the big data domain is unnecessary due to the
superior performance of deep neural networks, which usually
consider all original features. Still, the benefits of feature
selection include better explainability of the induced machine
learning models along with reducing the data collection
costs as well as decreasing the training and the inference
times.

Feature selection algorithms fall into three broad cat-
egories: filter, wrapper, and embedded approaches [11].
Filter methods assign a score to each feature to indicate its
importance, such as entropy, information gain, chi-square
test etc. [12], [13]. Several methods have been proposed for
discovering the relations between the input variables and
the output, while the most familiar and common are mutual
information-based approaches [14]. These approaches, have
an incremental nature, also called greedy, which means they
are prone to sub-optimal decisions. One of the first feature
selection methods based on information theory is the Mutual
Information Maximization (MIM) [15], which adopts mutual
information to measure the association between each feature
and the output class vector, and do not consider the interaction
between features. One of the most successful and well-known
MI-based approach is the Minimum Redundancy Maximum
Relevance (MRMR) framework [16], which finds at each step
the feature with the maximum relevance to the target class
and the minimum redundancy with the previously selected
features. Torkkola [17] suggested another filter method for
constructing features using a mutual information criterion.
The author maximizes I(ϕ,y) for m dimensional feature
vectors ϕ and target vectors y. Fast Correlation-Based Filter
(FCBF) is an example of a filter-based feature selection
approachwhich exploits feature-class correlation and feature-
feature correlation simultaneously. The algorithm selects a
subset of features that are highly correlated with the class
labels and removes redundant features by calculating the
symmetric uncertainty of the input features and the class
label [6]. Wrapper-based approach for feature selection
requires one predetermined learning algorithm and uses
its performance to evaluate and determine the features
subset. Some examples are recursive feature elimination
and genetic algorithms [18]. In embedded techniques, the
feature selection algorithm is integrated as part of the learning
algorithm; the most common embedded technique is LASSO
algorithm [19].
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For each new subset of features, the wrapper-based
approach learns a hypothesis (or a classifier) so it tends
to find features better suited to the predetermined learning
algorithm, resulting in superior learning performance of
that algorithm. Unfortunately, it also tends to be more
computationally expensive than the filter-based models [6].
Once the number of features becomes very large, filter-
based methods are usually preferred due to their lower
computational complexity.

B. UNSUPERVISED FEATURE SELECTION
According to the information utilized by the algorithms we
can classify feature selection methods as supervised [2]; [19]
and unsupervised [4]. The first category requires a set of
labeled data, whereas Unsupervised Feature Selection (UFS)
methods [4], [20] do not require a labeled dataset.
Due to the limited amounts and high costs of labeled

data, UFS methods have attracted significant interest in the
machine learning community. The UFS methods have two
important advantages. (1) They are unbiased and perform
well when prior knowledge is not available. (2) They can
reduce the risk of data overfitting in contrast to supervised
feature selection methods, which may be unable to deal
with a new class of data [21]. Max variance is one method
for unsupervised filter-based feature selection. This method
selects a subset of features based on a user-specified thresh-
old, e.g., keeps the top k features with the largest variance.
It assumes that features with higher variance are more useful
for classification and regression tasks. Xu et al. [22] propose
an unsupervised filter-based gene selection framework by
applying diffusion maps to address the multi- dimensionality
problem and using the eigenfunctions of Markov matrices as
a coordinate system on the original dataset in order to obtain
efficient representation of data geometric descriptions. The
authors applied three types of gene selection before applying
diffusions: correlation coefficient of a single variable to
other variables, max variance and selection of variables with
a bimodal (double hump) probability density. They found
that applying these standard, filter–based feature selection
methods achieve success. SPECtral feature selection (SPEC)
[21] ranks each feature by three different metrics through
spectral analysis, Hou et al. propose a general framework for
feature selection termed as Joint Embedding Learning and
Sparse Regression (JELSR) [23]. In Laplacian Score [24],
the importance of a feature is evaluated by its variance and
its power to preserve locality. This method assigns high
weights to features that can best preserve the underlying
manifold structure represented by the Laplacian matrix.
Laplacian score uses a nearest-neighbor graph to model the
local geometric structure of the data. This idea is based
on the assumption that observations that are close to each
other are probably related to the same cluster. Thus, those
features that have similar values for close objects and distant
values for remote ones are the most relevant features. Another
widespread choice is the pseudo-label-based methods. These

