
Received 22 February 2024, accepted 3 June 2024, date of publication 11 June 2024, date of current version 18 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3412114

Research on Knowledge Concept
Recommendation Algorithm With
Spatial–Temporal Information
ZHAOYU SHOU 1,2, YIXIN CHEN 1, HUIBING ZHANG 3, AND JIANWEN MO 1
1School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
2Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory, Guilin University of Electronic Technology, Guilin 541004, China
3School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

Corresponding author: Zhaoyu Shou (guilinshou@guet.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62177012,Grant 61967005, and Grant
62267003; in part by Guangxi Natural Science Foundation under Grant 2024GXNSFDA010048; and in part by the Project of Guangxi
Wireless Broadband Communication and Signal Processing Key Laboratory under Grant GXKL06240107.

ABSTRACT Online learning is an important complementary form of offline classroom learning, in order to
meet the personalized learning needs of students in the online learning process and improve the effectiveness
of online learning, this paper proposes a knowledge concept recommendation algorithm based on spatio-
temporal information. The algorithm models students from both the spatial and temporal dimensions to
accurately recommend a personalized knowledge concept learning list. Spatially, a heterogeneous infor-
mation network (HIN) based on the MOOC platform is constructed, and an improved graph convolutional
network TSA-GCN is used to learn the representation of students and knowledge concepts under the meta-
paths, which can adaptively aggregate the information of neighboring nodes through the trainable self-weight
adjacency matrix, fully taking into account the differences in the student’s perceptual ability, and using the
attention mechanism to fuse the information under multiple meta-paths to ensure the information integrity.
Temporally, Attention RNN (Attention RNN, ARNN) is used to learn students’ temporal learning behaviors,
mine the interest offset features in the learning process, and predict students’ current learning interests. The
spatial and temporal information is fed into the extended matrix factorization model to generate the final
knowledge concept recommendation list. Experiments on publicly available MOOC datasets show that the
method proposed in this paper can more accurately predict and recommend the knowledge concepts that
students are interested in compared to the latest proposed methods.

INDEX TERMS Knowledge concept recommendation, graph convolutional networks, recurrent neural
networks, online learning.

I. INTRODUCTION
While the spread of higher education promotes the mod-
ernization of education, it also stimulates the exploration
and implementation of high-quality education and teaching
models. The construction of information technology-based
online learning spaces and the use of information to measure
educational outcomes and the teaching process have become
powerful means of improving the quality of higher education.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehedi Masud .

Massive Open Online Courses (MOOCs) are widely used by
a large number of students for their geographical and time-
independent features [1]. However, the diversity of MOOC
courses and their frequent changes bring problems such as
knowledge disorientation and information overload to online
learning [2]. In order to stimulate students’ interest and
meet the needs of students with different backgrounds for
customized personalized learning materials and continuous
online learning, establishing an accurate personalized rec-
ommendation system on MOOC platforms has become the
focus and hotspot of current research [3]. Diao et al. [4]
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proposed a personalized learning path recommendation
method based on weak concept mining to discover valuable
learning paths from online learning data and provide effective
online learning references for subsequent learners. Tian and
Liu [5] extended the multidimensional item response theory
(MIRT) as a capacity tracing model for the first time to
integrate into recommendation models in MOOCs, which
improves the effectiveness and interpretability of MOOCs.
Chuang et al. [6] designed a reinforcement learning-based
exercise recommendation system to recommend personalized
exercises of appropriate difficulty and knowledge concepts
for learners based on the data recorded by the system.
Shrimali et al. [7] proposed a video recommendation model
based on natural language processing to video based on the
similarity between the video text and the query semantics
for video recommendation. However, directly recommending
courses or video resources cannot accurately reflect students’
fine-grained learning status of knowledge points and ignore
the differences in students’ interests in the same learning
resources. To solve the above problems, Ju et al. [8] pro-
posed a knowledge concept recommendation model based on
local subgraph embedding, which utilizes attentional graph
convolution to fuse contextual information of different sub-
graphs and capture complex semantic relationships among
entities. Wang et al. [9] proposed an end-to-end graph neural
network-based approach for knowledge concept recommen-
dation that uses graph convolution to learn the representation
of entities under different meta-paths and adaptive fusion
with the help of an attention mechanism to produce more
coherent and personalized knowledge concept recommenda-
tion results.

The above work has achieved some results, however, there
are still deficiencies in student modeling: 1) Existing rec-
ommendation models tend to ignore the temporal nature of
students’ learning behaviors and mine information by consid-
ering the correlation information between entity nodes such
as students, knowledge concepts, and videos as a whole and
mapping them into a high-dimensional space. In this paper,
we refer to the information extracted from the modeling
method that ignores the temporal order of associations among
nodes as spatial information and the node representations
learned in high-dimensional space using this method can
effectively retain the integrity of heterogeneous information
and mine the potential semantic associations among data,
but lose the hidden learning preferences, interest biases, and
other features of the students’ temporal learning process;
2) the method of updating the representation of the student
by aggregating information from neighboring nodes in the
high-dimensional space does not take into account the dif-
ferences in the students’ perceptual ability, and the more the
students are capable of perceiving the stronger the influence
of the students by their neighboring nodes in the process of
learning.

