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ABSTRACT Multi-criteria decision-making (MCDM) approaches prove to be effective and reliable in
addressing problems under uncertain conditions. The q-spherical fuzzy rough set (q-SFRS) represents the
latest advancement in fuzzy set theory. This article aims to introduce a novel approach, q-spherical fuzzy
rough Combinative Distance-based Assessment (q-SFR-CODAS), by integrating CODAS with q-SFR set
to address MCDM problems. The method utilizes the Hamming distance as the primary measure and the
Euclidean distance as the secondary measure to assess the desirability of alternatives, calculated concerning
the negative-ideal solution. Additionally, an illustrative example is presented to demonstrate the applicability
of the proposed methodology. A comprehensive sensitivity analysis is conducted to validate the results of
q-SFR-CODAS, comparing them with existing MCDM methods.

INDEX TERMS q-spherical fuzzy rough sets, combinative distance-based assessment, multiple criteria
decision making involving renewable energy site selection.

I. INTRODUCTION
Energy plays a pivotal role in driving global economic growth
and industrial activities. However, the escalating reliance on
fossil fuels for energy generation has given rise to challenges,
notably pollution and global warming. Consequently, there
has been considerable discourse advocating for renewable
energy as an eco-friendly, cost-effective, and sustainable
alternative [1]. Renewable energy, derived from sources
like solar, wind, water, heat, and biofuels, stands out due
to its inexhaustibility, contribution to reducing dependence
on finite resources like oil, enhancement of energy secu-
rity, and preservation of the natural environment [2]. The
evaluation and selection of suitable renewable energy port-
folios constitute a multicriteria decision-making challenge,
involving numerous and often conflicting criteria. The com-
plexity is further compounded by the presence of uncertain
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data, necessitating a comprehensive assessment of alternative
renewable energy portfolios. Multicriteria decision-making
methods have proven successful in this context, contributing
to the evaluation of renewable energy technologies, planning,
policy development, and product selection. For instance,
Yang et al. [3] propose the Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS) to assess
renewable energy heating technology, determining the overall
order of alternatives based on their proximity to the pos-
itive and negative ideal solutions. Garni et al. [4] employ
the Analytical Hierarchy Process (AHP) to evaluate renew-
able power generation sources in Saudi Arabia, utilizing
a four-level hierarchy to estimate the relative importance
of decision elements. Kaya and Kahraman [5] introduce
the Višekriterijumsko Kompromisno Rangiranje (VIKOR)
and AHP for selecting the optimal renewable energy site
alternative, considering criteria weights through pairwise
comparisons in AHP and employing VIKOR for multicriteria
selection.
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To address these challenges, this paper introduces a
q-spherical fuzzy rough CODAS method for the evalu-
ation and selection of renewable energy selection under
uncertainty. The decision-making process incorporates risk
analysis, and to aid subjective assessments by decision-
makers, linguistic terms are represented using q-spherical
fuzzy rough fuzzy numbers. A novel algorithm is proposed to
generate a renewable energy site selection across all selection
criteria. An illustrative example is provided to demonstrate
the effectiveness of the proposed method in addressing the
renewable energy site selection problem.

A. RENEWABLE ENERGY EVALUATION AND SITE
SELECTION PROBLEM
Effectively utilizing renewable energy involves considering
numerous factors, necessitating the simultaneous evaluation
and selection of a specific renewable energy portfolio. This
process requires taking into account diverse perspectives
and accommodating the interests of various stakeholders
in the decision-making process [7]. Extensive research
has been conducted to identify relevant factors for eval-
uating and selecting suitable renewable energy portfolios.
Kaya and Kahraman [5] emphasize the importance of
considering factors such as capital cost, energy cost, oper-
ations and maintenance cost, safety of the energy system,
land requirement, and emission reduction when evaluating
renewable energy technologies. Wibowo and Grandhi [6]
highlight technical capabilities, environmental friendliness,
and cost-effectiveness as crucial factors in the evaluation of
renewable energy portfolios. Scarpa and Willis [7] identify
energy costs and the cost of new renewable energy projects
as the top influential factors in decision-making. Mahapatra
and Gustavsson [8] stress economic factors like annual and
investment costs. Streimikiene et al. [9] underscore the sig-
nificance of renewable heating technology, performance, and
safety in the selection process. Amer and Daim [10] con-
sider technical maturity, system efficiency, deployment time,
and research and development costs in their assessment.
Troldborg et al. [11] highlight network stability and ease of
decentralization as crucial considerations. Stein [12] points
out the importance of technology feasibility, compatibil-
ity with national energy policy, and environmental impact.
Brand and Missaoui [13] mention reliability, resource
reserves, safety in covering peak demand, network sta-
bility, and capital cost as key factors. Mourmouris and
Potolias [14]stress technology feasibility, operating costs, and
environmental impact. Pappas et al. [15] identify emission
reduction, waste disposal needs, and social and political
acceptance as crucial in evaluating renewable power gen-
eration sources. Chatzimouratidis and Pilavachi [16] add
that national economic development should be considered.
Montoya et al. [17] emphasize total cost, environmental
impacts of new renewable energy power plants, and envi-
ronmental costs of electricity generation as essential factors
for consideration. The evaluation and selection of renewable

energy selection, framed as a multicriteria decision-making
problem, involves several steps: (a) identification of differ-
ent portfolios, (b) selection of relevant evaluation criteria,
(c) assessment of each portfolio, (d) calculation of over-
all performance index values using alternative performance
ratings and criteria weights, and (e) selection of the most
suitable renewable energy portfolio in each situation [6], [18].
To facilitate the subjective assessment by decision-makers,
linguistic terms are employed, represented by q-spherical
fuzzy rough numbers with approximate values ranging
between 0 and 1.

B. LITERATURE REVIEW
In the realm of renewable energy site decision-making, the
intersection of multi-criteria decision-making (MCDM) and
fuzzy set theory forms a robust framework. MCDM, as a
systematic approach, enables the assessment of alternatives
against various criteria, crucial in the renewable energy
landscape with its multifaceted considerations. Simultane-
ously, fuzzy set theory, designed to handle uncertainties,
brings granularity to the decision process by accommo-
dating imprecise information. The amalgamation of these
methodologies, often referred to as fuzzy MCDM, is par-
ticularly pertinent to renewable energy scenarios. MCDM
provides the structured backbone for decision problems,
defining criteria and preferences, while fuzzy set theory
adeptly manages uncertainties, especially in scenarios involv-
ing subjective assessments and imprecise data. The synergy
of these approaches creates a nuanced decision-making tool
tailored to the intricacies of renewable energy choices, cap-
turing both the diversity of criteria and the uncertainties
inherent in the evaluation process. This synthesis enriches
the decision-making landscape, offering a comprehensive
and adaptive methodology for stakeholders navigating the
complexities of renewable energy adoption. In the discourse
of decision-making methodologies, it is imperative to delin-
eate between multi-attribute decision-making (MADM) and
multi-criteria decision-making (MCDM) due to their nuanced
approaches. MADM primarily deals with situations where
a decision-maker evaluates alternatives based on a set of
predefined attributes or characteristics. Each alternative is
assessed independently concerning these attributes, and a
final decision is derived from a collective analysis. On the
other hand, MCDM extends this paradigm by incorporating
a more intricate layer of multiple criteria, encompassing
not only attributes but also subjective preferences, often
conflicting in nature. MCDM allows for a more compre-
hensive evaluation, considering diverse criteria that might
involve qualitative and quantitative factors, as well as the
subjective judgments of decision-makers. In the context of
renewable energy, MADMmight assess alternatives based on
individual attributes like cost, efficiency, and environmental
impact, while MCDM would consider these factors holisti-
cally, recognizing the interplay and trade-offs between them.
This distinction is crucial for researchers and practitioners
navigating decision-making landscapes, especially in the
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complex and multifaceted domain of renewable energy
adoption.

