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ABSTRACT Addressing the challenge of surface defect detection in load-bearing rails within auto-motive
assembly workshops, which operate in complex environments and under long-term service, this paper pro-
poses an innovative detection framework based on an improvedYOLOv5 network. This framework, designed
specifically for the unique challenges presented by load-bearing rails, integrates advanced machine vision
and deep learning technologies. Initially, a Multi-Scale Pyramid Pooling (MSPP) module, incorporating
the concept of residual stacking, is introduced to effectively enhance the extraction of complex features;
Subsequently, the coordinate attention mechanism is optimized, leading to the development of a novel
Spatial Coordinate Attention Mechanism (DAM), focused on detecting small-sized defects; Thereafter,
a Dual Sampling Transition Module (DSTM) is applied to enhance information retention during the down-
sampling process; Finally, the DBDAMN clustering algorithm is utilized to optimize anchor sizes, allowing
for more precise adaptation to the diversity of defect sizes. These innovations significantly improve the
accuracy of surface defect detection in load-bearing rails, particularly in identifying small defects, offering
an effective means of preventing workshop safety incidents. The experimental results demonstrate that this
method achieves 97.3% on AP50, marking a 4.2% improvement over the standard YOLOv5 model, thus
indicating a significant performance enhancement. To validate the superiority of our model, a comparison
with popular current models was conducted, achieving optimal values in recall rate, accuracy, and mAP,
which were 91.4%, 92.6%, and 88.9%, respectively. Therefore, the proposed method meets the requirements
for precision in rail defect detection.

INDEX TERMS YOLOv5, defect detection, dual attention mechanism, residual pyramid pooling model,
DBDAMN clustering algorithm.

I. INTRODUCTION
Due to complex environments and extended service, various
faults occur in the load-bearing rails of automotive assembly
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workshops during their operational lifespan. If not promptly
addressed, these faults can lead to significant workshop
accidents, resulting in immeasurable economic losses and
severe risks to the safety of front-line installation workers,
as exemplified by the 2018 collapse incident at the Chongqing
Changan Automobile workshop [1]. Compared to standard
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FIGURE 1. Rails in use in the workshop with typical cases of defects.

rails, workshop rails are subjected to higher relative motion
speeds and greater vertical loads, thus facing a higher risk
of failure. As shown in Fig 1, in automotive assembly work-
shops, the vehicle assembly process involves hoisting cars
with C-type lifting devices, increasing the failure risk of the
load-bearing rails. Prolonged use leads to overall deformation
of the rails, causing surface material to crumble, and the com-
plexworkshop environment, oftenwith oily liquids and gases,
contributes to the corrosion of these heavy rails. The pro-
longed contact between the hoisting device’s wheels and the
rails, along with sudden stops and starts, significantly exacer-
bates surface defects on the rails. The most common surface
defects include indentations, joint failures (breaks), peeling,
rolling contact fatigue cracks, squeezing, lateral wear, delam-
ination, and corrosion, leading to functional degradation of
the rails. Therefore, accurate and reliable real-time detection
of surface defects in assembly workshop rails, with early
intervention to curb the development of defects, is a neces-
sary measure to prevent major safety accidents in assembly
workshops.

Currently, rail defect detection methods primarily include
manual techniques such as tapping with tools, visual inspec-
tion, and laser magnetic leak-age, all of which are highly
subjective [2], [3], [4], [5], [6], [7], [8]. The accuracy of these
detection results is greatly influenced by the inspectors’ work
experience, technical expertise, physical and psychological
state, and work environment. Accumulating experience in rail
inspection takes considerable time, leading to experienced
inspectors often being older and more prone to fatigue under
high-intensity work conditions. Conversely, younger inspec-
tors often lack sufficient experience, making it difficult to
ensure the reliability of their inspection results. In workshops
with loud noise and strong odors, the precision of laser and

magnetic leakage detection equipment is severely compro-
mised. The ongoing production processes pose significant
threats to the safety of inspection personnel and can also
impact the workshop’s productivity, leading to substantial
economic losses.

Thanks to advances in machine vision and deep learn-
ing, new solutions have emerged for the aforementioned
problems [9], [10], [11], [12], [13], [14]. Ma et al. [15]
introduced a novel one-shot unsupervised domain adaptation
framework for the segmentation of rail surface defects. They
introduced a shape-consistent style transfer module that per-
forms pixel-level distribution alignment between training and
test images. Xiao et al. [16] proposed a new small-sample
defect classification method. Xiao et al. [16] developed a
pixel-level defect segmentation approach. Xiao et al. [16]
presented a dual-domain adaptive model for the detection of
defects in automobile tires. Wang et al. [17] introduced an
enhanced encoder-decoder network with hierarchical super-
vision. Xu et al. [18] proposed a design framework based
on self-supervised representation learning. Zhang et al. [19]
developed a multi-scale attention feature fusion module.
Yang et al. [20] proposed a multi-level, end-to-end method
for the rapid detection of surface defects on rails. Liu et al.
[21] demonstrated the application of a pyramid feature con-
volutional neural network in the detection of surface defects
on rails.