Based on the above analysis, this study proposes a knowl-
edge concept recommendation model with spatio-temporal
information (STKCR). Spatially, the HIN is constructed by

considering the correlation information between all hetero-
geneous nodes in the MOOC platform as a whole, and then
learning the representation of students and knowledge con-
cepts inmultiplemeta-paths through TSA-GCN, and adaptive
fusion in high-dimensional space; temporally focus on stu-
dents’ learning paths and use attention RNN tomine students’
learning interests based on students’ temporal behavioral
data, and finally merge the learned student and concept
representations into the extended matrix factorization model
to achieve accurate and personalized knowledge concept
recommendation. This paper mainly includes the following
contributions:

First, it effectively combines GCN and RNN, while
retaining the integrity of high-dimensional spatial infor-
mation, it considers the perceptual ability, interest bias,
and other characteristics of the student’s learning process
to achieve more accurate personalized knowledge concept
recommendations.

Second, the TSA-GCN model is proposed to simulate the
students’ ability to perceive external information by con-
structing a trainable self-weighted adjacency matrix, and
adaptively adjusting the influence of neighboring nodes on
the students to make the representation of the students more
accurate.

Third, a large number of experiments were carried out on
a large public MOOC dataset, and the experimental results
prove that the STKCR proposed in this paper has certain
advantages over the state-of-the-art knowledge concept rec-
ommendation algorithms.

The rest of the paper is organized as follows: section II
briefly describes the related work of this paper. Section III
explains the definitions related to the algorithms of this paper.
Section IV describes the proposedmethod in detail. SectionV
shows the experimental results and analyzes the algorithm’s
reliability in this paper. Section VI summarizes the work and
gives an outlook.

II. RELATED WORK
In order to preserve the integrity of heterogeneous data
and mine potential semantic associations between different
nodes, graph structures have been widely used in MOOC
resource recommendations. Yu et al. [10] proposed a knowl-
edge concept recommendation algorithm based on adaptive
augmented graph contrast learning, which introduces con-
trast learning to alleviate the interaction imbalance problem
of the recommender system. Shou et al. [11] proposed a
learning partner recommendation model based on weighted
heterogeneous information networks in order to alleviate
the loneliness of learners in the online learning process
by automatically generating all meaningful meta-paths to
extract more complete interaction information and reveal
students’ unique preferences. Wang et al. [12] proposed a
multifaceted heterogeneous information network considering
diverse relationships between learners and knowledge con-
cepts and used the Gumbel-Softmax method to dynamically
assign aspect context to each node to improve the accuracy
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TABLE 1. Experimental environment.

of recommendation. Wang et al. [13] in order to explore
the higher-order similarity characteristics of learners and
knowledge concepts under different meta-paths, proposed
a method for recommending knowledge concepts based on
heterogeneous information networks and attentional graph
convolution, which introduces the nodes and their node
neighbors in meta-paths to construct self-supervised signal-
ing. Alatrash et al. [14], in order to alleviate the limitations of
graph neural networks in the field of knowledge concept rec-
ommendation while mainly related to complexity, semantics,
and transparency, proposed an end-to-end framework com-
bining KGs, Graph Convolutional Networks (GCNs), and
pre-trained transformer language model encoders (SBERT)
in an end-to-end framework aiming to provide users with
personalized and transparent recommendations of knowledge
concepts. However, recommendation models based on graph
structures usually construct interactions between nodes as a
whole and map them into a high-dimensional space in order
to learn potential associations between nodes, and the above
approach neglects the temporal information of interactions
between nodes. Ling and Shan [15] proposed a knowledge
concept recommendation model based on structurally aug-
mented interacting graph neural networks, which learns the
representations of students and knowledge concepts through
graph convolution based on meta-path guidance and knowl-
edge concept interaction sub-sequence, respectively, and
utilizes the extended matrix factorization to recommended
knowledge concepts. Klasnja-Milicevic and Milicevic [16]
proposed the NCO-A model to recommend TOP-N knowl-
edge concepts. Themodel alleviates the data sparsity problem
and improves the model’s generalization ability by imple-
menting dynamic growth of HIN and selectively identifying
implicit features. The above studies have somewhat compen-
sated for the lack of temporal information in graph-structured
models, yet the importance of accurately modeling learners
from both spatial and temporal dimensions still cannot be
ignored.