methods usually generate pseudo labels from data through
clustering algorithms and then, select features based on their
utility in predicting the pseudo labels with sparse learning-
based framework. An example of this kind of methods
is MCFS [25]. In [26], the authors rank features using
auto-encoders and evaluate the overall reconstruction error
of the auto encoder in absence of any specific feature. Their
assumption is that a low error indicates that a specific feature
is unimportant for representing the sample, or may be highly
correlated with other present features.

In unsupervised case, max variance is the most practical
method for working with big data, which has a linear time
complexity in terms of the number of features and the number
of instances.

C. FEATURE RANKING
In the feature ranking-based approach, each feature of a
dataset is scored based on one or several statistical or
information-theoretic measures. Then, the features are ranked
based on their score and the top ranking features are selected
as the predictive features using a predefined threshold that
determines the number of features to be selected from a
dataset.

Examples of feature ranking-based methods include Chi-
Square-Based Feature Selection (CQFS) [27] as well as
information-theoretic measures such as information gain,
gain ratio, Pearson correlation etc. As mentioned in [3] it
is still an open problem to determine the optimal number of
selected features. In practice, one usually adopts a heuristic
way to search through the size of the subset of features
and choose the number that provides the best classification
performance.

It is noteworthy that feature ranking-based methods take
less runtime but fail to remove redundant features [28].
To address this limitation one can use a suitable redundancy
analysis approach as well.

In [29], the proposed Fast Hybrid Feature Selection based
on Correlation-Guided Clustering (FHFS-CGC) method
combines correlation-guided clustering and particle swarm
optimization to select the most relevant features from high-
dimensional datasets. This fully supervised method first
clusters the features based on pairwise correlations and
then applies particle swarm optimization to select the most
discriminative feature from each cluster. The computational
complexity of their algorithm is O [(D− 1)!/(2D−2)], where
D is the number of features.
In [30], the authors proposed two approaches for

semi-supervised learning of feature rankings with several
classification and structured output prediction tasks including
multi-label classification, hierarchical multi-label classifica-
tion, and multi-target regression. The proposed methods are
based on predictive clustering tree ensembles and the Relief
family of feature ranking algorithms and they are evaluated
on static datasets only. Semi-supervised learning methods
make use of unlabeled, in addition to labeled data under
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the assumption that clusters of unlabeled samples resemble
the distribution of class labels. When this assumption
holds, ignoring unlabeled data may be counter-productive.
In contrast, we explore here a fully unsupervised approach
to feature ranking, which does not rely on the class labels
of any samples. We evaluate a new feature ranking metric,
the third statistical moment of feature values, and compare its
effectiveness to several feature impurity functions including
feature variance used by [30].

III. PROBLEM DEFINITION
The goal of this work is to develop and evaluate unsupervised
and computationally efficient filter-based approaches to
feature ranking and selection, which can be used to induce
reasonably accurate classification and regression models.
Problem 1: (Unsupervised Feature Ranking and Selec-

tion): Given a dataset D, a feature scoring function S, and
the number of features to be selected k, the problem of
unsupervised feature selection aims at selecting a subset of
k most informative features from the original feature space n
(k < n) without making use of instance labels. In particular,
consider a set of d examples, xi, yi (i = 1 . . . d) consisting
of n numeric features, x(i, j) (j = 1, . . . n). Unsupervised
feature selection via variable ranking is using a scoring
function S(j) computed only from the values x(i, j). After
sorting the variables in descending order of their S(j) scores,
the top k variables can be used as predictive features by a
classification or regression algorithm.