The origins of fuzzy set theory [19] may be traced back
to the standard crisp set theory. In addition, Zadeh intro-
duced the notion of a fuzzy set, which focuses solely on
the membership function that received a positive evaluation.
Membership functions in fuzzy sets define the degree of
membership of an element in a set, ranging from 0 to 1.
Essentially, they describe how much a given input value
belongs to a particular fuzzy set. These functions map input
values to membership values, indicating the degree of simi-
larity between the input and the fuzzy set. For example, in a
fuzzy set describing the concept of ‘‘tallness’’ in humans, the
membership function might assign a membership value close
to 1 for individuals with heights significantly above average,
decreasing gradually as heights decrease towards the aver-
age. This gradual decrease captures the fuzziness inherent
in human perception of tallness. Membership functions can
take various shapes, such as triangular, trapezoidal, Gaussian,
or sigmoidal, depending on the characteristics of the input
variables and the problem domain. The choice of shape and
parameters of the membership functions significantly influ-
ences the behavior and performance of a fuzzy logic system.
In summary, membership functions in fuzzy sets play a cru-
cial role in quantifying the degree of membership of elements
in fuzzy sets, allowing for the representation of uncertainty
and vagueness in real-world problems. Atanassov [20] intro-
duced the intuitionistic fuzzy set (IFS) to expand upon the
concept of fuzzy sets. The intuitionistic fuzzy set (IFS)
incorporates both the positive and negative grades with the
stipulation that their cumulative value should not exceed 1.
In 2014, Coung expanded upon the concepts of fuzzy sets
and IFS introduced a groundbreaking notion known as the
picture fuzzy set (PFS) [21]. This innovation provided a fresh
perspective within this field of study. Within the framework
of PFS, the author delved into the categorization of grades
into positive, neutral, and negative classifications. Gündoğdu
and Kahraman [22] propose a spherical fuzzy set (SFS) as a
possible way to address this challenge. Scholarly interest in
the subject of SFS has grown in recent years. Kahraman and
his research team [23] suggested the innovative conception
of (q-SFS) in their determinations to concentrate the descen-
dants of uncertainty. This innovative perception has provided
evidence to be favorable in accompanying students in making
well-informed varieties. The concept of rough sets (RS) was
first introduced by Pawlak [24], [25] as a means of deal-
ing with uncertainty. When examined from a mathematical
perspective, this configuration demonstrates attributes that
could be construed as vagueness and indeterminacy. Rough
set theory (RST) is a modification of the traditional set theory,
that uses the notion of connection to elucidate the operations
of information systems. Researchers have acknowledged that
the applicability of the equivalence relation in Pawlak’s rela-
tional semantic theory is subject to notable constraints in a
range of real-world situations, a point emphasized bymultiple

scholars. It is well acknowledged to initiate the concept of a
‘‘q-spherical fuzzy set.’’ Every single element in the q-SFS
framework is classified as either positive, neutral, or negative.
The notions of q-SFRS were first presented by Azim et al.
[26] in their research paper published in 2023. This fuzzy
set combines the advantages inherent in both the RS and
the q-SFS. This research introduces a practical approach to
decision-making within the framework of q-spherical fuzzy
rough sets, thereby expanding the existing knowledge in
this field. Within q-SFRS, three distinct parameters involve
lower and upper approximations. Our main objective in this
study is to advance future research by devising novel aggre-
gation operators alongside defuzzification methods. After
a comprehensive analysis, it becomes clear that the con-
cept of q-SFRSs holds substantial potential as an innovative
idea, thereby paving the way for numerous opportunities
in future research endeavors. The CODAS algorithm, intro-
duced by Ghorabaee et al. [27] in 2016, addresses complex
Multi-Criteria Decision-Making (MCDM) problems. It has
found application in various MCDM scenarios involving
different fuzzy sets, including Pythagorean fuzzy sets [28],
neutrosophic sets [29], intuitionistic fuzzy sets [20], pic-
ture fuzzy sets [21] spherical fuzzy sets [22], q-spherical
fuzzy sets [23], q-spherical fuzzy rough sets [26] and among
others. Livability indicators in Istanbul’s suburban districts
have been a recent research focus, with spherical fuzzy
CODAS used for evaluating livability indices [30]. Addition-
ally, Gündoğdu and Kahraman [31] explored the expansion
of CODAS with spherical fuzzy sets in decision-making,
a topic also covered in the INFUS 2019 Conference pro-
ceedings [32]. The q-spherical fuzzy rough sets are chosen
for their applicability in MCDM systems, leading to the
development of the q-spherical fuzzy rough CODAS tech-
nique, a novel contribution to this study. This article marks
the first presentation, to the best of current knowledge, of
q-spherical fuzzy rough CODAS, providing researchers with
a method for scenarios where information is represented
by q-spherical fuzzy rough numbers. In the context of
industry 4.0, Azim and their team [33] proposed a project
prioritization method using the q-SFR analytic hierarchy pro-
cess in 2023. Similarly, Ali et al. [34] introduced the concept
of averaging aggregation operators within the framework of
q-ROPFStS in 2023, exploring their applications in multiple
attribute decision making (MADM). Recent advancements in
decision-making methodologies for sustainable energy and
environmental management have led to significant contribu-
tions in the field. Narayanamoorthy et al. [40] introduce a
novel augmented Fermatean multiple criteria decision mak-
ing (MCDM) perspective for identifying optimal locations
for renewable energy power plants. Parthasarathy et al.
[41] propose an end-to-end categorizing strategy for green
energy sources using the picture q-rung orthopair fuzzy
EXPROM-II: MADA approach. Rouyendegh et al. [37]
present an intuitionistic fuzzy TOPSISmethod tailored for the
green supplier selection problem, addressing key challenges
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in sustainable supply chain management. Parthasarathy et al.
[42] develop an idiosyncratic interval valued picture q-rung
orthopair fuzzy decision-making model for electric vehi-
cle battery charging technology selection. Akram and
Ashraf [43] delve into multi-criteria group decision-making
based on spherical fuzzy rough numbers, offering insights
into complex decision scenarios. Manirathinam et al. [44]
propose a comprehensive approach for selecting sustain-
able renewable energy systems for self-sufficient households,
integrating Fermatean neutrosophic fuzzy stratified AHP-
MARCOS methodology. Menekse and Akdag [45] introduce
a novel interval-valued spherical fuzzy CODAS method for
reopening readiness evaluation of academic units amidst
the COVID-19 pandemic. Akram et al. [46] extend the
CODASmethod formultiple attribute group decision-making
(MAGDM) with 2-tuple linguistic T-spherical fuzzy sets.
Gündoğdu andKahraman [47] focus on the optimal site selec-
tion of electric vehicle charging stations using the spherical
fuzzy TOPSIS method. Gül and Aydoğdu [48] propose novel
entropy measure definitions and their applications in a mod-
ified combinative distance-based assessment method under
a picture fuzzy environment. Furthermore, research extends
to the sustainability prioritization of technologies for clean-
ing up soils polluted with oil and petroleum products [49],
and a spherical fuzzy decision-making method for evaluating
the Industrial Internet of Things (IIoT) industry [50]. These
studies collectively contribute to the development of robust
decision-support systems for sustainable energy and environ-
mental management.

C. MOTIVATION
The motivation behind this article lies in the recognition
of q-SFRS offering greater flexibility compared to PFS
and SFS in studying decision-making (DM) problems. The
article addresses the complexity of MADM problems influ-
enced by imprecise factors within the q-SFRS environment.
It highlights the limitations of existing operators and pro-
poses a beyond-state-of-the-art method to overcome these
limitations, providing excellent findings for various informa-
tion categories represented by q-SFRS data. The simplicity
and comprehensiveness of CODAS are acknowledged, and
the article aims to define CODAS within the context of
q-SFRS for addressing challenging decision-making prob-
lems, ensuring more accurate and precise results in real-life
MADM situations. Azim et al. [26] pioneered the advance-
ment of q-SFRS theory and its application in multi-criteria
decision-making (MCDM) problems. The enriched q-SFRS
framework, with its broader applicability and adaptabil-
ity to diverse circumstances, opens avenues for further
research and development. These groundbreaking assump-
tions contribute significantly to knowledge, providing the
foundation for comprehensive and imaginative approaches
to real-world problem-solving. The integration of q-SFRSs
through the CODAS method presents an intriguing potential
for analysis in the dynamic field of decision-making. This

combination aims to enhance the flexibility and precision
of decision-making across various domains. The utilization
of q-spherical fuzzy rough CODAS to address uncertainty
and hesitancy in real-world decision situations has con-
tributed to its popularity. The flexible background offered by
q-SFRS theory, capable of managing and interpreting vague
information, facilitates a more representative categorization
of complex decision environments. On the other hand, the
CODAS ranking is based on the proximity of an alternative to
the ideal solution and its isolation from the negative solution,
making it a well-established multi-criteria decision analysis
approach. The integration of q-SFRSs with CODAS seeks
to overcome the limitations of conventional decision-making
methods when handling rough and vague data. This study
aims to advance decision knowledge by proposing a novel
and practical approach for decision-makers to navigate com-
plex decision scenarios. The amalgamation of CODAS with
q-SFRSs is anticipated to provide a sophisticated and accurate
decision support method, particularly in areas where impre-
cision, hesitation, and complexity prevail. This stems from
the realization that precise and unambiguous data is seldom a
characteristic of real-world decision-making circumstances.
By leveraging the synergies between q-SFRSs and CODAS,
this research endeavors to equip decision-makers with a tool
capable of navigating the intricacies and nuances in complex
decision-making scenarios. The ultimate objective is to foster
a comprehensive and adaptable decision validation frame-
work for the advancement of decision knowledge.
1. Using q-spherical fuzzy rough CODAS to demonstrate

how these sets may deal with ambiguity and uncertainty
in actual decision-making settings.