In this study, addressing the issue of defect detection in
workshop load-bearing rails, we have developed an innova-
tive and efficient defect detection framework. The proposed
defect detection framework, based on an enhanced YOLOv5
network, addresses surface defect challenges in load-bearing
rails within automotive assembly workshops. Its integration
of advanced machine vision and deep learning technologies
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FIGURE 2. Brief architecture of the proposed EHA-YOLOv5 track defect identification network. The meanings of the various symbols
are indicated at the top of the figure.

offers potential for generalization to diverse environments.
Through transfer learning, environmental adaptation, and
domain-specific tuning, the framework can be tailored to
detect defects in various industrial settings. Real-time adap-
tation, collaborative learning, and data augmentation further
enhance its versatility and robustness. Despite requiring
adjustments, its core principles provide a strong foundation
for scalable defect detection solutions beyond automotive
assemblyworkshops. Themain innovations and contributions
of this paper can be summarized as follows:

1. This research improves the traditional. SPP module by
adopting a residual stacking approach. The newM-SPP mod-
ule, with its denser residual structure, enhances the extraction
of detailed features by deepening the net-work architecture.

2. This study optimizes the coordinate attention mech-
anism, developing DAM, which can analyze the weight
relationships between different pixels in space more
meticulously.

3. In the Path Aggregation Network (PANet), this study
introduces the DSTMmodule for down-sampling to preserve
more critical information.

4. To more accurately adapt to the size distribution of
defects on the sur-face of load-bearing rails, this study
designs the DBDAMN clustering algorithm to optimize the
size of Anchors.

The rest of this paper is organized as follows: Section II
describes the methodological theory. Section III provides a
comparative analysis of the experimental results. Section IV
presents the conclusion.

II. METHODOLOGY AND DESIGN
To enhance the YOLOmodel’s detection of surface defects in
load-bearing rails, this study introduces a series of improve-
ments to the YOLOv5 network [22]. Initially, by designing
the MSPP module to replace the existing SPP module,
the network’s capability to handle defects of various sizes
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FIGURE 3. Schematic diagram of the specific structure of MSPP.

was improved, particularly enhancing target detection. Sub-
sequently, by integrating the DAM attention mechanism,
the network can focus more on key features, significantly
improving the detection accuracy of small targets. Addi-
tionally, the design of the DSTM module to replace the
down-sampling step further preserves important feature
information, enhancing the network’s feature extraction capa-
bility. Finally, to achieve more precise Anchor sizes, enabling
the model to better adapt to the size distribution of rail
surface defects, this paper utilizes the DBDAMN clustering
algorithm to optimize Anchor settings, thereby improving
overall accuracy. Fig2 displays the specific structure of the
EHA-YOLOv5 network, fully demonstrating the synergis-
tic role of design components in the overall architecture.
Enhancing the network’s feature extraction capability and the
global attention mechanism is crucial for improving detec-
tion accuracy, significantly boosting the detection of minor
defects in load-bearing rails.

A. BACKBONE NETWORK IMPROVEMENTS
In YOLOv5, the SPP (Spatial Pyramid Pooling) structure is
integrated into the model. Although the SPP structure enables
the extraction of richer spatial features, it may cause the
model to overly rely on features of a specific scale. Partic-
ularly when there is a bias in the scale distribution of training
data, such as most objects being of similar size, the model
might learn more features of this specific scale. In such cases,
the SPP layer may tend to extract features matching the main
scale in the training data, overlooking information from other
scales. This over-reliance could lead to a decrease in the
model’s generalization ability for inputs that appear different
from the training data, even if they are of the same object type.
To address these issues, this study proposes a method, MSPP,
aimed at optimizing the performance of SPP by incorporating
the concept of residual networks. This is particularly focused
on enhancing the model’s feature extraction capability and
generalizability.

In the MSPP module, this paper draws on the design phi-
losophy of residual networks to enhance the model’s ability
to process features of different scales. As shown in Fig 3,
the MSPP module consists of two main parts: the upper SPP
module and the lower CBS (Convolution, Batch Normaliza-
tion, Activation)module. The CBSmodule includes a varying
number of convolutional layers (namely 1, 3, and 5), each

followed by a normalization layer and an activation function.
The final output of the module is the stacked result of these
four components. The upper CBSmodule is interconnected in
two ways: the first involves connecting through a three-layer
maxpool layer to the CBS module, and the second employs
direct connections inspired by residual connections.

In the improved MSPP design, the SPP module is replaced
with a denser residual structure, substituting the original SPP
module in the YOLOv5 architecture. This design enables
the model to combine inputs with extracted features, thereby
obtaining deeper levels of information. The incorporation
of the residual structure significantly improves the model’s
detection accuracy and also enhances its robustness in han-
dling features of varying scales.

The residual unit can be expressed as follows:

yl = h (xl) + F(xl,Wl), (1)

xl = f (yl), (2)

where xl and xl+1 are the input and output of the l residual
unit, respectively. F is the residual function, which represents
the learned residuals, h (xl) = xl represents the constant map-
ping, and f is the SiLU activation function. On the basis of
the above equation, the learning characteristics from shallow
l to deep L are obtained as follows:

xL = xl +
L−1∑
i=l

F(xi,Wi). (3)

From the chain rule, the gradient of the reverse process can
be obtained as follows:

∂loss
∂xl

=
∂loss
∂xL

×
∂xL
∂xl

=
∂loss
∂xL

× (1 +
∂

∂xL

L−1∑
i=l

F(xi,Wi)). (4)

The first factor ∂loss
∂xL

represents the gradient of the loss
function arriving at L; the 1 in parentheses indicates that
the short-circuiting mechanism can propagate the gradient
losslessly. The other residual gradient needs to pass through
the layer with weights, and the gradient is not passed directly.
The residual gradient is not all −1, and even if its value is
relatively small, the presence of 1 does not cause the gradient
to vanish. Thus, residual learning is easy.