IV. METHODOLOGY
We are proposing skewness as a novel unsupervised fea-
ture scoring function and then proceed with evaluating
both variance-based and skewness-based feature selection
approaches.
Definition 1: Skewness (third statistical moment) is a

measure of symmetry, or more precisely, the lack of symmetry
(known as asymmetry). Data distribution is symmetric if it
looks the same to the left and right of the center point [31].
Positive skewness indicates that the mean is higher than the
median, whereas, in a distribution that is negatively skewed,
the mean is lower than the median. In cases of a symmetric
data histogram, such as the normal distribution, a feature has
zero skewness. As indicated by [32], there are asymmetric
features where only the minority of an attribute’s values
strongly point to one of the target classes. This empirical
phenomenon may be explained by the normal distribution
of most ‘‘weak’’ (noisy) features [1], which are affected by
multiple independent hidden factors, as opposed to ‘‘strong’’
(predictive) features, which are characterized by skewed
distributions. The skewness of a random variable X , or the
third standardized moment γ1, is defined mathematically as:

γ1 =
µ3

σ 3 (1)

µ is the central moment and σ is the standard deviation
It is worth mentioning that skewness values remain stable

across scaling or normalization of datasets.

FIGURE 1. Sketches showing general position of mean, median, and
mode in a population [33].

Definition 2 (Mean): The sample mean is the average of
the values of a variable in a sample, which is the sum of those
values divided by the number of values. Using mathematical
notation, if a sample of N observations on variable X is taken
from the population, the sample mean is:

X̄ =
1
N

N∑
i=1

xi (2)

The skewness values vary between plus and minus
infinity. In our feature ranking and selection experiments,
we evaluated feature scoring both by the actual and the
absolute skewness values though features having positive
skewness values are much more prevalent than the negatively
skewed ones. Examples of positively skewed features include
personal incomes, waiting times in a queue, or the life span
of a technical device, in contrast to highly skewed negative
features like student scores in an easy exam, where there are
very few failures.
Definition 3: variance (second statistical moment) of a

random variable is the expectation of the squared deviation
of variable values from its mean. In practice, it measures how
far the feature values are spread out from their average value.
It is usually assumed that features with higher variance may
contain more information needed to discriminate between
class labels [24] though we are not aware of any formal proof
of this common assumption.

σ 2
=

∑n
i=1(xi − µ)2

n
(3)

µ is the is the average value and n is the number of samples.
To use variance for feature selection, we should normalize

the features to the same scale as the raw values of variance
are sensitive to scaling unlike skewness-based scores, which
do not require normalization before applying them to features
of different scales.

V. THE IMPACT OF PREDICTIVE VARIABLES
DISTRIBUTION ON FEATURE RANKING
This section analyzes how the distribution of a predictive
variable may affect its discriminative power in binary classi-
fication problems, which fit the popular Logistic Regression
model. The logistic regression model assumes a log-linear
relationship between the predictor variables and the binary
outcome. Mathematically, this relationship can be expressed
in terms of the logistic function, which transforms a linear
predictor (i.e., a weighted sum of the predictor variables) into
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Algorithm 1 Statistical Ranking-Based Feature Selec-
tion [34]
Input: k ⇐ number of top features to be selected and X ⇐

Dataset and M ⇐ statistical feature scoring function (e.g.,
variance or skewness)
Output: Subset of k selected features

1) for each feature x in X
2) Calculate feature score M(x)

3) return Array of -feature ID, score
4) TotalRank ⇐ Sort feature scores in descending order
5) return top k features from TotalRank

a probability value between 0 and 1. The logistic function
takes the form:

m(x) =
expβx

1 + expβx (4)

where m(x) is the probability of a binary outcome (usually
denoted as 0 or 1), x is the value of a predictor variable,
β is the coefficient (i.e., the weight) associated with
the predictor variable, and exp represents the exponential
function. Accordingly, the complement of the above equation
will represent the probability of the alternative outcome
(either 1 or 0, respectively) as follows:

1 − m(x) =
1

1 + expβx (5)

The logistic regression model builds upon several key
assumptions, including linearity, independence, and homo-
geneity of variance. Linearity refers to the assumption that
the relationship between the predictor variable values and
the binary outcome is log-linear, as captured by the logistic
function. Independence refers to the assumption that the
observations (i.e., the instances) are independent of each
other, meaning that the probability of an event occurring for
one instance does not depend on the probabilities of events
occurring for other instances. Homogeneity of variance
refers to the assumption that the variance of the probability
distribution of the binary outcome is constant across all
predictor variables.