2. Describing the adaptable framework provided by
q-spherical fuzzy rough set theory for dealing with and
modeling misinformation. Emphasizing the need to pro-
vide a more genuine picture of the decision’s complicated
environment.

While CODAS and q-spherical fuzzy rough sets have been
individually explored, their integration in this study is novel.
This fusion is designed to harness the strengths of both
methods to tackle the complex nature of decision-making
under uncertainty. By combining CODAS, which is effec-
tive in ranking alternatives based on their distances to
ideal solutions, with q-SFRS, which adeptly handles uncer-
tainty and vagueness, this study offers a comprehensive
decision-making tool not previously available. This integra-
tion provides a robust framework capable of more accurately
modeling and managing the ambiguity and uncertainty inher-
ent in real-world MCDM problems. The flexibility and
adaptability of q-SFRS to represent linguistic terms and
handle imprecise data enrich the decision-making process
beyond traditional methods. The use of Hamming and
Euclidean distances within the q-SFR-CODAS framework
is a methodological advancement. By prioritizing Hamming
distance as the primary measure and Euclidean distance as
the secondary, the approach ensures a nuanced and precise
assessment of alternatives, enhancing the robustness of the
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decision-making process. The development of a novel
algorithm to generate renewable energy site selections
across all criteria represents a significant contribution. This
algorithm is tailored to leverage the q-SFRS framework,
ensuring that the decision-making process is both compre-
hensive and precise in handling uncertainty. The extensive
sensitivity analysis conducted to validate the results of
the q-SFR-CODAS method underscores the reliability and
robustness of the proposed approach. By comparing the
results with existing MCDM methods, this study demon-
strates the superiority and applicability of our approach in
various scenarios. The inclusion of an illustrative exam-
ple showcasing the practical application of the proposed
methodology in renewable energy site selection provides con-
crete evidence of its effectiveness. This example highlights
the method’s ability to address real-world decision-making
challenges, offering clear advantages over traditional meth-
ods. The q-spherical fuzzy rough set environment offers
greater flexibility and capability in dealing with uncertainty
and hesitancy compared to other fuzzy set theories like
PFS and SFS. By leveraging this environment, the study
addresses the complexities of decision-making in a more
nuanced and representative manner. The study proposes new
aggregation operators and defuzzification methods within
the q-SFRS framework, paving the way for future research
and development in handling diverse information categories.
The proposed q-SFR-CODAS method is not a mere gen-
eralization but a significant advancement in the field of
MCDM. It combines the strengths of q-SFRS and CODAS,
introduces novel distance measures and algorithms, and pro-
vides a comprehensive framework for addressing uncertainty
in decision-making. The extensive validation and practi-
cal applications underscore the method’s robustness and
effectiveness, contributing valuable insights and tools for
researchers and practitioners alike.

The subsequent sections of the study are structured as
follows:

Section II offers a comprehensive overview of various con-
cepts, including FS, IFS PFS, SFS, q-SFS, RS, and q-SFRS,
providing a foundational understanding for the subsequent
sections. In section III, we delve into the operational laws
governing the q-SFR framework, focusing on key aggre-
gation operators, namely the q-SFR arithmetic mean and
q-SFR geometric mean. Additionally, the discussion encom-
passes the presentation of the score and accuracy functions
within the context of q-SFR, providing a comprehensive
understanding of their roles in decision-making processes.
Section IV goes over the q-SFR CODAS approach in great
depth. It delves into the development and practical applica-
tion of this strategy, particularly when evaluating renewable
energy selection. In section V, we present the q-spherical
fuzzy rough CODAS approach as a useful tool for evaluating
and contrasting renewable energy selection. In Section VI,
we look at the managerial implications of the q-SFR CODAS
techniques. We stress the relevance of sensitivity analysis in
determining the robustness of the methods, as well as the

significance of comparative analysis for evaluating multi-
criteria decision-making rankings. In Section VII, where we
summarize the major findings and stress the study’s overall
significance, the research ends. The comprehensive structure
of the paper is shown in Figure 1.

FIGURE 1. Structure of the research article.

II. PRELIMINARIES
In this section, wewill look at a variety ofmathematical ideas,
beginning with an in-depth review of FS, IFS, PFS, SPS,
q-SFS, and RS.
Definition 1: In 1965, Zadeh [19] proposed the idea of a

fuzzy set as an extension of the conventional crisp set. The
formal definition of a fuzzy set can be represented mathe-
matically as follows:

A = { ⟨ , ζA ( )⟩ : ∈X } (1)

where 0≤ζA ( ) ≤1.

FIGURE 2. Some graphical representations of fuzzy spaces.
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Definition 2: In 1986, Atanassov and Stoeva [20] proposed
the intuitionistic fuzzy set (IFS) as an extension of the fuzzy
set. The formal mathematical representation of an IFS is as
follows:

A = {⟨ , ζA ( ) , ξA ( )⟩ : ∈X } (2)

where 0≤ζA ( ) + ξA ( ) ≤1.
Definition 3: [28] Let X be a non-empty finite set. A PyFS

A over ∈X is defined as follows:

A = { ⟨ , ζA ( ) , ξA ( )⟩ : ∈X } (3)

where ζA ( ) and ξA ( ) represent the MD and NMD of
A respectively such that ξA ( ) , ξA ( ) ∈[0, 1] and where
0≤(ζA ( ))2 + (ξA)2≤1.

FIGURE 3. A comparison of the differences between Pythagorean and
intuitionistic fuzzy spaces.

Definition 4: Building on the fundamental principles of
FSs and IFSs, Cuong and his team [21] introduced the idea
of a picture fuzzy set in 2014. Its definition can be expressed
mathematically as follows:

A = {⟨ , ζA ( ) , ηA ( ) , ξA ( ) ⟩ : ∈X } (4) (4)

where 0≤ ζA ( ) + ηA ( ) + ξA ( ) ≤1.
The following symbols represent the representation of the

membership functions for a fuzzy set in this situation, which
includes positive, neutral, and negative aspects:

ζA ( ) ( ): X→ [0,1], ηA ( ): X→ [0,1] and ξA ( ): X→

[0,1] respectively.

FIGURE 4. Picture membership grade space.

Definition 5:Gündoğdu and Kahraman [22] introduced the
idea of a spherical fuzzy set in 2019, further advancing the
picture fuzzy set framework. The concept can be expressed
in the following way from a mathematical standpoint:

A = {⟨ , ζA ( ) ( ) , ηA ( ) , ξA ( ) ⟩ : ∈X } (5)

where 0≤ (ζA ( ))2 + (ηA ( ))2 + (ξA ( ))2≤1.
Where the positive, neutral, and negative membership

function for a fuzzy set is represented by ζA ( ): X→ [0,1],
ηA ( ): X→ [0,1] and ξA ( ): X→ [0,1] respectively.

FIGURE 5. The condition 0 ≤ (ζA ( ))2 + (ηA ( ))2 + (ξA ( ))2 ≤ 1
describes a spherical fuzzy set in three-dimensional space.

Definition 6:The idea of a q-SFSwas introduced byKahra-
man et al. [23] in the year 2020, as an extension of the existing
notion of a spherical fuzzy set. Mathematically, the concept
may be formally defined in the following manner.

A = {⟨ , ζA ( ) ( ) , ηA ( ) , ξA ( ) ⟩ : ∈X } (6)

Such that 0≤ (ζA ( ))q + (ηA ( ))q + (ξA ( ))q≤1 for
all q ≥1.
Where ζA:X→ [0,1], ηA: X→ [0,1] and ξA: X→ [0,1]

correspond to the positive, neutral, and negative membership
functions, respectively.
Definition 7: Pawlak [24] introduced the notion of RS in

back 1982. The definition of rough set is as follows: The
triplet (G1,G2, R) is referred to as an approximation space

FIGURE 6. Graphical representation of the difference between spherical
fuzzy set and q-spherical fuzzy set in three-dimensional space.
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when considering an arbitrary binary relation R on G1 ×G2.
TheR (A) andR (A) are defined for setsX ⊆G1 andA⊆G2.(

R (A) = {x∈G1 : [ ]A⊆X }

R (A) =
{
x∈G1 : [ ]A

⋂
X ̸=ϕ

}) (7)

where [ ]A represents the idea of indiscernibility.
The set

(
R (A) , R (A)

)
is sometimes referred to as a

rough set.
Definition 8: A q-spherical fuzzy relation R in is a q-

spherical fuzzy subset of G1 × G2. and is given by

R = {⟨( , ) : ζR ( , ) , ηR ( , ) , ξR ( , )⟩ :(
(ζR ( , ))q + (ηR ( , ))q + (ξR ( , ))q

)
≤1 :

∀ ∈G1, §∈G2} ,

where ζR : G1 × G2 → [0, 1] , ηR : G1 × G2 → [0, 1]

and ξR : G1 × G2 → [0, 1].