From Equations (1) and (2), h (xl) = xl denotes the
constant mapping. We then have

yl+1 = h (xl+1) + F (xl+1,wl+1) , (5)

yl+1 = xl+1 + F(xl+1,wl+1), (6)

yl+1 = f (yl) + F(f (yl),wl+1). (7)

Suppose f is of asymmetric form, f (yl) = y1, and f (yl) is
rewritten as f̂ (yl). We then have

xl+1 = xl + F
(
f̂ (xl) ,wl

)
. (8)

An asymmetric activation function is applied, and the acti-
vation function first is used in the residual function part and
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FIGURE 4. Schematic diagram of the specific structure of DAM.

in the calculation with weights w. Thus, the use of preacti-
vation indicates that adjusting the position of SiLU and BN
for preactivation causes the regularization effect and reduces
overfitting, thereby resulting in higher accuracy.

The focus of the MSPP design is to address the short-
comings of the traditional SPP module in scenarios with
uneven defect size distribution, particularly its over-reliance
on specific scale features. By introducing a more complex
residual structure, the MSPP module enhances the diversity
of feature extraction, thereby reducing dependence on single-
scale features. Furthermore, the incorporation of the residual
structure also improves the model’s adaptability and general-
ization capabilities when dealing with diverse inputs.

B. ATTENTION MECHANISM DESIGN
Due to the randomness, variety, and presence of many small
defects in rail defect distribution, traditional Yolo detection
methods experience missed and false detections. Therefore,
incorporating the DAM mechanism into the EHA-YOLOv5
architecture is particularly important in this study. The inte-
gration of the DAM mechanism aims to enhance the target
detection model’s ability to recognize key features, especially
in dealing with complex, small surface defects on rails.

The challenge of rail defect detection lies in accurately
identifying and locating small, irregular defects on the rail
surface. The DAM mechanism, by strengthening spatial and
channel-level features, makes the model more sensitive to
these small defects. This attention mechanism effectively
distinguishes subtle differences between defect features and
normal parts of the rail, thereby enhancing detection accu-
racy. Surface defects in load-bearing rails can present in
various sizes and shapes. The DAM mechanism provides a
more refined feature fusion capability within the YOLOv5
multi-scale feature extraction framework.

By effectively adjusting spatial and channel attention
across different feature levels, the model’s recognition abil-
ity under multiple scales is enhanced, which is crucial for
identifying defects of various sizes and types. In practical
applications, the detection environment for load-bearing rails
may vary due to factors such as lighting and background
interference. The DAM mechanism helps to improve the
adaptability and generalization ability of the YOLOv5 model
in these variable environments. By focusing more on key fea-
tures, the model can better cope with environmental changes
and maintain the stability of its detection performance. The
framework demonstrates robustness to variations in envi-
ronmental conditions, including lighting changes, camera
angles, and surface textures, through several mechanisms.
Firstly, robust feature extraction techniques, coupled with
advanced deep learning architectures, enable the model to
learn invariant representations of defects across different
conditions. Secondly, data augmentation methods introduce
variability during training, enhancing the model’s ability
to generalize to diverse environments. Additionally, post-
processing techniques such as normalization and adaptive
thresholding further stabilize detection performance under
varying conditions. Finally, continuous monitoring and feed-
back mechanisms allow the framework to adapt to dynamic
environmental changes over time, ensuring sustained robust-
ness in real-world applications. Furthermore, the system itself
is equipped with accompanying lighting devices, ensuring
effective avoidance of excessively extreme environmental
conditions beyond the adjustment range of the framework.

The specific structure of DAM, as shown in Fig 4, mainly
consists of two attention mechanisms: CAM (Coordinate
AttentionModule) and SAM (Spatial AttentionModule). The
design of the CA attention mechanism aims to capture impor-
tant information in both the width and height dimensions
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of rail images, effectively encoding precise defect location
information. By performing global average pooling in both
width and height directions to down-sample the defect feature
map, the CA mechanism can obtain pooled defect feature
maps in these two directions. These feature maps are then
concatenated and processed through an activation function to
obtain weights in these two spatial dimensions. The feature
tensor in the middle of an arbitrary network can be expressed
as follows.

= [ 1, 2, · · ·, c−1, c] ∈ RH×W×C (9)

Here, H and W represent the height and width of the rail
feature map, respectively; C is the number of channels; x is
the feature tensor of different channels.