If the two classes are linearly separable given the values
of a predictor variable x, there is a threshold value Th such
that all instances in the left interval x ≤ Th are labeled
by 0, whereas in the right interval x > Th all instances
are labeled by 1 (or vice versa). Such a variable should be
assigned the highest score by a supervised impurity metric,
such as the Information Gain or the Twoing, as a ‘perfect
predictor’ of the binary class. In contrast, the variables having
the same proportion of each class label in both intervals
defined by any threshold value should have the lowest rank
as irrelevant features having ‘zero impurity’. In Theorem 1
below, we prove that if a numeric feature fits the logistic
regression model, its variance and skewness, which can be
estimated without knowing the instance labels, can indicate
its actual discriminative power, justifying the use of variance

and skewness as an effective feature ranking metric in
unsupervised scenarios.
Theorem 1: If a binary classification function of a numeric

predictive variable fits the logistic regression model, the
likelihood of having the same class proportions in both
intervals resulting from any variable split will be inversely
proportional to the feature variance and skewness.

Proof: The expected number of instances belonging to
each binary outcome in a given interval can be calculated by
integrating the logistic function over the interval range. Let Th
be a threshold value between the two intervals. The expected
number of instances belonging to the binary outcome of 1 in
the lower interval ranging from the minimum feature value
min to Th is:

Expected(N1/x ≤ Th) =

∫ Th

min

exp(βx)
1 + exp(βx)

, dx (6)

Accordingly, the expected number of instances belonging to
the same outcome of 1 in the upper interval ranging from Th
to max is:

Expected(N1/x > Th) =

∫ max

Th

exp(βx)
1 + exp(βx)

, dx (7)

The difference between the expected proportions of
instances belonging to the binary outcome of 1 in the two
intervals can be calculated as:

Expected(N1/x > Th)∫ max
Th dx

−
Expected(N1/x ≤ Th)∫ Th

min dx
(8)

Assuming that the feature range [min;max] is fixed follow-
ing the min-max normalization and given any threshold value
Th, the above difference between the expected proportions
will increase, thus reducing the likelihood of zero impurity,
if most feature values in the lower interval will approach
min, whereas most feature values in the upper interval will
approach max. Such a two-sided ‘‘fat tail’’ distribution will
result in a higher feature variance, whereas a one-sided ‘‘fat
tail’’ would also result in a higher absolute skewness. The
feature variance is calculated by:∫ max

min
x2dx − (

∫ max

min
xdx)2 (9)

This completes the proof.
Though in real-world datasets predictive features do

not necessarily fit the logistic regression model, Theo-
rem 1 explains why unsupervised feature ranking based
on statistical moments, such as variance and skewness,
may be nearly as effective as the supervised approaches.
In sub-section VII-C1, we explore the effect of feature
distribution on supervised and unsupervised metrics using
sample features from the Sonar dataset.

VI. COMPUTATIONAL TIME COMPLEXITY
Based on the methodology presented above, we present
here the computational analysis of the Statistical Ranking-
based Feature Selection algorithm vs. four benchmark feature
selection algorithms (Fast Correlation Based Filter (FCBF)
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TABLE 1. Summery of computational time complexity for the proposed
and benchmark feature selection algorithms.

Minimum Redundancy Maximum Relevance (MRMR),
Mutual Information Maximization (MIM) and Laplacian
Score(LS).