Definition 9: Assume that G1 and G2 are two no-empty
sets. Let R be a q-SF relation from G1to G2. Then the triplet
(G1,G2, R) is called q-SF approximation space. Now for any
element ∈G1, the lower and upper approximation space of

w.r.t approximation space (G1,G2, R) are presented and
given as:

A = (A,A) =

{
,

(
ζA( ), ζA( ), ζA( ),

ζ̄A( ), ζ̄A( ), ζ̄A( )

)
: ∈ G1

}
(8)

where,

ζA( ) =

∧
x∈G2

{
ζR( , )

∧
ζA( )

}
,

ηA( ) =

∨
x∈G2

{
ηR( , )

∨
ηA( )

}
,

ξA( ) =

∨
x∈G2

{
ξR( , )

∨
ξA( )

}
,

ζ̄A( ) =

∨
x∈G2

{
ζR( , )

∨
ζA( )

}
,

η̄A( ) =

∧
x∈U2

{
ηR( , )

∧
ηA( )

}
,

ξ̄A( ) =

∧
x∈G2

{
ξR( , )

∧
ξA( )

}
,

with the condition that(
0 ≤ ζA

q( ) + ηA
q( ) + ξA

q( ) ≤ 1
))

and(
0 ≤ ζ̄A

q( ) + η̄A
q( ) + ξ̄A

q( ) ≤ 1
)
.

FIGURE 7. Graphical representation of q-spherical fuzzy rough set-in
three-dimensional space.

The q-SFRS is defined as a pair of q-SFSs, whereA is distinct
fromA. To facilitate comprehension, wewill denote the given
concept asA = (A,A), which is referred to as a q -spherical
fuzzy rough number. The notation Ai represents the set that
encompasses all q-SFR numbers.

III. OPERATIONAL LAWS AND AGGREGATION
OPERATORS FOR q− SFRNS
Operational laws and aggregation operators play a crucial
role in q-spherical fuzzy rough sets (q-SFRNs) by defining
how different fuzzy rough sets interact and how information
is aggregated or combined. Here’s a brief overview of these
concepts: The union of two q-SFRNs combines their ele-
ments, resulting in a set that contains all elements from both
sets. In the context of q-SFRNs, this operation is essential
for merging information from different sources or perspec-
tives. The intersection of two q-SFRNs identifies the common
elements between them. It helps in finding the overlap-
ping information or shared characteristics between different
sets. The algebraic sum operation combines the member-
ship values of corresponding elements from two q-SFRNs.
It provides a way to aggregate membership information from
different sources while preserving their contributions. The
algebraic product operation combines the membership values
of corresponding elements from two q-SFRNs by taking their
product. It emphasizes the joint membership of elements in
both sets. The average operator calculates the mean mem-
bership value of the elements being aggregated. It provides
a balanced view by considering the collective contribution
of all sources. These operational laws and aggregation oper-
ators provide the foundational framework for performing
operations and aggregating information within the context of
q-spherical fuzzy rough sets. By understanding and utilizing
these concepts effectively, researchers can analyze complex
datasets and make informed decisions in various applica-
tions, such as decision-making, pattern recognition, and data
analysis.
Definition 3.1: Let A1 =

(
ζ 1, η1

, ξ
1
, ζ̄ 1, η̄1, ξ̄1

)
and A2 =

(
ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2

)
are two q-SFRNs in

(G1, G2, R), then A1 ∩ A2 =


〈

min
(
ζ
1
, ζ

2

)
,max

(
η
1
, η

2

)
,

min

 1−

((
min

(
ζ
1
, ζ

2

))q
+

(
max

(
η
1
, η

2

))q)
,

min
(
ξ
1
, ξ

2

) 
min

(
ζ̄ 1, ζ 2

)
,max

(
η̄1, η̄2

)
,

min

{
1−

((
min

(
ζ
1
, ζ̄ 2

))q
+

(
max

(
η̄1, η̄2

))q)
,

min
(
ξ̄1, ξ̄2

) }
〉

(9)

Definition 3.2: Let A1 =

(
ζ 1, η1

, ξ
1
, ζ̄1, η1, ξ̄1

)
and A2 =

(
ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2

)
are two q-SFRNs in
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(G1, G, G), then A1 ∪A2 =
〈

max
(
ζ
1
, ζ

2

)
,min

(
η
1
, η

2

)
,

max

 1−

((
max

(
ζ
1
, ζ

2

))q
+

(
min

(
η
1
, η

2

))q)
,

max
(
ξ
1
, ξ

2

)


max
(
ζ̄ 1, ζ 2

)
,min

(
η̄1, η̄2

)
,

max
{
1−

((
max

(
ζ̄ 1, ζ̄ 2

))q
+

(
min

(
η̄1, η̄2

))q)
,

max
(
ξ̄1, ξ̄2

) }
〉


(10)

Definition 3.3:LetA1 =

(
ζ1, η1

, ξ
1
, ζ̄1, η̄1, ξ̄1

)
andA2 =(

ζ
2
, η

2
, ξ

2
, ζ̄2, η̄2, ξ̄2

)
are two q-SFRNs in (G1,G2, R), then

A1 ⊕A2

=


q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2, η

q
1 ∗ η

q
2,

q

√(
1 − ζ

q
2 ∗ ξ

q
1 +

(
1 − ζ

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2 ,

q
√

ζ̄
q
1 + ζ̄

q
2 − ζ̄

q
1 ∗ ζ̄

q
2 , η̄

q
1 ∗ η̄

q
2,

 (11)

Definition 3.4: Let A1 =

(
ζ
1
, η

1
, ξ

1
, ζ̄1, η̄1, ξ̄1

)
and A2 =

(
ζ
2
, η

2
, ξ

2
, ζ̄2, η̄2, ξ̄2

)
are two q-SFRNs in

(G1,G2, ℜ), then

A1⊗A2=


〈 ζ

q
1 ∗ ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

q

2
,

q

√(
1 − η

q
2∗ξ

q
1 + 1 − η

q
1∗ξ

q
2

)
− ξ

q
1∗ξ

q
2,

ζ
q
1 ∗ ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2,

q

√(
1 − η

q
2∗ξ

q
1 + 1 − η

q
1∗ξ

q
2

)
− ξ

q
1∗ξ

q
2

〉

(12)

Definition 3.5: A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRNs in
(G1,G2, R), and ω > 0 be any scaler then,

ωA

=


〈 q

√
1−(1−ζ q)ω, ηqω, q

√
(1−ζ q)ω−

(
1−ζ q−ξq

)ω

,

q
√
1−(1 − ζ

q
)ω, ηqω, q

√
(1 − ζ

q
)ω−

(
1−ζ

q
−ξ

q
)ω

〉
(13)

Definition 3.6: A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRNs in
(G1,G2, R), and ω > 0 be any scaler then,

Aω

=


〈
ζ qω, q

√
1−(1−ηq)ω, q

√
(1−ηq)ω−

(
1−ηq−ξq

)ω

,

ζ
qω

, q
√
1−(1−ηq)ω, q

√
(1−ηq)ω−

(
1−ηq−ξ

q
)ω

〉

Definition 3.7: Let A = (ζ , η, ξ, ζ , η, ξ ) be a q−SFRN.
Then the score value which is denoted as AQ can be deter-
mined by the following function.

Sco(A) =

2 +

(
ζ
)q

+
(
ζ
)q

−

(
η
)q

− (η)q −

(
ξ
)q

−
(
ξ
)q

3
(14)

where,

0≤ Sco (A) ≤ 1.

Definition 3.8: Let A = (ζ , η, ξ, ζ , η, ξ ) be a q−SFRN.
The accuracy of A is calculated by using the formula men-
tioned in Equation No. 10.

Acc(A) =
(ζ )q + (ζ̄ )q − (ξ )q − (ξ̄ )q

2
(15)

where −1≤Acc (A) ≤1.
Definition 3.9: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) are two q−SFRNs, then

1. If Sco(A1) < Sco(A2) then A1 < A2,
2. If Sco(A1) > Sco(A2) then A1 > A2,
3. If Sco (A1) = Sco(A2) then

• If Acc (A1) < Acc (A2) then A1 < A2,
• If Acc (A1) > Acc (A2) then A1 > A2,
• If Acc (A1) = Acc (A2) then A1 = A2.