= [Y1, 2, · · · , c−1, c] ∈ RH×W×C (10)

After the CA performs global average pooling on the input
feature map, the output for height H and width W in channel
C is

Zhc (h) =
1
W

∑
0≤I<W

xc(h, i) (11)

Zhc (w) =
1
H

∑
0≤I<H

xc(j,w) (12)

The obtained defect feature maps in width and height are
stacked and fed into a 1 × 1 convolution module F1, reduc-
ing the dimension to the original C/r, then using the ReLU
activation function δ to obtain the feature map, that is

f = δ(F1(
[
zh, zw

]
)) (13)

The processed rail defect feature map f is then convolved
using a 1 × 1 convolution in both width and height to obtain
the same number of channels as the initial feature map,
resulting in defect feature maps Fw and Fh.Subsequently, the
Sigmoid activation function σ is used to obtain weights in two
dimensions: width and height.

gw = σ (Fw(f w)) (14)

gh = σ (Fh(f h)) (15)

Finally, the original feature map is multiplied by the
weights in both the width and height dimensions to obtain
the final output.

yc(i, j) = xc(i, j) × gwc (j) (16)

The CA attention mechanism is capable of capturing posi-
tional information and the relationships between different
channels. To further distinguish the weight relationships
between different pixels in the spatial domain, focus more
on areas of interest, and reduce the weights of non-essential
defect-free areas, a spatial attention module is integrated on
the basis of CA. Specifically, global average pooling and
global max pooling are performed in the channel dimension,
resulting in two rail defect feature maps Fsavg and Fsmax , each

FIGURE 5. Schematic diagram of DSTM module structure.

with a single channel, which are then stacked to form an H ×

W × 2 feature map.

ms = σ (Conv7×7([F savg,F
s
max])) (17)

A convolution with a 7× 7 kernel is used to obtain an H ×

W × 1 feature map, and finally, the Sigmoid activation func-
tion is applied to obtain spatial attention weights, represented
as follows:

ws = xi × yc × ms (18)

The DAM attention mechanism aims to more effectively
focus the model’s ‘‘attention’’ on features that are crucial for
the final detection task. It enhances important information
and suppresses less relevant information by considering both
spatial and channel features simultaneously. In this study,
DAM is applied to three forward channels between the back-
bone network and PANet (Path Aggregation Network) to
achieve attention adjustment across multiple feature layers at
different levels of the network.

By applying DAM in the forward channels between
the backbone network and PANet, precise attention adjust-
ment can be achieved across multiple feature layers. This
multi-level attention mechanism helps the network more
effectively merge and utilize information from different lay-
ers. Particularly in object detection, this can aid the model in
better distinguishing between targets and background, as well
as identifying rail defects of various sizes and shapes.

C. DSTM MODULE
In YOLOv5, the PANet structure, serving as the ‘‘neck’’ of
the network, effectively merges multi-scale features extracted
from the backbone network. This paper aims to delve into
the application of PANet in YOLOv5 and introduces a new
down-sampling module called DSTM (Dual Sampling Tran-
sition Module) to further enhance the efficiency and accuracy
of feature extraction.
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Traditional down-sampling methods, while reducing the
spatial dimensions of feature maps, also entail partial loss
of information. To compensate for this deficiency, this
study proposes the DSTM. DSTM combines two common
down-sampling methods to maximally preserve important
information during the down-sampling process.

Specifically, the design of DSTM includes two branches:
the upper branch employs 2 × 2 max pooling, followed by a
1× 1 convolution operation. This design aims to capture key
spatial features through pooling, while 1 × 1 convolution is
used to maintain channel consistency. The down branching
uses two convolutional layers, 1× 1 and 3× 3 convolutional
kernels, and the step size is set to 2.This branch is primarily
responsible for extracting finer-grained spatial information.
The results of both branches are stacked after their respective
down-sampling operations, forming a composite feature map.

DSTM demonstrates significant advantages in enhancing
the target detection performance of YOLOv5. By combining
the two down-sampling methods, the DSTM not only pre-
serves key spatial features, but also provides a richer feature
representation. This is particularly important for detecting
small-sized targets or targets within complex backgrounds.
In practical applications, such as high-precision required sce-
narios like load-bearing rail defect detection, the application
of DSTM significantly improves the model’s detection accu-
racy and reliability.

D. DBDAMN RE-CLUSTERING ANCHORS
In the YOLOv5 algorithm, the size of Anchors must be prede-
fined before training and prediction. In YOLOv3, 9 Anchors
are predetermined through cluster analysis, with 3 set for
each output scale. This resolves the issue of low recognition
rates for small objects. Therefore, the detection accuracy is
influenced by the initial Anchor settings, which need to be
predefined in the algorithm. Due to the potential variations
in size and distribution of rail defects, this paper improves
the initialization method of Anchors to further enhance the
detection accuracy of YOLOv5, particularly for defects of
different sizes.

The effectiveness of the anchor optimization algorithm is
closely tied to the representativeness of the training data.
Anchors are predefined bounding box shapes used during
object detection to predict object locations and sizes. When
optimizing anchors, the algorithm relies on the distribution
and characteristics of objects present in the training data.
If the training data is representative of the target environment
and contains a diverse range of object sizes, shapes, and
aspect ratios, the anchor optimization algorithm can better
adjust the anchor priors to match the distribution of objects
in the data. This results in more accurate predictions dur-
ing inference, as the model is better equipped to handle
objects of various shapes and sizes present in real-world
scenarios. However, if the training data is not representative
or lacks diversity, the anchor optimization algorithm may
struggle to adapt the anchor priors effectively. This can lead
to suboptimal anchor configurations, resulting in reduced

Algorithm 1 DBDAMN Re-Clustering Anchors
1: Input: Dataset D (a collection of defect points on

the surface of the rail); Neighborhood radius Eps;
Minimum number of points MinPts

2: Output: Defect clustering results
3: Begin algorithm
4: Function DBDAMN, (D,EPS,MinPts)
5: Initialize all points’ clustering labels as

unclassified
6: For point P in dataset D:
7: If P is already classified or marked as noise:
8: Initialize new cluster C
9: Add P to cluster C
10: Add each point in P’s neighborhood N to

the processing queue Q
11 While processing queue Q is not empty:
12: Take out a point Qp
13: If Qp is marked as noise:
14: Add Qp to cluster C
15: If Qp is already classified:
16:
17: Mark Qp as part of C
18: Initialize Qp’s neighborhood set Np
19: If the number of neighborhood points

(Np) > = MinPts.
20: Add the points in Np to the processing

queue Q
21: Add cluster c to the clustering results
22: Return clustering results
23: End algorithm

detection performance, particularly for objects that deviate
significantly from the training data distribution.