In recent years, methods such as tensor decomposition
and reinforcement learning have been applied to the field of
online learning resource recommendation. Liu et al. [17] pro-
posed an incremental tensor-based correlation analysis and
personalized recommendation algorithm, which realized the

accurate recommendation of learning resources in different
environments by multidimensional correlation analysis of
educational data through incremental tensor decomposition.
Shou et al. [18] proposed a knowledge concept recommenda-
tion model based on tensor decomposition and Transformer
reordering, which utilizes tensor decomposition to retain
the information integrity of the high-dimensional space and
uses Transformer to fuse the knowledge concept learning
order information. Recommendation models based on ten-
sor decomposition ensure the integrity of heterogeneous
information and facilitate the discovery of hidden structures
and values from massive data through the form of high-
dimensional data, but the process of tensor construction has
a considerable complexity and a great demand on computer
memory. Gong et al. [19] constructed a knowledge concept
recommendation model based on a heterogeneous informa-
tion network and reinforcement learning, which is capable
of automatically identifying effective meta-paths and utiliz-
ing a reinforcement learning framework to capture students’
long-term interests. Wu et al. [20] designed a deep knowl-
edge preference-aware reinforcement learning network for
knowledge concept recommendation, which uses a hierarchi-
cal propagation path construction method to explore further
paths to reduce the training burden of the reinforcement
learning model. Liang et al. [21] combined the strengths of
graph convolutional networks and reinforcement learning for
learning resource recommendation, where the model learns
multipath embedding through graph convolution and uses
reinforcement learning tomake student-centered suggestions.
Gong et al [22] formulated knowledge concept recommenda-
tion as a reinforcement learning problem better to model the
dynamic interaction between students and knowledge con-
cepts and introduced a heterogeneous information network
(HIN) between students, courses, videos, and concepts to
alleviate the data sparsity problem in the recommendation
task. The recommendation model based on reinforcement
learning pays more attention to the temporal information in
the interaction between the user and the knowledge concept
and improves the modeling of the learner from the dynamic
interaction sequences. Still, the data sparsity problem it
faces is more severe. The large number of hyperparameters
involved in the reward mechanism in reinforcement learning
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TABLE 2. Extracting meta-paths for student and knowledge concept.

is also a major difficulty it faces. Based on the above studies,
the summary of the relevant research models is shown in
Table 1.

In summary, most of the existing knowledge concept rec-
ommendation models fail to comprehensively consider the
potential correlation information among nodes and the char-
acteristics of students’ perceptual ability and interest bias
during the learning process in terms of student modeling.
At the same time, the methods based on tensor decom-
position and reinforcement learning are also subjected to
the constraints of memory and arithmetic power. Therefore,
in this paper, based on TSA-GCN, we mine the correlation
information among nodes in the high-dimensional space to
adaptively update the node representations, and mine the
learning interests of students according to their time-series
learning behaviors to achieve accurate student modeling and
precisely recommend suitable knowledge concepts.

III. RELEVANT DEFINITION
This section explains the relevant definitions and computa-
tional methods of the proposed algorithm in order to explain
the method proposed in this paper more clearly.

A. HETEROGENEOUS INFORMATION NETWORKS
1) CONSTRUCTING HETEROGENEOUS INFORMATION
NETWORKS
A heterogeneous information network [23] is defined as
a directed graph G = (V,E) with object type mappings
φ : V → A and relation type mappings ψ : E →

R, where the sum of the total number of object types |A|

and the total number of relation types |R| is greater than
2. Fig. 1 illustrates a heterogeneous information network
constructed based on the MOOC platform, which consists
of five object types: student (S), teacher (T ), course (C),
video (V )and knowledge concept(K ), and the 14 relations
between them. where Ri denotes the correspondence between
different types of objects (R−1

i is denoted as the inverse of Ri),

and R1
(
R−1
1

)
, R2

(
R−1
2

)
, R3

(
R−1
3

)
, R4

(
R−1
4

)
, R5

(
R−1
5

)
,

R6
(
R−1
6

)
, R7

(
R−1
7

)
denotes respectively teach (taught-by),

choose (chosen-by), learn (learned-by), record (recorded-
by), contain (contained-in), include (included-in), and watch
(watched-by).

FIGURE 1. Heterogeneous information networks in MOOC platforms.

2) META-PATHS
Meta-paths are defined in heterogeneous information net-

works G of the form A1
R1

−→ A2 . . .
Rl

−→ Al+1, which can lead
to richer andmore effective semantics by combining the types
of relationships in the network [24]. Table 2 demonstrates
the six meta-paths [MP] selected for students and knowledge
concepts in this study, where {SCS, SVS, SKS, SCTCS} are
student meta-paths and {KUK ,KVCVK } are knowledge con-
cept meta-paths.

B. GRAPH CONVOLUTIONAL NETWORK BASED ON
TRAINABLE SELF-WEIGHTED ADJACENT
MATRIX (TSA-GCN)
Graph Convolutional Networks (GCNs) learn node represen-
tations by aggregating information from neighboring nodes,
but their superior performance usually relies on the homo-
geneity of the network [25]. Therefore, selecting a suitable
meta-path using a restriction on the type of head and tail
nodes can be used to mine potential associations between
nodes of the same type in a heterogeneous information net-
work, and thus learn the semantic representation of a node
under that meta-path through GCN.