Feature ranking by skewness and variance (see algo-
rithm 1) metrics calculation has a linear time complexity
in terms of the number of features D because we iterate
over all original features. For each feature, skewness and
variance metrics calculation is linear in terms of the number
of instances N in a dataset [35], [36]. Therefore, the overall
complexity of the moment-based FS is only O(DN ), which,
as shown below, is lower than the complexity of state-of-
the-art supervised FS algorithms. It is worth mentioning
that normalization of the data is required before ranking
features based on variance; the normalization step increases
the computational effort, which is saved with skewness-
based ranking. Thus, according to [6], the supervised Fast
Correlation Based Filter algorithm has a time complexity
of O(NDlogD). In another supervised algorithm, MRMR,
the Mutual Information of all possible feature pairs: feature-
feature and feature-class, is computed. Therefore, the compu-
tational complexity is quadratic O(DN 2), since the number
of distinct classes is bounded by the number of instances.
The time complexity of calculating mutual information,is
O(CN ) in terms of the number of instances N and number
of classes C , because all instances need to be examined
for probability estimation. Since MIM calculates only the
MI between feature-class pairs, its time complexity can
be calculated by O(kDCN ) [37]. The time complexity of
Laplacian Score is dominated by the cost of building a nearest
neighbor graph which is quadratic in the size of the training
set. Hence, its time complexity is O(DN 2)

VII. EXPERIMENTS
In this section, we perform experiments on a variety of
benchmark datasets to evaluate the effectiveness of statistical
moment-based feature selection.We describe the datasets and
the experimental settings before presenting the details of the
experimental results.

A. DATASETS
To evaluate and compare the performance of the proposed
feature selection algorithm, we conducted an extensive
experimental study using a total of 40 benchmark datasets.
These datasets were downloaded from the widely-used
UCI repository [38] and were carefully selected to contain

a diverse range of data characteristics and complexities.
Specifically, we used 30 UCI datasets suitable for the
classification task and 10 datasets suitable for the regression
task. On some of the datasets, we conducted simple pre-
processing: missing values were replaced by the mode for
categorical features and by the mean for continuous features.
Statistical moments were calculated for categorical features
by converting them into numerical labels using the label
encoder [39].

We present our findings based on the classification
and regression datasets separately. Our experiments with
both types of datasets demonstrate the applicability of the
proposed feature ranking techniques to a broad range of
machine-learning tasks.

1) CLASSIFICATION DATASETS DESCRIPTION
The statistics of these datasets are summarized in Table 2. The
datasets contain between 101 to 45211 instances and between
6 to 19,993 features, both numerical and categorical, mostly
balanced.

2) DATASETS DESCRIPTION FOR REGRESSION TASKS
We used 10 benchmark datasets suitable for regression tasks
and available from the UCI repository [38]. The statistics
of these datasets are summarized in Table 3. The datasets
contain between 204 to 241,600 instances and between 9 to
128 features, both numerical and categorical.

B. EXPERIMENTAL SETTINGS FOR FEATURE SELECTION
METHODS
We compare our moment-based framework with the follow-
ing unsupervised and supervised feature selection methods,
using the scikit-feature package implementation [40], with
their default settings:

• Laplacian Score (LS) [24] is a state-of-the-art unsuper-
vised feature selection method that selects features that
can best preserve the local manifold structure of the
data. Themethod constructs the affinitymatrixW,which
represents the similarity between each pair of samples.
In our experiments, it is constructed using the K-nearest
Neighbor (KNN) graph method, as the default setting,
where the K nearest neighbors are identified based on
the Euclidean distance between samples, and an edge is
created between each pair of samples in the graph. The
Laplacian Scores are then calculated for each feature
using W, and the features are ranked based on their
corresponding Laplacian Scores.

• Fast Correlation Based Filter (FCBF) [6]: a state-
of-the-art supervised feature selection method, which
selects features that are highly correlated with the class
labels and removes redundant features by calculating the
symmetric uncertainty of the input features and the class
label. The method has a hyperparameter called Delta
(float) - a threshold parameter with a default value of 0.
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TABLE 2. Datasets description for classification tasks.

TABLE 3. Regression datasets description.

• MRMR [16]: a state-of-the-art supervised feature
selection method, uses mutual information as a filter
method in order to obtain maximum classification
performance with a minimal subset of variables by
reducing the redundancies among the selected variables
to a minimum.

• MIM [15] a state-of-the-art supervised feature selection
method adopts mutual information to measure the
relevancy between each feature and the output class
vector.