The decision-making process of a deep learning model,
particularly in the context of defect detection, is intricate
and multifaceted. Initially, the model extracts pertinent fea-
tures from input data, typically images, through convolutional
layers. These features encapsulate patterns and attributes
indicative of defects on load-bearing rails or other surfaces.
Subsequently, the model employs classification techniques to
discern the presence or absence of defects based on learned
patterns and relationships between features and defect labels.

One critical aspect of the decision-making process involves
thresholding. By applying a threshold to the model’s out-
put probability, a binary determination is made regarding
the presence of a defect. Adjusting this threshold is pivotal,
as it directly influences the model’s sensitivity to false posi-
tives and false negatives. Finding the optimal threshold often
entails striking a balance between minimizing false positives
(incorrectly identifying defects where none exist) and false
negatives (failing to detect actual defects).

Post-processing steps play a crucial role in refining
the model’s predictions and mitigating false positives or
negatives. Techniques like non-maximum suppression or
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TABLE 1. Dataset details.

morphological operations are commonly employed for this
purpose. Additionally, rigorous evaluation using performance
metrics such as precision, recall, and F1-score provides
insights into the trade-offs between false positives and false
negatives. These metrics guide adjustments to the model’s
architecture, training data, or hyperparameters to enhance
overall performance.

Furthermore, incorporating domain knowledge is invalu-
able. Experts in the field can offer insights into specific
contexts or scenarios where false positives or false negatives
may be more prevalent. By leveraging domain expertise, the
model can be fine-tuned to better navigate these challenges.

In essence, the decision-making process of a deep learning
model in defect detection encompasses feature extraction,
classification, thresholding, post-processing, and integration
of domain knowledge. Through iterative refinement guided
by evaluation metrics and domain expertise, the model
strives to strike an optimal balance between minimizing false
positives and false negatives while maximizing overall per-
formance and reliability in detecting surface defects.

Although the traditional K-means clustering algorithm
[23] performs well in adapting to the distribution of target
sizes in datasets, its random selection of initial positions
may lead to variability and instability in clustering results.
To address this issue, we propose the use of an improved clus-
tering algorithm, DBDAMN (Density-Based Spatial Cluster-
ing of Applications with Noise).The DBDAMN algorithm
does not rely on the choice of initial points and is better at
handling outliers and noise in the data.

In the YOLOv5 model targeting surface defects of
load-bearing rails, the DBDAMN algorithm is used to
automatically determine Anchor sizes to better adapt to the
size distribution of defects in the dataset. The DBDAMN
algorithm determines clustering centers by analyzing the
density connectivity of samples, making it more suit-
able for industrial image data with complex distribution
characteristics.

Steps of the DBDAMNRe-Clustering Anchors Algorithm.
Step 1: Select an appropriate neighborhood radius (Eps) and

minimum number of points (MinPts). Step 2: For each defect
point in the dataset, calculate the number of other defect
points within its neighborhood. Step 3: Mark non-core points
in the neighborhood that include core points as boundary
points. Step 4: Group the core points and all points reachable
by density into the same cluster. Step 5: After completing the
clustering, analyze each cluster. The pseudo-code is shown
below.

In consideration of load-bearing rail defect detection, the
selection of Eps and MinPts must account for the significant
variability in the size and distribution of rail defects. High-
density defect areas may exist on the rails, and the DBDAMN
algorithm can effectively process these areas to accurately
identify the actual defects.

To match the needs of the YOLOv5 multi-scale detec-
tion heads, the number of clusters (k-value) is set to 9.
Through multiple iterations and optimization processes of
the DBDAMN algorithm, 9 different sizes of Anchors are
finally determined. These Anchors more accurately reflect
the actual size distribution of surface defects on load-bearing
rails. The application of the DBDAMN algorithm in detecting
surface defects of load-bearing rails enhances the accuracy of
defect identification and increases the detection capability of
complex defect patterns. With appropriate parameter settings
and detailed analysis of clustering results, the DBDAMN
algorithm can identify key defect areas in rail defect data.

III. EXPERIMENTATION AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENTS AND DATA SETS
The assembly workshop load-bearing rail image dataset used
in this paper was extracted from videos, with the camera
lens directly facing the rail. The different service times of
the rails result in various types of noise in the corresponding
image samples. The noise contained in the image samples
is part of the rail image dataset, which includes 1036 sam-
ples. The dataset was expanded to 4,500 images using data
augmentation methods such as rotation, mirroring, flipping,
scaling, adding noise, and label smoothing. Various meth-
ods exist for acquiring training data, including field data
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TABLE 2. Comparison of ablation experiment results.