1) TRAINABLE SELF-WEIGHTED ADJACENT MATRIX
According to the constructed heterogeneous information net-
work G = (V,E), under each meta-path MP an adjacency
matrix with Boolean matrix elements AMP ∈ RN×N can be
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obtained. Where N denotes the number of nodes, if AMPij =

1 denotes that the node i can be linked to the node j via the
meta-pathMP.

The traditional approach to the adjacency matrix is to join
the unit matrix ωI as a way of adding its own information
during the update of the node representation. Where ω is a
trainable parameter, when ω takes the value of 1, it means
that the node’s own features are as important as those of its
neighboring nodes; whenω tends to 0, it means that the node’s
own features have almost no effect on itself; the larger ω is,
the more the node’s own features have a greater effect on
itself.

However, this adjacency matrix ignores the differences
in students’ perceptual abilities. In the process of updating
the student representation using GCN, the neighbor node
information will have different degrees of influence on each
student node according to the strength of the student’s per-
ceptual ability. In this paper, we construct the trainable
self-weighted adjacency matrix as shown in (1):

P̃MP = D−1
(
AMP + diag (B)

)
(1)

where B is the trainable vector, which is diagonalized by the
diag (•) function and added to the adjacency matrix A. D is
the degree matrix of the matrix AMP + diag (B), and D−1 is
multiplied with the matrix to achieve the normalization of
the adjacency matrix. The trainable self-weighted adjacency
matrix constructed using the trainable vector B can fully
consider the degree of influence of neighboring nodes on this
node when updating the node representation and learn a more
accurate node representation.

2) NODE REPRESENTATION LEARNING
Given a heterogeneous information network G = (V,E) and
a meta-pathMP, after obtaining their adjacency matrices, this
paper learns the node representations using the layer-by-layer
propagation rule, as shown in (2):

h(l+1)
= Relu

(
P̃MPhlWl

)
(2)

where l denotes the number of layers, Wl denotes the train-
able weight matrix shared by all nodes in layer l, and each
layer is activated using the Relu function. In this study
the initial features h0 of students and knowledge concepts
are randomly initialized and continuously trained by single
layer TSA-GCN, the nodes are represented after single layer
TSA-GCN as eMP = h1MP. Trained by (2), h0 can be passed
to any node.

In the heterogeneous information network G, S =

{s1, s2, · · · , si, · · ·} denotes the set of students and |S| is the
number of students. An example of student representation
learning based on TSA-GCN is shown in Fig. 2.

C. ATTENTION MECHANISMS
In deep learning, the introduction of an attention mechanism
enables neural networks to automatically learn and select

FIGURE 2. Example of student representation learning.

FIGURE 3. Visualization of attention mechanisms incorporating student
representations.

FIGURE 4. Visualization of the conceptual representation of attention
mechanisms integrating knowledge.

the important information in the input, improving the perfor-
mance and generalization of the model [26]. In this paper,
the node representations learned from different meta-paths
have different importance to the nodes, thus the attention
mechanism is used to fuse the information under multiple
meta-paths to generate the final node representations.

Taking the fusion of student representations under four
student meta-paths as an example, the sequence of stu-
dent representations

{
eSCSs , eSVSs , eSKSs , eSCTCSs

}
output from

TSA-GCN is taken as input, and the formula for calculating
the attentional weight of each meta-path is:

αMPis =

exp
(
VT
s σ

(
Wse

MPi
s + bs

))
∑

j∈[MP]
exp

(
VT
s σ

(
Wse

MPj
s + bs

)) (3)

where VT
s ,Ws, bs is the trainable matrix, σ (•) is the activa-

tion function tanh, and the output αMPis represents the weights
of the student representations eMPis under the meta-pathMPi.
Based on the obtained weights, the student representations
under multiple meta-paths are fused:

eu =

∑
j∈[MP]

α
MPj
s e

MPj
s (4)

where es is the final student representation, and the visual-
ization of the attention mechanism incorporating the student
representation is shown in Figure 3.
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FIGURE 5. STKCR model framework diagram.

Similarly, the final knowledge concept representation ek
is obtained by fusing the knowledge concept representations
under different meta-paths through the above steps, visual-
ized as shown in Fig. 4, where |K | is the number of knowledge
concepts.

IV. KNOWLEDGE CONCEPT RECOMMENDATION MODEL
WITH SPATIO-TEMPORAL INFORMATION
The STKCR model architecture is shown in Fig. 5, which
is divided into three main parts: a module for learn-
ing student and knowledge concept representations based
on TSA-GCN; a module for predicting students’ learning
interests based on Attention RNN; and a module for rec-
ommending Top-N knowledge concepts based on Extended
Matrix Decomposition.

Based on the MOOC platform, the representation learn-
ing module firstly constructs a HIN containing five kinds
of objects: students, teachers, courses, videos, and knowl-
edge concepts and the corresponding relationships among
them; secondly, it selects the student and knowledge con-
cept meta-paths to generate the corresponding trainable
self-weighted adjacency matrices, and then learns the rep-
resentation of students and knowledge concepts under the
meta-paths through the TSA-GCN model; finally, it utilizes
the attention mechanism to fuse the multi-meta-path infor-
mation; learning interest prediction The module captures the
dependencies in the students’ time-series behavioral data
through RNN, and inputs them into the attention network
after adding the positional encoding to predict the students’

current learning interests; the above information is combined
to generate the preference matrix using the extended matrix
factorization, and a personalized knowledge concept recom-
mendation list is generated for each student.