Definition 3.10: Let A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ )

be any three q−SFRNs, and ω, ω1 and ω2 are any positive
integers then the following properties are held.
1. A1⊕A2 = A2⊕A1,

2. A1⊗A2 = A2⊗A1
3. ω (A1⊕A2) = ωA1⊕ωA2,

4. ω1A⊕ω2A = (ω1 + ω2)A,

5. (A1⊗A2)
ω

= Aω
1 ⊗Aω

2 ,

6. Aω1⊗Aω2 = Aω1+ω2 .

Definition 3.11: q-SFR Arithmetic Mean (q-SFRAM)
operator concerning, ω = (ω1, ω2, ω3, . . . , ωn); ωi∈ [0,1];∑n

i=1 ωi = 1, q-SFRAMoperator is mathematically defined
as

q − SFRAMω (A1,A2,A3, . . . ,An)

= ω1A1⊕ω2A2⊕ω3A3⊕, . . . ,⊕ωnAn

=


〈

q
√∏n

i=1(1 − (1 − ζ
q
i )

ωi ),
∏n

i=1 η
q
i
ωi

,

q

√∏n
i=1(1 − ζ

q
i )

ωi −
∏n

i=1

(
1 − ζ

q
i − ξ

q
i

)ωi
,

q
√∏n

i=1(1 − (1 − ζ
q
i )ωi ),

∏n
i=1 η

q
i
ωi

,

q

√∏n
i=1(1 − ζ

q
i )ωi −

∏n
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi

〉

(16)

Definition 3.12: q-SFR Geometric Mean (q-SFRGM) oper-
ator concerning, ω = (ω1, ω2, ω3, . . . , ωn); ωi∈ [0,1];
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∑n
i=1 ωi = 1, q-SFRGMoperator is mathematically defined

as

q − SFRGMω (A1,A2,A3, . . . ,An)

= ω1A1⊗ω2A2⊗ω3A3⊗, . . . ,⊗ωnAn

=


〈

∏n
i=1 ζ

q
i
ωi

, q
√∏n

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏n
i=1(1 − η

q
i )

ωi −
∏n

i=1

(
1 − η

q
i − ξ

q
i

)ωi
,∏n

i=1 ζ
q
i
ωi

, q
√∏n

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏n
i=1(1 − η

q
i )

ωi −
∏n

i=1

(
1 − η

q
i − ξ

q
i

)ωi

〉

(17)

Theorem 1: Assuming A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNs, then

A1⊕A2 = A2⊕A1.
Proof: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNs.We are to prove

A1⊕A2 = A2⊕A1.
For this, let

A1⊕A2

= (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1)⊕(ζ

2
, η

2
, ξ

2
, ζ 2, η2, ξ2)

=


〈

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2, η

q
1
∗ ηq

2
,

q

√(
1 − ζ

q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2,

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2, η

q
1 ∗ η

q
2,

q

√(
1 − ζ

q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2

〉


=


〈

q
√

ζ
q
2 + ζ

q
1 − ζ

q
2 ∗ ζ

q
1, η

q
2
∗ ηq

1
,

q

√(
1 − ξ

q
1 ∗ ζ

q
2 + 1 − ξ

q
2 ∗ ζ

q
1

)
− ξ

q
2 ∗ ξ

q
1,

q
√

ζ
q
2 + ζ

q
1 − ζ

q
2 ∗ ζ

q
1, η

q
2 ∗ η

q
1,

q

√(
1 − ξ

q
1 ∗ ζ

q
2 + 1 − ξ

q
2 ∗ ζ

q
1

)
− ξ

q
2 ∗ ξ

q
1

〉


= A2⊕A1.

Theorem 2: Assuming A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNs, then

A1⊗A2 = A2⊗A1.
Proof: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNs.We are to prove

A1⊗A2 = A2⊗A1.
For this, let

A1⊕A2

= (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1)

⊗(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2)

=


〈 ζ q

1
∗ ζ q

2
, q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2,

q

√(
1 − η

q
2 ∗ ξ

q
1 + 1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2,

ζ
q
1 ∗ ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2,

q

√(
1 − η

q
2 ∗ ξ

q
1 + 1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2

〉


=


〈 ζ q

2
∗ ζ q

1
, q
√

η
q
2 + η

q
1 − η

q
2 ∗ η

q
1,

q

√(
1 − ξ

q
1 ∗ η

q
2 + 1 − ξ

q
2 ∗ η

q
1

)
− ξ

q
2 ∗ ξ

q
1,

ζ
q
2 ∗ ζ

q
1,

q
√

η
q
2 + η

q
1 − η

q
2 ∗ η

q
1,

q

√(
1 − ξ

q
1 ∗ η

q
2 + 1 − ξ

q
2 ∗ η

q
1

)
− ξ

q
2 ∗ ξ

q
1

〉


= A2⊗A1.

Theorem 3: Assuming A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNs

and ω be any positive integer then ω(A1⊕A2) =

ωA1⊕ωA2.
Proof: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) be any two q−SFRNsand ω be any

positive integer. We are to prove
ω(A1⊕A2) = ωA1⊕ωA2. For this, let

ω (A1⊕A2)

= ω
(
ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1

)
⊕ω

(
ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2

)
.

ω (A1⊕A2)

= ω


〈

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2, η

q
1 ∗ η

q
2,

q

√(
1 − ζ

q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2,

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2, η

q
1 ∗ η

q
2,

q

√(
1 − ζ

q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2

〉


=



〈
q
√
1 − (1 − (ζ q1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2))

ω, η
q
1
ω

∗ η
q
2
ω
,

q

√√√√√ (1 − (ζ q1 + ζ
q
2 − ζ

q
1 ∗ ζ

q
2)

ω
−(

(1 − (ζ q1 + ζ
q
2 − ζ

q
1∗ζ

q
2))−

((1 − ζ
q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2) − ξ

q
1 ∗ ξ

q
1)

)ω
,

q
√
1 − ζ

q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2)ω, η

q
1
ω

∗ η
q
2
ω
,

q

√√√√√ (1 − (ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2)

ω
−(

(1 − (ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2))−

((1 − ζ
q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2) − ξ

q
1 ∗ ξ

q
2)

)ω

〉


.

ωA1⊕ωA2

=


〈 q
√
1−(1−ζ

q
1)

ω, η
q
1
ω
, q

√
(1−ζ

q
1)

ω−

(
1−ζ

q
1−ξ

q
1

)ω

,

q
√
1−(1−ζ

q
1)ω, η

q
1
ω
, q

√
(1−ζ

q
1)ω−

(
1−ζ

q
1−ξ

q
1

)ω

〉
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⊕
〈 q

√
1−(1−ζ

q
2)

ω, η
q
2
ω
, q

√
(1−ζ

q
2)

ω−

(
1 − ζ

q
2 − ξ

q
2

)ω

,

q
√
1 − (1 − ζ

q
2)ω, η

q
2
ω
, q

√
(1 − ζ

q
2)ω −

(
1 − ζ

q
2 − ξ

q
2

)ω

〉

=



〈

q

√√√√√
(
1 −

(
1 − ζ

q
1

)ω)
+

(
1 −

(
1 − ζ

q
2

)ω)
−(

1 −

(
1 − ζ

q
1

)ω)
∗

(
1 −

(
1 − ζ

q
2

)ω) ,

η
q
1
ω

∗ η
q
2
ω
,

q

√√√√√√√√√
((

1 − ζ
q
1

)ω

−

(
1 − ζ

q
1 − ξ

q
1

)ω)
+

((1 − ζ
q
2)

ω
− (1 − ζ

q
2 − ξ

q
2)

ω)−((
1 − ζ

q
1

)ω

−

(
1 − ζ

q
1 − ξ

q
1

)ω)
∗

((1 − ζ
q
2)

ω
− (1 − ζ

q
2 − ξ

q
2)

ω)

,

q

√√√√√
(
1 −

(
1 − ζ

q
1

)ω)
+

(
1 −

(
1 − ζ

q
2

)ω)
−(

1 −

(
1 − ζ

q
1

)ω)
∗

(
1 −

(
1 − ζ

q
2

)ω) ,

η
q
1
ω

∗ η
q
2
ω
,

q

√√√√√√√√√
((

1 − ζ
q
1

)ω

−

(
1 − ζ

q
1 − ξ

q
1

)ω)
+

((1 − ζ
q
2)

ω
− (1 − ζ

q
2 − ξ

q
2)

ω)−((
1 − ζ

q
1

)ω

−

(
1 − ζ

q
1 − ξ

q
1

)ω)
∗

((1 − ζ
q
2)

ω
− (1 − ζ

q
2 − ξ

q
2)