TABLE 3. Comparison of DAM using different pooling results.

collection using cameras or sensors, manual or semi-
automated annotation, utilizing publicly available datasets,
generating synthetic data via computer graphics, employ-
ing transfer learning, augmenting data through transforma-
tions, and utilizing crowdsourcing platforms like Amazon
Mechanical Turk. These methods enable the acquisition of
diverse and high-quality training data, crucial for effective
model training across different domains. Combining these
approaches ensures comprehensive support for model train-
ing, enhancing its robustness and generalization capabilities.
The dataset used during training is in VOC format, and the
annotated and enhanced dataset is divided into training and
test sets in a 9:1 ratio. As shown in Table 1, L1 includes rail
surface material breakage and uneven surface reflection; L2
involves rail surface deterioration and material damage due
to prolonged service; L3 contains numerous small damages
and noise on the rail surface. The paper discusses various
iterations and learning rates of the training network to achieve
superior segmentation capability.

The challenges were faced in annotating comprehensive
defect annotations include subjectivity, complexity, vari-
ability, time-consuming, expertise and labeling guidelines.
Addressing these challenges often involves implementing
standardized annotation protocols, providing annotator train-
ing, leveraging automation and semi-automation tools, and
conducting rigorous quality control measures.

For computational Requirements, the framework’s com-
putational demands primarily stem from the deep learning
model’s inference process. The enhanced YOLOv5 network
is typically computationally intensive, requiring powerful
hardware such as GPUs or specialized accelerators for effi-
cient processing. Additionally, preprocessing steps, feature
extraction, and post-processing also contribute to computa-
tional overhead. Optimizations such as model compression
and efficient hardware utilization are crucial for achiev-
ing real-time performance. Rigorous testing across diverse
industrial environments is necessary to validate its effective-
ness. With proper optimization and validation, the framework
shows promise for practical implementation in automotive
assembly workshops and similar industrial settings, offering

improved defect detection accuracy while mitigating false
alarms.

Our network experiments were conducted on a computer
with an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz,
Tesla V100s GPU, 256GB RAM. The initial learning rate
of the paper is 0.01, with a minimum learning rate of
0.0001, using an SGD optimizer, momentum of 0.937, weight
decay rate of 0.00005, mosaic data augmentation method,
200 iterations, and training with the YOLOv5l model. Each
experiment was conducted 10 times to obtain average results.

B. ABLATION EXPERIMENT
To assess the effectiveness of various improvements to
the YOLOv5 network in detecting surface defects of load-
bearing rails, we employed the Average Precision (AP) based
on Intersection over Union (IoU), including overall AP and
its performance at different IoU thresholds (AP50, AP75)
and object sizes (APS, APM, APL) as key evaluation met-
rics. Through a series of experiments on a unified dataset,
we found that the Anchor optimized by the DBDAMN
clustering method increased the AP and its performance at
different IoU thresholds by 1.2%, 1.4%, and 1.4%, respec-
tively. This improvement is mainly attributed to the optimized
Anchor more accurately matching the size characteristics of
surface defects on the rails. In the application of the MSPP
module, the detection performance for small (APS), medium
(APM), and large (APL) targets improved by 0.6%, 1.1%,
and 1.3%, respectively, demonstrating enhanced detection
effectiveness for larger targets.

Additionally, the introduced DAM attention mechanism
significantly enhanced performance in the network’s three
output layers, with AP, AP50, and AP75 increasing by 1.5%,
1.8%, and 0.8%, respectively. For targets of different sizes,
the improvements in APS, APM, and APL were 2.8%, 0.9%,
and 0.8%, respectively, with the most notable enhancement
in detecting small targets (APS). When the DSTM module
was used in the network’s down-sampling process, all evalu-
ation metrics showed improvements, indicating the module’s
effectiveness in feature fusion. After comprehensively apply-
ing the DBDAMN clustering algorithm, MSPP, DAM, and
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TABLE 4. Comparison of different attention mechanisms.

FIGURE 6. Schematic diagram of the results of the comparison of the heat maps of the different attention mechanisms.

DSTM, the increases in AP, AP50, and AP75 were 2.5%,
4.2%, and 2.8% respectively, and APS significantly increased
from 38.8% to 41.6% (an increase of 2.8%), with APM and
APL also improving by 3% and 2.9%, respectively.

These results show that by incorporating these improved
strategies in the YOLOv5 network, the network not only
strengthens the feature extraction capability of the net-
work for load-bearing rail defects, but also improves the
ability of the network to capture global information, thus
significantly enhancing the overall accuracy of rail defect
detection.

C. COMPARISON OF ATTENTION MECHANISMS
To assess the contribution of the improvedDAM in enhancing
network detection accuracy in this study, we compared the
effects of using GAP alone, GMP alone, and the improved
DAM method in the CA (Coordinate Attention) mecha-
nism [24]. According to the experimental results, the model’s
parameter count remains essentially unchanged under these
three methods. The results show that when only GAP is
applied, the DAM method proposed in this study improved
the performance in APS and APM by 0.5% and 1.8% respec-
tively, and also increased APL performance by 1.0%. In the
scenario of using GMP, the performance of APS and APM
decreased by 1.1% and 0.6%, respectively. Although the
improvement in APL was not significant, the DAM model
also improved by 0.4%. These findings indicate that simul-
taneously applying GAP and GMP in the spatial attention
mechanism can achieve the best results without increasing
the model’s parameter count. Moreover, these results also

highlight the superiority of the improved DAM method we
proposed.