Since unsupervised moment-based methods use the filter
approach, their effectiveness may differ across classifiers.
In order to reduce the bias of a specific classifier and
test the robustness of the evaluated methods, we measure
the classification accuracy of four different and commonly

used classifiers: k-Nearest neighbors (KNN), Naïve-Bayes
(NB), linear Support Vector Machine (linear-SVM) andMLP
neural network (MLP), all with their default parameters
using 10-fold cross-validation. We present the average
classification accuracy obtained for each classifier over a
subset of top k selected features, where k varies from 1 to
30 at increments of 1 (note that, if the number of original
features of the dataset is less than 30, then k goes up to the
number of original features). This approach facilitated the
avoidance of biases associated with the selection of specific
values of k . In order to rank features with variance metric
we normalize the datasets with Min-Max scalar. The Python
3machine learning software, scikit-Learn [41], and the scikit-
feature library [40] were used for the implementation of
the evaluated supervised and unsupervised feature selection
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FIGURE 2. Histograms of features having the highest skewness in the
sonar dataset.

methods and the evaluated classifiers with their default
parameters.

C. EXPERIMENTAL RESULTS
1) FEATURE RANKING USING VARIANCE AND SKEWNESS
As an example, we examined the difference between feature
ranking using the second and the third statistical moments
on the Sonar dataset. While the top three features of the
Sonar dataset that demonstrate the highest skewness were
V4, V60, and V51, the top three features having the highest
variance were V20, V17, and V21. The histograms of these
six features are shown in Figures 2 and 3. Each histogram
was crafted using 30 bins and the red line represents the log
probability for class 1.
Before calculating the Information Gain (IG) of numeric
features, discretization was performed using the Fayyad and
Irani MDL-based algorithm [42]. The method has been
implemented by employing MDLP (Minimum Description

Length Principle) discretizer from the mdlp − discretization
package. To compute the information gain, we calculate
the mutual information between each discretized numeric
or nominal feature and the target variable using the
mutual_info_classif function from Scikit-learn [40].

The histograms of the features with the highest skewness
(Figures 2a -2c) are characterized by a long tail composed of
a few large values leaning to the right, whereas most other
values are relatively close to the mean, resulting in a very
low variance. However, two out of the three top-skewness
variables have high Information Gain values indicating their
good discriminative power. In contrast, the histograms of
features with the highest variance (shown in Figures 3a -
3c) exhibit a more symmetric appearance. However, two out
of three top-variance features have near-zero Information
Gain values indicating their apparent irrelevance for the
classification task.

Another characteristic of the top skewness features in
Figure 2 is the relative monotonicity of the odds ratio between
the two classes as opposed to the top variance features in
Figure 3. This observation supports the claim of Theorem 1
that for a binary classification function fitting the logistic
regression model, the high skewness of feature values caused
by a one-sided ‘‘fat tail’’ is an indicator of good discriminative
power.

In contrast, the top variance features shown in Figure 3
do not exhibit monotonicity in the odds ratio between the
classes. In two out of three cases, their histograms are not
characterized by ‘‘fat tails’’, which explains the near-zero
values of their Information Gain despite their relatively high
variance.

These sample results confirm the claim of Theorem 1 and
suggest that in the absence of class labels, feature skewness
could potentially serve as an effective feature selection
criterion alongside the traditional variance metric.

2) ACCURACY
Tables 4-7 show the results of the evaluated feature selection
methods on 30 benchmark datasets using four different
classifiers.

Since, as mentioned above, the skewness values range
between plus and minus infinity, we examined the effec-
tiveness of feature ranking by absolute skewness values.
However, the results of our experiments have shown that
ranking the features by their actual skewness values provides
better results in terms of classification accuracy, i.e. positive
skewness is more informative for discrimination between
class labels than negative skewness. For example, the Wine
dataset obtained an accuracy score of 0.618 when using
absolute skewness values, compared to 0.743 with the actual
values. In our future work, we intend to explore further the
apparent advantage of positively skewed predictive features,
such as income, over negatively scored features, such as the
retirement age.

We compared the accuracy of the unsupervised variance
and skewness-based feature selectionmethods to FCBF,MIM
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TABLE 4. Average classification accuracy of SVM on 30 data sets, k = [1,30].