ω)

〉



=



〈
q

√(
1 −

(
1 − ζ

q
1

)ω

∗

(
1 − ζ

q
2

)ω)
, ηq

1
ω

∗ ηq
2
ω
,

q

√√√√ (
(
1 − ζ q

1

)ω

∗

(
1 − ζ q

2

)ω

−

(1 − ζ q
1
− ξq

1
)ω∗(1 − ζ

q
2 − ξq

2
)ω)

q

√(
1 −

(
1 − ζ

q
1

)ω

∗

(
1 − ζ

q
2

)ω)
,

η
q
1

ω

∗ η
q
2

ω

,

q

√√√√ (
(
1 − ζ

q
1

)ω

∗

(
1 − ζ

q
2

)ω

−

(1 − ζ
q
1 − ξq

1
)ω∗(1 − ζ

q
2 − ξq

2
)ω)

〉


=



〈
q
√
1 − (1 − (ζ q1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2))

ω, ηq
1
ω

∗ ηq
2
ω
,

q

√√√√√ (1 − (ζ q
1
+ ζ q

2
− ζ q

1
∗ ζ q

2
)ω−(

(1 − (ζ q
1
+ ζ q

2
− ζ q

1
∗ζ q

2
))−

((1 − ζ q
2
∗ ξq

1
+ 1 − ζ q

1
∗ ξq

2
) − ξq

1
∗ ξq

1
)

)ω
,

q
√
1 − ζ

q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2)ω, η

q
1
ω

∗ η
q
2
ω
,

q

√√√√√ (1 − (ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2)

ω
−(

(1 − (ζ
q
1 + ζ

q
2 − ζ

q
1 ∗ ζ

q
2))−

((1 − ζ
q
2 ∗ ξ

q
1 + 1 − ζ

q
1 ∗ ξ

q
2) − ξ

q
1 ∗ ξ

q
2)

)ω

〉


Theorem 4: Let A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRN,
and ω1 and ω2 are any positive integers, then

ω1A ⊕ ω2A = (ω1 + ω2)A.

Proof: Let A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRN,
and ω1 and ω2 are any positive integers, we are to show that
ω1A ⊕ ω2A = (ω1 + ω2)A.

For this, let

ω1A ⊕ ω2A

=


〈 q
√
1−(1−ζ q)ω1 , ηq

ω1 ,
q

√
(1−ζ q)ω1−

(
1−ζ q−ξq

)ω1
,

q
√
1−(1−ζ

q
)ω1 , ηq

ω1 ,
q

√
(1−ζ q)ω1−

(
1−ζ q−ξq

)ω1

〉
⊕
〈 q
√
1−(1−ζ q)ω2 , ηq

ω2 ,
q

√
(1−ζ q)ω2−

(
1−ζ q−ξq

)ω2
,

q
√
1−(1−ζ

q
)ω2 , ηq

ω2 ,
q

√
(1−ζ q)ω2−

(
1 − ζ

q
− ξ

)ω2

〉

=



〈

q

√√√√√
(
1 −

(
1 − ζ q

)ω1
)

+

(
1 −

(
1 − ζ q

)ω2
)

−(
1 −

(
1 − ζ q

)ω1
)

∗

(
1 −

(
1 − ζ q

)ω2
) ,

ηq
ω1+ω2 ,

q

√√√√√√√√√
((

1 − ζ q
)ω1

−

(
1 − ζ q − ξq

)ω1
)

+

((1 − ζ q)ω2 − (1 − ζ q − ξq)ω2 )−((
1 − ζ q

)ω1
−

(
1 − ζ q − ξq

)ω1
)

∗

((1 − ζ q)ω2 − (1 − ζ q − ξq)ω2 )

,

q

√√√√√
(
1 −

(
1 − ζ

q
)ω1

)
+

(
1 −

(
1 − ζ

q
)ω2

)
−(

1 −

(
1 − ζ

q
)ω1

)
∗

(
1 −

(
1 − ζ

q
)ω2

) ,

ηq
ω1+ω2 ,

q

√√√√√√√√√√

((
1 − ζ

q
)ω1

−

(
1 − ζ

q
− ξ

q
)ω1

)
+

((1 − ζ
q
)ω2 − (1 − ζ

q
− ξ

q
)ω2 )−((

1 − ζ
q
)ω1

−

(
1 − ζ

q
− ξ

q
)ω1

)
∗

((1 − ζ
q
)ω2 − (1 − ζ

q
− ξ

q
)ω2 )

〉



=



〈
q
√
1 − (1 − ζ q)ω1+ω2 ,

ηq
ω1+ω2 ,

q
√
(1 − ζ q)ω1+ω2 − (1 − ζ q − ξq)ω1+ω2 ,

q
√
1 − (1 − ζ

q
)ω1+ω2 ,

ηq
ω1+ω2 ,

q
√
(1 − ζ

q
)ω1+ω2 − (1 − ζ

q
− ξ

q
)ω1+ω2

〉


= (ω1 + ω2)A.

Theorem 5: Let A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1) and A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ ) be any

three q−SFRNs, and ω are any positive integer, then the
(A1⊗A2)

ω
= Aω

1 ⊗Aω
2 .

Proof: Let A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRN,
and ω1 and ω2 are any positive integers, we are to show that
(A1⊗A2)

ω
= Aω

1 ⊗Aω
2 .

For this, let

(A1⊗A2)
ω
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= (A1⊗A2)
ω

=


〈 ζ

q
1 ∗ ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2,

q

√(
1 − η

q
2 ∗ ξ

q
1 + (1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2,

ζ
q
1 ∗ ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1 ∗ η

q
2,

q

√(
1 − η

q
2 ∗ ξ

q
1 + 1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2

〉


ω

=



〈
ζ
q
1
ω

∗ ζ
q
2
ω
, q

√
1 −

(
1 −

(
η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

))ω

,

q

√√√√√√√
(1 − (ηq1 + η

q
2 − η

q
1 ∗ η

q
2)

ω
− 1 −

(
η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

)
−

(
(
1 − η

q
2 ∗ ξ

q
1 + (1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2)


ω

,

ζ
q
1
ω

∗ ζ
q
2
ω
, q

√
1 −

(
1 −

(
η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

))ω
,

q

√√√√√√√
(
1 −

(
η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

))ω
−

1 −
(
η
q
1 + η

q
2 − η

q
1 ∗ η

q
2

)
−

( q

√(
1 − η

q
2 ∗ ξ

q
1 + 1 − η

q
1 ∗ ξ

q
2

)
− ξ

q
1 ∗ ξ

q
2)


ω

〉



=



〈
ζ
q
1
ω

∗ ζ
q
2
ω
,

q
√
(1 − (1 − η

q
1))

ω ∗ (1 − (1 − η
q
2))

ω,

q

√(
1 − η

q
1 − ξ

q
1

)ω

∗

(
1 − η

q
2 − ξ

q
2

)ω

,

ζ
q
1
ω
∗ ζ

q
2
ω
,

q
√
(1 − (1 − η

q
1))

ω ∗ (1 − (1 − η
q
2))

ω,

q

√
q

√(
1 − η

q
1 − ξ

q
1

)ω
∗

(
1 − ξ

q
2 − ξ

q
2

)ω

〉


=



〈

ζ
q
1
ω

∗ ζ
q
2
ω
,

q

√
(1 − (1 − η

q
1)

ω) + (1 − (1 − η
q
2)

ω)−
(1 − (1 − η

q
1)

ω) ∗ (1 − (1 − η
q
2)

ω)
,

q

√√√√√√√
((1 − η

q
1) − (1 − η

q
1 − ξ

q
1))+

((1 − η
q
2) − (1 − η

q
2 − ξ

q
2))−

((1 − η
q
1) − (1 − η

q
1 − ξ

q
1))∗

((1 − η
q
2) − (1 − η

q
2 − ξ

q
2))

,

ζ
q
1
ω
∗ ζ

q
2
ω
,

q

√
(1 − (1 − η

q
1)) + (1 − (1 − η

q
2))−

(1 − (1 − η
q
1)) ∗ (1 − (1 − η

q
2))

,

q

√√√√√√√
((1 − η

q
1) − (1 − η

q
1 − ξ

q
1))+

((1 − η
q
2) − (1 − η

q
2 − ξ

q
2))−

((1 − η
q
1) − (1 − η

q
1 − ξ

q
1))∗

((1 − η
q
2) − (1 − η

q
2 − ξ

q
2))

〉



=


〈ζ

q
1
ω
, q

√
1 − (1 − η

q
1)

ω, q

√√√√√
(
1 − η

q
1

)ω

−(
1 − η

q
1 − ξ

q
1

)ω,

ζ
q
1
ω
, q

√
1 − (1 − η

q
1)

ω, q

√√√√ (
1 − η

q
1

)ω
−(

1 − η
q
1 − ξ

q
1

)ω

〉


⊗
〈ζ

q
2
ω
, q

√
1 − (1 − η

q
2)

ω, q

√√√√√
(
1 − η

q
2

)ω

−(
1 − η

q
2 − ξ

q
2

)ω,

ζ
q
2
ω
, q

√
1 − (1 − η

q
2)

ω, q

√√√√ (
1 − η

q
2

)ω
−(

1 − η
q
2 − ξ

q
12

)ω

〉


= Aω
1 ⊗Aω

2 .