To demonstrate the benefits of the improved DAM in
enhancing the accuracy of detecting surface defects in load-
bearing rails, we conducted a comparative analysis with
several other popular attention mechanisms. Specifically,
we selected SE (Squeeze-and-Excitation) [25], CBAM (Con-
volutional Block Attention Module) [26], CA (Coordinate
Attention), and SCA (Spatial Channel Attention) proposed
in this study for experimental comparison, with detailed
results shown in Table 4. In the experiments, we focused on
examining the differences in parameter quantity and detection
effectiveness of these models.

The experimental data shows that in terms of model
parameters, DAM has approximately 0.2M fewer parame-
ters compared to the CBAM model. Under the YOLOv5
framework, the SE, CBAM, CA, and DAM models achieved
improvements of 0.1%, 0.7%, 1.1%, and 2.8% respectively
on the APS evaluation metric. Notably, DAM and CBAM
performed best on the APM metric, with increases of 1.2%
and 1.3% respectively, demonstrating strong performance in
detecting medium-sized objects. Several different attention
networks also achieved improvements on the APL evaluation
metric, with the DAMmodel standing out with a performance
of 69.3%.

Overall, these results demonstrate the superiority of DAM
in detecting surface defects in load-bearing rails, especially
in the detection of small-sized targets. The DAMmechanism,
while minimally increasing the parameter count, effectively
enhances the network’s ability to recognize minute defects,
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TABLE 5. Model comparison.

FIGURE 7. Schematic of the detection results of different recognition models.

achieving higher detection accuracy compared to SE, CBAM,
and CA networks. This finding emphasizes that in designing
efficient attention mechanisms, it is important to consider
both parameter efficiency and the improvement of detection
performance.

To visually demonstrate the application effectiveness of
our improved DAM in detecting surface defects of load-
bearing rails, we employed CAM technology to analyze the
heatmap outputs of YOLOv5 and different attention mecha-
nisms, as exemplified in Fig6. This analysis aims to assess the
efficacy of each attention mechanism in locating small-sized
defects.

The experimental results revealed that in the standard
YOLOv5 network, the detection of certain minute defects
is not very significant, indicating insufficient focus on the
target. The performance improved with the introduction of
different attention mechanisms. Specifically, the SE mecha-
nism, although helpful in locating some defects, did not show
clear coverage in the heatmaps, leading to some degree of
missed detections. CBAM performed better in this regard,

capturing defect locations more accurately, thanks to its
simultaneous focus on channel and spatial information pro-
cessing. However, the added CA mechanism still had issues
with missed detections, particularly in accurately locating
some small targets.

In contrast, the DAM model proposed in this paper shows
more pronounced heatmap coverage at defect locations, sig-
nificantly impacting the prediction results. This is particularly
evident in detecting small defects such as multiple surface
breakages and scratches. For larger defects such as material
indentations, the DAM model’s effectiveness is similar to
before improvement, but there is a significant enhancement
in detecting small defects. This demonstrates that the DAM
model is more effective in differentiating the weight relation-
ships between pixels in the spatial domain, focusing more on
areas of interest. This also reduces attention to non-critical
areas, thereby enhancing the overall detection accuracy and
reliability. This improvement is particularly important when
detecting surfaces of load-bearing rails with multiple minute
defects. These minute defects are prone to be missed in the
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original YOLOv5 model, thus affecting the overall detec-
tion performance. Therefore, the algorithmic improvements
in this paper are mainly focused on optimizing these easily
missed minute defects to improve detection metrics.

D. MULTI-MODEL COMPARE
In this study, we adopted a comprehensive comparative exper-
imental method to accurately assess the performance of the
model proposed in this paper for detecting surface defects
in load-bearing rails. For this purpose, we trained multiple
network models on the same dataset, including the classic
two-stage network Faster R-CNN [27], and the YOLO series:
YOLOv4 [28], YOLOv5, and YOLOv7 [29], and conducted
a detailed comparative analysis. The experimental results are
summarized in Table 5, thereby providing a comprehensive
perspective on performance evaluation.

The experimental results show that, in terms of the Recall
metric, the improved YOLOv5 model proposed in this paper
surpassed Faster R-CNN, YOLOv4, and YOLOv7, achieving
respective improvements of 8.2%, 6.4%, and 2.2%. This
achievement is mainly attributed to the efficiency of the
improved YOLOv5 model in capturing small and complex
defects, particularly showing better recognition capability in
high-density and complex background conditions. Addition-
ally, compared to the standard YOLOv5 model, our model
improved the Recall from 89.0% to 91.4%, further proving
the effectiveness of the improvements we made.

In terms of the Precision metric, the YOLOv5 network also
excels, surpassing Faster R-CNN, YOLOv4, and YOLOv7.
The improvements were 1.0%, 1.4%, and 0.7%, respectively.
The model in this paper improved from 88.2% to 92.6% on
this basis. This indicates that the model proposed in the paper
has significant advantages in accurately identifying defects in
load-bearing rails, particularly in reducing false positives and
improving detection accuracy.

In terms of the comprehensive performance metric mAP,
the model in this paper also shows significant advan-
tages. Compared to Faster R-CNN, YOLOv4, and YOLOv7,
it achieved improvements of 4.2%, 6.5%, and 1.6%, respec-
tively. And compared to the standard YOLOv5 model,
it increased from 87.8% to 88.9%. Achievement is mainly
due to the improvements in the paper’s model in handling
multi-scale targets and enhancing overall detection accuracy.