A. TSA-GCN BASED LEARNING OF STUDENT,
KNOWLEDGE CONCEPT REPRESENTATION
As shown in the first part of Figure 5, representation learning
of students and knowledge concepts can be done syn-
chronously. The steps are as follows:

First, in the constructed heterogeneous information net-
work G, the corresponding adjacency matrices under the
meta-paths can be obtained according to the selected set
of meta-paths [MP], and the set of trainable self-weighted
adjacency matrices

[
P̃
]
is calculated according to (1), the

upper two in the figure are knowledge concept adjacency
matrices P̃K ∈ R|K |×|K |, and the lower four are the stu-
dents’ adjacency matrices P̃U ∈ R|S|×|S|. Second, initialize
the features of students and knowledge concepts h0 and the
adjacency matrices P̃MP obtained in different meta-pathsMP
are fed into a single layer TSA-GCN, and learn the represen-
tations eMP of students and knowledge concepts under MP
according to (2). Finally, save the learned knowledge concept
representations

{
eKSKK , eKVCVKK

}
and student representations{

eSCSS , eSVSS , eSKSS , eSCTCSS

}
under different meta-paths in the

form of sequences, and learn the weights of different
meta-paths by using the attention mechanism and weight the
fusion to get the final knowledge concept representations eK
and student representations eS .
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FIGURE 6. LSTM structure.

B. ATTENTION RNN-BASED PREDICTION OF STUDENT
INTEREST FEATURES
Recurrent Neural Network (RNN) is mainly used to model
sequence data, which can effectively mine the temporal and
semantic information in the data [27]. LSTM is a variant
of RNN, which can better capture long temporal sequence
dependencies. In this paper, LSTMwill be used to capture the
long dependencies in the student’s first T temporal sequential
behaviors

{
k1s , k

2
s , · · · , k

t
s , · · · , k

T
s
}
, where k ts denotes the

knowledge concept k that the student s learns at themoment t;
and then adaptively assign weights to the sequence elements
through the attention mechanism. The structure of LSTM is
shown in Figure 6 below.
The feature matrix of the knowledge concept is zK ∈

R|K |×d , where d = 100 is the feature dimension, and the stu-
dent’s temporal behavioral features

{
z1s , z

2
s , · · · , z

t
s, · · · , z

T
s
}

are represented by the features of the current moment of
learning the knowledge concept k ts . The LSTM realizes the
functions of selectively forgetting the information of the
previous moment, selectively remembering the information
of the current moment, and selecting the information as the
output of the current moment, respectively, through the three
gating units of the forgetting gate f ts , the input gate i

t
s, and the

output gate ots. The formula is as follows:

its = sigmoid
(
Wi ·

[
zts||s

t−1
s

]
+ bi

)
,

f ts = sigmoid
(
Wf ·

[
zts||s

t−1
s

]
+ bf

)
,

ots = sigmoid
(
Wo ·

[
zts||s

t−1
s

]
+ bo

)
, (5)

whereWi,Wf ,Wo and bi, bf , bo are trainable parameters and
|| denotes the serial operation. After passing through three
gates, the memory cell vector ct and the state vector st are
computed as shown in (6):

c̃ts = tanh
(
Wc ·

[
zts||s

t−1
s

]
+ bc

)
,

cts = f ts · ct−1
s + its · c̃ts,

sts = ots · tanh
(
cts

)
(6)

The state sequence
{
s1s , s

2
s , · · · , s

t
s, · · · , s

T
s
}
obtained from

the students’ temporal behavioral features after LSTM is
entered into the attention network, which is different from

FIGURE 7. Positional encoding and prediction of student interest.

the node representation sequences under different meta-paths
in that the state sequences are temporal in nature. Therefore,
before entering the attention network, adding the position
encodingPE to the state sequence, whose dimension d is con-
sistent with the dimension of the knowledge concept feature,
which is calculated using (7).

PE (t,2i)
= sin(t/100002i/d )

PE (t,2i+1)
= cos(t/100002i/d ) (7)

where 2i denotes the even dimension and 2i + 1 denotes
the odd dimension. The new state vector s̃ts is obtained by
adding the positional encoding PE and the state vector sts of
the corresponding position.

stu + PE t = s̃tu (8)

The new state sequence is fed into the attention network
to predict the interest features xs of student s. The positional
encoding and student interest prediction process is shown in
Fig. 7.