Theorem 6: Let A = (ζ , η, ξ, ζ , η, ξ ) be any three
q−SFRN,ω1 andω2 any positive integers, then (A1⊗A2)

ω
=

Aω
1 ⊗Aω

2 .
Proof: Let A = (ζ , η, ξ, ζ , η, ξ ) be any q−SFRN,

and ω1 and ω2 are any positive integers, we are to show that
Aω1⊗Aω2 = Aω1+ω2 .
For this, let

Aω1⊗Aω2

=


〈
ζ qω1 , q

√
1−(1−ηq)ω1 , q

√
(1−ηq)ω1−

(
1−ηq−ξq

)ω1
,

ζ
qω1

, q
√
1−(1−ηq)ω1 , q

√
(1−ηq)ω1−

(
1 − ηq−ξ

q
)ω1

〉
⊗

〈
ζ qω2 , q

√
1−(1−ηq)ω2 , q

√
(1−ηq)ω2−

(
1−ηq−ξq

)ω2
,

ζ
qω2

, q
√
1−(1−ηq)ω2 , q

√
(1−ηq)ω2−

(
1 − ηq−ξ

q
)ω2

〉


〈

ζ qω1+ω2 ,

q

√√√√√
(
1 −

(
1 − ηq

)ω1
)

+

(
1 −

(
1 − ηq

)ω2
)

−(
1 −

(
1 − ηq

)ω1
)

∗

(
1 −

(
1 − ηq

)ω2
) ,

q

√√√√√√√√√
((

1 − ηq
)ω1

−

(
1 − ηq − ξq

)ω1
)

+

((1 − ηq)ω2 − (1 − ηq − ξq)ω2 )−((
1 − ηq

)ω1
−

(
1 − ηq − ξq

)ω1
)

∗

((1 − ηq)ω2 − (1 − ηq − ξq)ω2 )

,

ζ
qω1+ω2

,

q

√(
1 − (1 − ηq)ω1

)
+

(
1 − (1 − ηq)ω2

)
−(

1 − (1 − ηq)ω1
)
∗

(
1 − (1 − ηq)ω2

) ,

q

√√√√√√√√√
(
(1 − ηq)ω1 −

(
1 − ηq − ξ

q
)ω1

)
+

((1 − ηq)ω2 − (1 − ηq − ξ
q
)ω2 )−(

(1 − ηq)ω1 −

(
1 − ηq − ξ

q
)ω1

)
∗

((1 − ηq)ω2 − (1 − ηq − ξ
q
)ω2 )

〉



=


〈

ζ qω1+ω2 ,

q
√
1 − (1 − ηq)ω1+ω2 ,

q
√
(1 − ηq)ω1+ω2 − (1 − ηq − ξq)ω1+ω2 ,

ζ
qω1+ω2

,
q
√
1 − (1 − ηq)ω1+ω2 ,

q
√
(1 − ηq)ω1+ω2 − (1 − ηq − ξ

q
)ω1+ω2

〉


= Aω1+ω2 .
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Property 1: If all q-SFRNs Ai = A, then q − SFRAMω

(A1,A2,A3, . . . ,An) = A.

Property 2: If all q-SFRNs Ai = A, then q − SFRGMω

(A1,A2,A3, . . . ,An) = A.

Property 3: Let Ai = (ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i) (i =

1, 2, 3, . . . , n) be a collection of q−SFRNs in (G1,G2, R).
For

A−
=

〈
min ζ

i
,max η

i
,max ξ

i
,min ζ i,max ηi,max ξ i

〉
and

A+
=

〈
max ζ

i
,min η

i
,min ξ

i
,max ζ i,min ηi,min ξ i

〉
, then

A− ≤ q − SFRAMω (A1,A2,A3, . . . ,An) ≤ A+

Property 4: Let Ai = (ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i) (i =

1, 2, 3, . . . , n) be a collection of q−SFRNs in (G1,G2, R).
For

A−
=

〈
min ζ

i
,max η

i
,max ξ

i
,min ζ i,max ηi,max ξ i

〉
and

A+
=

〈
max ζ

i
,min η

i
,min ξ

i
,max ζ i,min ηi,min ξ i

〉
, then

A− ≤ q − SFRGMω (A1,A2,A3, . . . ,An) ≤ A+

Property 5: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) andAi

∗
=

(
ζ
i
∗, η

i
∗, ξ

i
∗, ζ i

∗
, ηi

∗, ξ i
∗
)

(i = 1, 2, . . . , n) be a collection of two q− SFRNs such that
Ai≤Ai

∗ for all i, then

q − SFRAMω (A1,A2, . . . ,An)

≤q − SFRAMω

(
A1

∗,A2
∗, . . . ,An

∗
)
.

Property 6: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) and Ai

∗
=

(
ζ
i
∗, η

i
∗, ξ

i
∗, ζ i

∗
, ηi

∗, ξ i
∗
)

(i = 1, 2, . . . , n) be a collection of two q−SFRNs such that
Ai≤Ai

∗ for all i, then

q − SFRGMω (A1,A2, . . . ,An)

≤q − SFRGMω

(
A1

∗,A2
∗, . . . ,An

∗
)
.

Theorem 7: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)(
i = 1, 2, . . . , n

)
ne a collection of q-SFRNs concern-

ing, ω = (ω1, ω2, ω3, . . . , ωn); ωi∈ [0,1];
∑n

i=1 ωi =

1, the q-spherical fuzzy rough arithmetic mean operator
q − SFRAMω is defined as a mapping q − SFRAMω :

An
−→ A characterized by

q − SFRAMω (A1,A2, . . . ,An) = ⊕
n
i=1 (ωiAi)

q − SFRAMω (A1,A2,A3, . . . ,An) = ω1A1⊕ω2A2

⊕ω3A3⊕, . . . ,⊕ωnAn

=



〈
q
√∏n

i=1(1 − (1 − ζ
q
i )

ωi ),
∏n

i=1 η
q
i
ωi

,

q

√∏n
i=1(1 − ζ

q
i )

ωi −
∏n

i=1

(
1 − ζ

q
i − ξ

q
i

)ωi
,

q
√∏n

i=1(1 − (1 − ζ
q
i )ωi ),

∏n
i=1 η

q
i
ωi

,

q

√∏n
i=1(1 − ζ

q
i )ωi −

∏n
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi

〉


Proof:We will prove Theorem (7) by using mathemat-
ical induction.
Step 1: For n = 2, we have
For this, let

ω1A1⊕ω2A2

=


〈 q
√
1−(1−ζ

q
1)

ω1 , η
q
1
ω1 , q

√
(1−ζ

q
1)

ω1−

(
1−ζ

q
1−ξ

q
1

)ω1
,

q
√
1−(1−ζ

q
1)ω1 ,η

q
1
ω1 , q

√
(1−ζ

q
1)ω1−

(
1−ζ

q
1−ξ

q
1

)ω1

〉
⊕

〈 q
√
1−(1−ζ

q
2)

ω2 ,η
q
2
ω2 , q

√
(1−ζ

q
2)

ω2−

(
1−ζ

q
2−ξ

q
2

)ω2
,

q
√
1−(1−ζ

q
2)ω2 , η

q
2
ω2 , q

√
(1 − ζ

q
2)ω2−

(
1−ζ

q
2−ξ

q
2

)ω2

〉

=



〈

q

√√√√√√
(
1 −

(
1 − ζ

q
1

)ω1
)

+

(
1 −

(
1 − ζ

q
2

)ω2
)

−(
1 −

(
1 − ζ

q
1

)ω1
)

∗

(
1 −

(
1 − ζ

q
2

)ω2
) ,

η
q
1
ω1

∗ η
q
2
ω2 ,

q

√√√√√√√√√√√

((
1 − ζ

q
1

)ω1
−

(
1 − ζ

q
1 − ξ

q
1

)ω1
)

+

((1 − ζ
q
2)

ω2 − (1 − ζ
q
2 − ξ

q
2)

ω2 )−((
1 − ζ

q
1

)ω1
−

(
1 − ζ

q
1 − ξ

q
1

)ω1
)