TABLE 5. Average classification accuracy of KNN on 30 data sets, k = [1,30].

and MRMR, the supervised feature selection algorithms,
using Wilcoxon signed-rank test. The results show that the

difference between the skewness and each other feature
selection method is not statistically significant (alpha= 0.05)
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TABLE 6. Average classification accuracy of NB on 30 data sets, k = [1,30].

TABLE 7. Average classification accuracy of MLP Classifier on 30 data sets, k = [1,30].

on all evaluated classifiers, SVM, KNN,NB andMLP. Hence,
we can reach the classification performance of supervised

feature selection methods without using the class labels.
We also examined the difference between the moment-based
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FIGURE 3. Histograms of features having the highest variance in the
sonar dataset.

TABLE 8. Average MSE of KNNR on 10 datasets using skewness and
variance-based feature selection, k = [1,30].

metrics and the Laplacian Score, an unsupervised filter-
based FS algorithm, using the same test. The results show
that the difference between these methods is not statistically
significant. It is also noteworthy that for each classifier,
there were several datasets, where skewness outperformed

TABLE 9. Average MSE of linear regression on 10 data sets using
skewness and variance-based feature selection, k = [1,30].

TABLE 10. Average MSE of RFR on 10 data sets using skewness and
variance-based feature selection, k = [1,30].

variance. The obtained results imply that some unknown
feature characteristics may determine the best feature subset
for a given dataset. It is still an open problem how to
choose the best feature selection method for a given data
classification or regression task. For example, as shown
in table 4, even a simple feature ranking method using
variance obtains better results than all other methods on
the Breast-Cancer-Wisconsin dataset. Besides, a paired two-
tailed t-test was conducted between the best accuracy
obtained by one of the supervised methods and one of the
unsupervised methods in each dataset. The experimental
results, in conjunction with Theorem 1, show that there is
no statistically significant difference between the supervised
and the unsupervised approaches, implying again that there
is no apparent advantage for using class labels in the feature
selection process.

To summarize the experimental results above, we have sev-
eral statistically significant findings: 1) Skewness can serve
as an effective filter-based unsupervised feature selection
method 2) Variance and skewness-based unsupervised feature
selection metrics can reach the classification performance
of filter-based supervised methods such as FCBF, MRMR
and MIM. 3) Variance and skewness-based feature selection
metrics can also reach the accuracy of the unsupervised
Laplacian score with less computational efforts.

D. REGRESSION
Since the variance and skewness-based feature selec-
tion methods generated comparable results to those of
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TABLE 11. Run time in seconds of the evaluated methods for classification datasets.

FIGURE 4. Run time (in log of ms) of the feature selection metrics in each classification dataset.

well-established filter-based supervised methods such as
FCBF, MRMR, and MIM, it is worthwhile exploring the
efficacy of these unsupervised methods for the regres-
sion task, where they may also offer a more practical
and computationally efficient alternative to commonly
utilized supervised methods. This sub-section presents
our experimental results for several popular regression
models.

E. EXPERIMENTAL SETTINGS FOR REGRESSION TASKS
As skewness and variance-based feature selection methods
employ the filter approach, their effectiveness may vary

across different regression models. In our evaluation exper-
iments, we measured the Mean squared error (MSE) of
three widely utilized regression classifiers, specifically the
k-Nearest neighbors Regressor (KNNR), Linear Regression
(LR), and Random Forest Regressor (RFR) without incorpo-
rating feature selection mechanisms. Our analysis employed
10-fold cross-validation andMin-Max normalization, and we
reported the averageMSE for each regressor over the range of
top-1 to top-30 selected features, with increments of 1. If the
number of original features in the dataset was less than 30, the
highest value of selected features was limited to the number
of original features.
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TABLE 12. Run time in seconds of skewness versus variance metrics in each regression dataset.

FIGURE 5. Run time (in log of ms) of the feature selection metrics in each regression dataset.

1) MEAN SQUARED ERROR RESULTS
Tables 8-10 show the results of the unsupervised moment-
based feature selection methods on 10 benchmark datasets
using three different regressors.