C. EXTENDED MATRIX FACTORIZATION BASED ON
FUSION OF SPATIAL AND TEMPORAL INFORMATION
Matrix factorization [1], [28], is widely used in recommender
systems to effectively integrate information learned from
network representations for the final joint optimization pre-
diction task. The basic idea is to map the user-itemmatrix into
the product of two low-dimensional latent factor matricesP ∈

R|S|×d ′

andQ ∈ Rd
′
×|K |, where d ′ denotes the dimensionality

of the latent space, and use the similarity between the user
and item latent factors to simulate the user’s preference for
items. This method can effectively alleviate the data sparsity
problem and explore the hidden features of users and items
in the same low-rank space. In this paper, we adopt the
extended matrix factorization method to integrate the student
representation es, the knowledge concept representation ek ,
the knowledge concept features zk , and the student interest
features xs. The formulas are as follows:

ysk = pTs qk + β1 · eTs M1ek + β2 · xTs M2zk + bk (9)

where ysk reflects the final preference of student s for knowl-
edge concept k , β1, β2 is a trainable parameter that weighs
spatial and temporal features, M1,M2 is a trainable matrix
allowing es, ek and xs, yk to be in the same space, and bk is a
bias term making the prediction more accurate.

The visualization of the extended matrix factorization is
shown in Figure 8.
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FIGURE 8. Visualization of the extended matrix factorization.

In this paper, the loss function is constructed based on
Bayesian personalized ranking [29], and the basic idea is that
students’ preference ratings for learned knowledge concepts
are higher than preference ratings for unlearned knowledge
concepts, and the specific loss function is shown in (10):

L =

∑
s∈S,(i,j)∈K

− ln
(
sigmoid

(
ysi − ysj

))
+ λ ∥2∥

2 (10)

where i, j is the interacted and un-interacted knowledge
concepts of student s, respectively, and ysi−ysj is used to com-
pute the preference difference between the two knowledge
concepts, which is increased by the training loss function.
In addition, the L2 regularization term is added, λ is the regu-
larization parameter, and 2 denotes all trainable parameters.
Algorithm 1 illustrates the basic steps of STKCR.

V. EXPERIMENTAL
A. DATASETS
The STKCR algorithm proposed in this paper is val-
idated on the MOOCCube dataset (available online at
http://moocdata.cn/data/MOOCCube). MOOCCube is an
open data warehouse for large-scale online education, which
mainly collects three dimensions around courses, knowledge
concepts, and student behaviors in the XuetangX platform
data, containing massive information such as 706 MOOC
courses, 38,181 videos, 114,563 concepts, and 199199 real
MOOC students [30]. In this paper, we use the data
from 2017 to 2019 to start the study, in which the student
behaviors between 2017-01 and 2019-10 are used as the train-
ing set, and the student behaviors from 2019-11 to 2019-12
are used as the validation set. In order to verify the effective-
ness of knowledge concept recommendation, students who
did not learn new knowledge concepts (knowledge concepts
not learned in the training set) during the validation set were
removed. After screening, 2005 students and their associated
learning behavior data were selected.

B. BASELINE MODEL AND ASSESSMENT INDICATORS
To evaluate the model performance, in this paper, each
student-interacted concept in the validation set is combined

Algorithm 1 STKCR Algorithm
Input: G = (V,E): network schema of heterogeneous information
networks in MOOC Platforms
S : set of students
K : set of knowledge concepts{
k1S , k

2
S , · · · , k

t
S , · · · , k

T
S

}
: the first T sequential actions of the

students
zK : characteristics of knowledge concepts

Output: ySK : students-knowledge concepts preference matrix
1: According to G = (V,E), select the appropriate meta-path set
[MP] of the students and knowledge concepts
2: for each MP ∈ [MP] do
3: Calculate P̃ using formula (1)
4: Initialize the initial features of the students or knowledge

concept h0

5: Calculate eMP according to the definition 3.2.2
6: end for
7: According to e[MP], combined with the definition 3.3, the node
representation of students eS and knowledge concepts eK is gener-
ated.
8: for each s ∈ S do
9: According to

{
k1s , k

2
s , · · · , k

t
s , · · · , k

T
s

}
and zK , the

characteristics of student temporal behavior{
z1s , z

2
s , · · · , z

t
s, · · · , z

T
s
}
are obtained

10: The state sequence
{
s1s , s

2
s , · · · , s

t
s, · · · , s

T
s
}
is obtained by

LSTM
11: The interest features of student xs are predicted after adding

the positional encoding PE
12: end for
13: The interest features of all students xS are obtained
14: According to eS , eK , xS , zK , the final students-knowledge con-
cepts preference matrix ySK is calculated using the extended matrix
factorization of definition 4.3

with 99 non-interacted concepts as a group, and HR@K,
NDCG@K, MRR, and AUC metrics are computed based on
the student’s preference ysk . Where K is set to 5 and 10.

In order to validate the model effect, STKCR is compared
with five baseline models in the MOOCCube dataset, and the
baseline models are introduced as shown in Table 3.

C. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTAL
HYPERPARAMETER SETTINGS
The experimental environment of this paper is shown in
Table 4.