In summary, this study comprehensively confirms the
significant superiority of the improved YOLOv5 model pro-
posed in this paper in the detection of surface defects
on load-bearing rails through comparative analysis. These
improvements not only enhance the model’s ability to rec-
ognize small and complex targets, but also excel in reducing
false detections and improving overall detection accuracy.

E. MULTI-MODEL VISUALIZATION COMPARISON
To demonstrate the superiority of the model in this paper,
a detailed visual analysis was conducted, as shown in Fig7.
There are two defective targets in the Crash sample, a large

target (in the red box in the first row and column) and a
small target (in the green box in the first column of the first
row). The detection results show that all recognition models
can identify the large target well. However, in the process
of identifying small defects, other models missed the small
defects(Faster R-CNN, YOLOv4, YOLOv5, YOLOv7). Due
to the good sensitivity of the DAM mechanism proposed in
this paper to small defects, only the model in this paper can
detect them well. In terms of Anchor localization, YOLOv4,
YOLOv5 and YOLOv7 have all experienced localization,
and only the Faster R-CNN model and the model Anchor
localization in this paper are more accurate. In terms of
recognition accuracy, the other models are below 83% in
recognizing large targets and only this paper’s model achieves
89%, and only this paper’s model detects in small target
recognition, while all the other models showmissed detection
phenomenon. In the output results, we observed a certain
degree of misdetection, which can lead to wrong judgment
in industrial inspection applications. For this reason, the
ability to recognize the misdetection cases is significantly
improved by the improved network, which effectively avoids
such misjudgments.

In the Damage sample, there are continuous medium-
sized defects. In terms of Anchor positioning, the Faster
R-CNN, YOLOv4, and YOLOv5 models all exhibited
over-positioning of anchor boxes, while the YOLOv7 model
showed under-positioning during the localization process.
Meanwhile, all four models failed to precisely locate each
medium-sized defect. Due to the attention mechanism and
improved Anchor method proposed in this paper, which have
good perceptual recognition for each defect, only the model
presented in this paper accurately positioned the anchor boxes
and identified the defects. In terms of recognition accuracy,
the model in this paper achieved a defect detection accuracy
above 75%, with the highest reaching up to 91%.

In the Spot sample with discrete medium-sized defects,
Faster R-CNN and YOLOv4 incorrectly positioned the first
two defect Anchors in a continuous manner during individ-
ual localization. YOLOv5, YOLOv7, and the model in this
paper were all able to individually frame the defect locations
effectively with their Anchor boxes. However, in terms of
localization accuracy, the Anchor boxes of the model in this
paper were themost accurate, without any over-positioning or
under-positioning occurrences. In terms of recognition accu-
racy, all four models (Faster R-CNN, YOLOv4, YOLOv5,
and YOLOv7) have less than 70% recognition accuracy for
the first two defects, but the models in this paper are 77% and
83%, respectively. In the last two defects this paper’s model
also achieves the best scores, 86% and 94% respectively,
while all other models are below 84%.

IV. EXPERIMENTATION AND ANALYSIS
This study aims to address the challenges of detecting surface
defects on load-bearing rails in automotive assembly work-
shops in industrial applications, particularly focusing on the
issues of low detection accuracy, high miss and false alarm
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rates in existing methods. To this end, the paper combines
machine vision technology and deep learningmethods to pro-
pose an assembly workshop load-bearing rail defect detection
algorithm based on an improved YOLOv5. This algorithm
has achieved significant success in improving the accuracy of
surface defect detection and reducing the miss rate of small
target defects. By employing the DBDAMN algorithm to
recluster the initial Anchors of YOLOv5, the computational
burden on the network was effectively reduced. Additionally,
by integrating the MSPP module into the backbone struc-
ture of the network, the stacking and fusion of multi-scale
features were achieved. This not only deepened the network
structure but also improved accuracy and effectively miti-
gated the problem of gradient vanishing. In addition, this
paper proposes the DAM mechanism and integrates it into
the three forward channels between the backbone network
and the PANet, which enables the network to focus more
on small defects on the load-bearing rails, and effectively
solves the problem of leakage detection of defects with small
targets. Meanwhile, the application of the DSTM module in
the down-sampling process of the feature map enables the
network to capture more useful features, thus improving the
overall detection accuracy.

Trade-offs between detection speed and accuracy are
common in computer vision tasks. Increasing speed often
requires simplifying models or reducing the complexity of
computations, which can compromise accuracy. Conversely,
improving accuracy may involve employing more complex
models or performing extensive computations, leading to
slower detection. The framework addresses these trade-offs
by optimizing model architectures, leveraging efficient infer-
ence techniques, and implementing hardware acceleration
where feasible. By striking a balance between speed and
accuracy through careful design and optimization, the frame-
work aims to achieve fast and reliable defect detection in
real-world industrial environments.

Applying the method proposed in this paper, an AP50
of up to 97.3% detection accuracy is achieved in terms
of accurate detection of rail surface defects, which is a
4.2% improvement compared to the traditional YOLOv5
model. Future research will continue to explore and incor-
porate improved methods to further enhance the accuracy
and robustness of surface defect detection on load-bearing
rails.When deploying the automated defect detection systems
designed in this paper in industrial environments, we also
took into account ethical considerations such as Worker
Privacy, Job Displacement, Bias and Fairness, Safety and
Reliability, Data Security and Integrity, and Environmental
Impact.
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