We compared the Mean Squared Error (MSE) outcomes
of unsupervised feature selection methods based on variance
and skewness for regression tasks using theWilcoxon signed-
rank test. Our results demonstrate that the difference between
the performance of the evaluated classifiers - KNNR, Linear
Regression, and Random Forest Regressor - when using
skewness and variance-based feature selection methods is not
statistically significant (alpha = 0.05). The main takeaway
from this analysis is that in regression tasks, feature ranking
using the third statistical moment is as effective as the
commonly utilized variance-based method.

F. RUN TIME
In addition to the predictive effectiveness of the second
and the third statistical moment-based feature ranking
algorithms, we also investigated their runtime performance
and compared it with well-established filter-based supervised
and unsupervised methods such as FCBF, MRMR, MIM, and
Laplacian Score.

Table 11 shows the run time of the evaluated feature
ranking methods for classification. Normalization time is
included in the feature variance calculation while the
skewness calculation does not require normalization. Times
are shown in seconds. The code was run on Dell computer
with 16 GB RAM and Intel core i7-7600U CPU, 2.80GHz
2.90 GHz.

Table 12 shows relatively short run times of skewness-
based FS for unsupervised feature selection in regression-
related datasets. Specifically, There are two datasets that
show longer skewness calculation time than variance with
MinMax normalization. it can be seen that Standard normal-
ization takes the longest time to compute for all datasets.
Figure 5 presents the run time charts of the evaluated feature
selection metrics in each dataset.

Our analysis reveals that variance and skewness-based
feature selection methods are significantly less computation-
ally expensive compared to other supervised and unsuper-
vised filter-based methods, demonstrating the potential of
statistical-based techniques to offer practical and computa-
tionally efficient solutions to feature selection. Furthermore,
skewness is insensitive to data normalization, ensuring
consistent feature ranking regardless of the normalization
method. In contrast, feature ranking techniques relying on
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variance may yield different feature rankings depending on
normalization methods and require additional run time (by
283% on average using min-max normalization or by 350%
using standard scalar normalization).

VIII. CONCLUSION AND FUTURE WORK
Unsupervised feature selection methods have an advantage
in various applications due to their ability to select features
efficiently from high-dimensional and unlabeled data. In this
paper, we have evaluated unsupervised feature ranking and
selection metrics based on the second and third statistical
moments of each feature (variance and skewness). To the best
of our knowledge, this is the first attempt to evaluate skewness
as an unsupervised feature scoring metric. The performance
of these metrics was examined on 40 benchmark datasets
using four different classifiers including linear Support
Vector Machine, K-nearest neighbors, Naive Bayes and MLP
neural network and three different regression algorithms
including k-Nearest neighbors Regressor, Linear Regression,
and Random Forest Regressor. Furthermore, the statistical
based FS methods were compared to the state-of-the-art
unsupervised filter-based feature selectionmethod, Laplacian
score (LS), as well as to popular supervised filter-based
methods: Fast Correlation Based Filter (FCBF),Minimum
Redundancy Maximum Relevance (MRMR) and Mutual
Information Maximization (MIM) on classification tasks.
The experimental results show that variance and skewness
can be used to select a subset of features as effectively
as FCBF, MRMR, MIM and LS without the need to use
class labels. The results of a theoretical analysis summarized
in Theorem 1 provide a statistical explanation of why
variance and skewness may be indicative of the feature’s
actual discriminative power. Variance and skewness-based
FS does not require discretization of continuous variables,
like entropy-based methods. As opposed to variance-based
feature selection methods, skewness-based methods pro-
duce stable and consistent rankings, as skewness values
remain stable across scaling or normalization of datasets.
This implies that utilizing skewness-based feature ranking
methods for feature selection offers a reliable and robust
approach to generating accurate and stable feature rankings
for classification and regression tasks.

Possible directions for future work include extending the
experiments using additional learning algorithms and bigger
datasets. The focus should be on choosing the most suitable
feature scoring method based on the specific characteristics
of a given dataset. Another extension would be to use
variance, skewness, and their combinations with other feature
scoring metrics to choose features in semi-supervised or
streaming settings. Also, the effectiveness of positive, nega-
tive, and absolute skewness values needs further exploration.
Moreover, unsupervised feature metrics may be applied with
clustering algorithms, such as k-means.
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