In this paper, the learning rate of the proposed STKCR
model is set to 0.01, the regularization parameter λ = 1e −

8, the embedding dimensions of students and knowledge
concepts in both the representation learning model and the
interest feature prediction model are 100, the dimension of
the hidden layer of the attention mechanism is set to 32,
the length of the sequence of student behaviors input to the
LSTM is 20, and the potential embedding dimensions of
the students’ matrix P and the knowledge concepts’ matrix
Q in the extended matrix factorization module are is set
to 32, the batch size for training the model is 512, and
gradient descent optimization is performed using the Adam
optimizer.
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TABLE 3. Baseline model.

TABLE 4. Experimental environment.

D. EXPERIMENTS AND ANALYSIS OF RESULTS
The ROC curves for the STKCRmodel and the other baseline
models in the MOOCCube dataset are shown in Figure 9.
Comparison of the area under the ROC curve shows that the
STKCR model has the optimal AUC value.

Table 5 shows the performance metrics of the STKCR
model on the MOOCCube dataset versus other baseline mod-
els, as analyzed below:

(1)The method proposed in this paper outperforms other
models in all evaluation metrics, which demonstrates the
importance of student modeling for knowledge concept rec-
ommendation and the effectiveness of the TSA-GCN and
Attention RNN-based model proposed in this paper.

(2)STKCR shows a significant improvement compared to
the matrix factorization-based MFBPR. This demonstrates
the importance of mining potential associations between
nodes and learning entity representations based on heteroge-
neous information networks.

(3) The metapath2vec model mines potential semantics
among nodes under meta-paths in heterogeneous networks

FIGURE 9. Comparison of the ROC curves of all models on MOOCCube
datasets.

based on random wandering and skip-gram models, and the
STKCR model learns node representations under multiple
meta paths through graph convolution models and attention
mechanisms represents better than metapath2vec, demon-
strating that attentional graph convolution better balances the
effects of different meta-paths on nodes.

(4) Both STKCR and ACKRec models use graph convolu-
tion and attention mechanisms to learn node representations,
and STKCR works better because the differences in nodes’
ability to perceive the outside world are taken into account
in the process of aggregating information about neighboring
nodes using TSA-GCN, which proves the effect of a trainable
self-weighted adjacent matrix.

(5) STKCR has better performance than the MOOCIR
model that does not consider students’ sequential learning
behaviors, and from the perspective of student modeling, the
combined consideration of potential relationships between
nodes and student interest offset features can help the model
learn a more accurate representation of students.

(6) Comparison in the experimental process found that
the TTRKRec method based on tensor decomposition has a
high complexity in the tensor construction process, and will
occupy a large amount of memory in the pre-training period.
the STKCR model can ensure the integrity of information in
a smaller memory environment with the help of a heteroge-
neous information network.

E. ABLATION EXPERIMENT
1) EFFECTIVENESS OF TSA-GCN AND ATTENTION RNN
The model proposed in this paper is based on TSA-GCN
and Attention RNN to realize the extraction of spatial and
temporal information from the data, and in order to verify the
effect of the two modules on the STKCR, the ablation study
is carried out on the MOOCCube dataset. The experimental
results are shown in Table 6, where STKCR-og and STKCR-
or are the methods to disable the TSA-GCN and Attention
RNN modules, respectively, which is to evaluate the effect
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TABLE 5. Comparison results of the stkcr model with the baseline model on the mooccube dataset.

TABLE 6. The results of stkcr without and with TSA-GCN and attention RNN on the mooccube dataset.

TABLE 7. Experimental results in order to verify that the trainable adaptive adjacency matrix and LSTM.

TABLE 8. The results of STKCR without and with positional encoding on the mooccube dataset.

of spatial and temporal information on the final recommen-
dation effect. MFBPR is a recommendation model in which
STKCR eliminates the modules TSA-GCN and Attention
RNN to retain only the matrix decomposition, which is to
demonstrate the validity of spatial and temporal information.

From Table 6, it can be found that STKCR-og and
STKCR-or outperform MFBPR on the MOOCCube dataset,
which proves the effectiveness of the TSA-GCN module
and the Attention RNN module, and the adequate extrac-
tion of both the temporal and spatial information can
improve the recommendation performance of the model.
In addition, STKCR outperforms STKCR-og and STKCR-or
in all metrics, which fully demonstrates the influence of
spatio-temporal information on the final recommendation
results, and modeling students from both spatial and tempo-
ral dimensions can effectively ameliorate the limitations of
single-dimension modeling.

2) EFFECTIVENESS OF TRAINABLE SELF-WEIGHTED
ADJACENCY MATRIX AND LSTM
Trainable self-weighted adjacency matrix is the improvement
method for traditional GCN in this paper, in order to prove
the effectiveness of trainable self-weighted adjacency matrix,
the recommended performance of STKCR is compared in the
dataset with the model variant STKCR-gcn (which replaces
the trainable self-weighted adjacency matrixwith a conven-
tional adjacency matrix). The experimental results are shown
in Table 7. Meanwhile, in order to verify the effect of LSTM,
the model variant STKCR-gru generated by replacing LSTM
with GRU is also added together in Table 7 for demonstration.

From Table 7, it can be found that all the indicators of
STKCR are better than the STKCR-gcn variant, which proves
that the trainable self-weighted adjacency matrix proposed
in this paper can fully take into account the differences in
the user’s perceptual ability to achieve accurate modeling of
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FIGURE 10. Effect of different sequence lengths on recommended performance.

TABLE 9. Recommendation lists and actual learning records of student U_270210 under different recommendation models.

the user and improve the accuracy of the recommendation.
Furthermore, STKCR outperformed the STKCR-gcn variant
overall, which demonstrates that LSTM is better able to

capture long-term dependencies in students’ temporal behav-
iors and predict students’ interest profiles from temporal
information compared to GRU.
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3) EFFECTIVENESS OF POSITIONAL ENCODING
Considering that positional encoding is not necessary for the
attention mechanism, experimental validation is performed
in this section in order to verify the impact of positional
encoding in the Attention RNN module. Table 8 shows the
experimental results of the model variant STKCR-op without
positional encoding versus STKCR. The results show that
positional encoding enhances the temporal information in
the student behavior data and helps the model extract the
temporal information more adequately, thus improving the
model’s recommendation.

4) INFLUENCE OF THE LENGTH OF STUDENTS’ TIME-SERIES
BEHAVIORAL SEQUENCES
To verify the effect of the length of students’ temporal
behavioral sequences on students’ interest profiles, ablation
experiments were conducted on the MOOCCube dataset.
The experimental results are shown in Fig. 10, which shows
the effect of using different lengths of sequences on the
recommendation performance in the student interest fea-
ture prediction module based on Attention RNN, where the
sequence length grows from 0 to 50 in steps of 10.

Figure 10 illustrates the variation of the recommendation
metrics for the STKCR model in the MOOCCube dataset
with different sequence lengths.

From Fig. 10, it can be found that the model performance
tends to increase with the increment of sequence length,
which fully proves the importance of student modeling and
the effectiveness of using attention RNN to predict students’
learning interests.

Themodel reaches the best effect when the sequence length
increases to 20, and the model performance starts to decline
when the sequence length increases again, which proves that
the sequence length is not as long as better. Students learning
interests are highly time-sensitive, and too long sequences
will cause information interference and increase the burden of
model training, leading to the disappearance of the gradient
affecting the recommendation performance.

F. COMPARATIVE ANALYSIS OF RECOMMENDED
SEQUENCES OF KNOWLEDGE CONCEPTS AND ACTUAL
LEARNING RECORDS
In order to demonstrate the effectiveness of this paper’s
algorithmSTKCR, this section randomly selects a student (id:
U_270210) from the MOOCCube dataset and demonstrates
the student’s actual learning records as well as the Top-10
knowledge concepts recommendation lists generated under
different recommendation models, as shown in Table 9.

The concepts of recommending correct knowledge are
bolded in the table, and as can be seen in Table 9,
the STKCR model can achieve better accuracy in the
pre-recommendation period compared to the other two
models because it takes into account the student’s interest bias
characteristics during the learning process. From the com-
prehensive Top-10 recommendation list, the recommendation

list generated by the model in this paper is more in line with
the actual learning situation of students in terms of recom-
mendation order and accuracy, which verifies the validity
of the STKCR algorithm proposed in this paper, and also
proves that modeling students from both spatial and temporal
dimensions can improve the accuracy of the model’s recom-
mendation.

VI. CONCLUSION
In this paper, the proposed STKCR model that integrates
spatial and temporal information is used for knowledge con-
cept recommendation on the MOOC platform. The model
comprehensively considers the potential correlation informa-
tion between nodes in the heterogeneous information network
and the student’s perceptual ability, interest bias, and other
features in the learning process to model students, which
not only achieves good recommendation performance in the
MOOCCube dataset but also verifies the effectiveness of
the algorithm in this paper by comparing it with the base-
line model. In addition, this paper conducts a large number
of ablation experiments to verify the importance of spatial
and temporal information as well as the impact of different
modules on the recommendation performance and tests the
recommendation performance of the model under different
lengths of student behavior sequences.

This study focuses on the problem of personalized learning
resource recommendation for MOOC platforms, using het-
erogeneous information from online platforms and students’
time-series learning behavior data to construct a knowledge
concept recommendation model with student modeling as
the core. As an auxiliary teaching module for online learn-
ing, this model can stimulate students’ interest in online
learning and overcome problems such as knowledge disori-
entation in the learning process; at the same time, effective
modeling of students is also conducive to teachers’ under-
standing of the student’s learning status and improving the
design of the teaching process. The idea of improving rec-
ommendation performance in this paper is also applicable
to other recommendation domains: focusing on the temporal
sequence of user behavior and fully considering the user’s
perceptual ability, interest bias, and other characteristics can
more accurately portray the user’s image and provide more
personalized recommendation services. In future research,
the implementation of joint recommendations of different
learning resources is considered to correlate and analyze
the impact between different learning resources based on
sufficiently accurate user profiles, giving students richer and
more effective personalized choices while maintaining the
recommendation cost.
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