∗

((1 − ζ
q
2)

ω2 − (1 − ζ
q
2 − ξ

q
2)

ω2 )

,

q

√√√√√√
(
1 −

(
1 − ζ

q
1

)ω1
)

+

(
1 −

(
1 − ζ

q
2

)ω2
)

−(
1 −

(
1 − ζ

q
1

)ω1
)

∗

(
1 −

(
1 − ζ

q
2

)ω2
) ,

η
q
1
ω1

∗ η
q
2
ω2 ,

q

√√√√√√√√√√√√√√

((
1 − ζ

q
1

)ω1
−

(
1 − ζ

q
1 − ξ

q
1

)ω1
)

+

((1 − ζ
q
2)

ω2 − (1 − ζ
q
2 − ξ

q
2)

ω2 )−((
1 − ζ

q
1

)ω1
−

(
1 − ζ

q
1 − ξ

q
1

)ω1
)

∗

((1 − ζ
q
2)

ω2 − (1 − ζ
q
2 − ξ

q
2)

ω2 )

〉
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=



〈

q

√
1 −

(
1 − ζ

q
1

)ω1
∗

(
1 − ζ

q
2

)ω2
,

η
q
1
ω1

∗ η
q
2
ω2 ,

q

√√√√√
(
1 − ζ

q
1

)ω1
∗

(
1 − ζ

q
2

)ω2
−

(1 − ζ
q
1 − ξ

q
1)

ω1 ∗ (1 − ζ
q
2 − ξ

q
2)

ω2

,

q
√
1 − (1 − ζ

q
1)ω1 ∗ (1 − ζ

q
2)ω2 ,

η
q
1
ω1

∗ η
q
2
ω2 ,

q

√√√√ (
1 − ζ

q
1

)ω1
∗

(
1 − ζ

q
2

)ω2
−

(1 − ζ
q
1 − ξ

q
1)

ω1 ∗ (1 − ζ
q
2 − ξ

q
2)

ω2

〉


= ω1A1⊕ω2A2.

Hence the theorem is true for n = 2.
Step 2: Suppose that the theorem is true for n = k, we

have:

q − SFRAMω (A1,A2, . . . ,Ak)

= ⊕
k
i=1 (ωiAi)

q − SFRAMω (A1,A2,A3, . . . ,Ak)

= ω1A1⊕ω2A2⊕ω3A3⊕, . . . ,⊕ωkAk

=


〈

q
√∏k

i=1(1 − (1 − ζ
q
i )

ωi ),
∏k

i=1 η
q
i
ωi

,

q

√∏k
i=1(1 − ζ

q
i )

ωi −
∏k

i=1

(
1 − ζ

q
i − ξ

q
i

)ωi
,

q
√∏k

i=1(1 − (1 − ζ
q
i )ωi ),

∏k
i=1 η

q
i
ωi

,

q

√∏k
i=1(1 − ζ

q
i )ωi −

∏k
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi

〉


Step 3: We will prove that the theorem is true for
n = k + 1. For this, we have:

q−SFRAMω (A1,A2, . . . ,Ak ,Ak+1)

= ⊕
k
i=1 (ωiAi) ⊕ωk+1Ak+1

q−SFRAMω (A1,A2,A3, . . . ,Ak)

= ω1A1⊕ω2A2⊕ω3A3⊕, . . . ,⊕ωkAk

=


〈

q
√∏k

i=1(1 − (1 − ζ
q
i )

ωi ),
∏k

i=1 η
q
i
ωi

,

q

√∏k
i=1

(
1 − ζ

q
i

)ωi
−

∏k
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi
,

q
√∏k

i=1(1 − (1 − ζ
q
i )ωi ),

∏k
i=1 η

q
i
ωi

,

q

√∏k
i=1

(
1 − ζ

q
i

)ωi
−

∏k
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi

〉


⊕


〈

q
√
(1 − (1 − ζ

q
k+1)

ωk+1), ηq
k+1

ωk+1 ,

q

√
(1 − ζ

q
k+1)

ωk+1 −

(
1 − ζ

q
k+1 − ξ

q
k+1

)ωk+1
,

q
√
(1 − (1 − ζ

q
k+1)ωk+1 ), η

q
k+1

ωk+1 ,

q

√
(1 − ζ

q
k+1)ωk+1 −

(
1 − ζ

q
k+1 − ξ

q
k+1

)ωk+1

〉


q − SFRAMω (A1,A2, . . . ,Ak+1)

= ⊕
k+1
i=1 (ωiAi)

q − SFRAMω (A1,A2,A3, . . . ,Ak+1)

= ω1A1⊕ω2A2⊕ω3A3⊕, . . . ,⊕ωk+1Ak+1

=



〈
q
√∏k+1

i=1 (1 − (1 − ζ
q
i )

ωi ),
∏k+1

i=1 η
q
i
ωi

,

q

√∏k+1
i=1 (1 − ζ

q
i )

ωi −
∏k+1

i=1

(
1 − ζ

q
i − ξ

q
i

)ωi
,

q
√∏k+1

i=1 (1 − (1 − ζ
q
i )ωi ),

∏k+1
i=1 η

q
i
ωi

,

q

√∏k+1
i=1 (1 − ζ

q
i )ωi −

∏k+1
i=1

(
1 − ζ

q
i − ξ

q
i

)ωi

〉


Hence the theorem is true for n = k + 1.
Theorem 8: Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) ne a collection of q-SFRNs concern-
ing, ω = (ω1, ω2, ω3, . . . , ωn); ωi∈ [0,1];

∑n
i=1 ωi =

1, the q-spherical fuzzy rough geometric mean operator
q − SFRGMω is defined as a mapping q − SFRGMω :

An
−→ A characterized by

q − SFRGMω (A1,A2, . . . ,An)

= ⊗
n
i=1 (ωiAi)

q − SFRGMω (A1,A2,A3, . . . ,An)

= ω1A1⊗ω2A2⊗ω3A3⊗, . . . ,⊗ωnAn

=


〈

∏n
i=1 ζ

q
i
ωi

, q
√∏n

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏n
i=1(1 − η

q
i )

ωi −
∏n

i=1

(
1 − η

q
i − ξ

q
i

)ωi
,∏n

i=1 ζ
q
i
ωi

, q
√∏n

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏n
i=1(1 − η

q
i )

ωi −
∏n

i=1

(
1 − η

q
i − ξ

q
i

)ωi

〉


Proof:We will prove Theorem (8) by using mathemati-
cal induction.
Step 1: For n = 2, we have
For this, let

A1
ω1⊗A2

ω2

=


〈
ζ
q
1
ω1 , q

√
1−(1−η

q
1)

ω1 , q

√
(1−η

q
1)

ω1−

(
1−η

q
1−ξ

q
1

)ω1
,

ζ
q
1
ω1

, q
√
1−(1−η

q
1)

ω1 , q

√
(1−η

q
1)

ω1−

(
1−η

q
1−ξ

q
1

)ω1

〉
⊗

〈
ζ
q
2
ω2 , q

√
1−(1−η

q
2)

ω2 , q

√
(1−η

q
2)

ω2−

(
1−η

q
2−ξ

q
2

)ω2
,

ζ
q
2
ω2

, q
√
1−(1−η

q
2)

ω2 , q

√
(1−η

q
2)

ω2−

(
1−η

q
2−ξ

q
2

)ω2

〉
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=



〈

ζ
q
1
ω1

∗ ζ
q
2
ω2 ,

q

√√√√√√
(
1 −

(
1 − η

q
1

)ω1
)

+

(
1 −

(
1 − η

q
2

)ω2
)

−(
1 −

(
1 − η

q
1

)ω1
)

∗

(
1 −

(
1 − η

q
2

)ω2
) ,

q

√√√√√√√√√√

((
1 − η

q
1

)ω1
−

(
1 − η

q
1 − ξ

q
1

)ω1
)

+

((1 − η
q
2)

ω2 − (1 − η
q
2 − ξ

q
2)

ω2 )−((
1 − η

q
1

)ω1
−

(
1 − η

q
1 − ξ

q
1

)ω1
)

∗

((1 − η
q
2)

ω2 − (1 − η
q
2 − ξ

q
2)

ω2 )

,

ζ
q
1
ω1

∗ ζ
q
2
ω2

,

q

√(
1 −

(
1 − η

q
1

)ω1
)
+

(
1 −

(
1 − η

q
2

)ω2
)
−(

1 −
(
1 − η

q
1

)ω1
)
∗

(
1 −

(
1 − η

q
2

)ω2
) ,

q

√√√√√√√√√√

((
1 − η

q
1

)ω1
−

(
1 − η

q
1 − ξ

q
1

)ω1
)

+

((1 − η
q
2)

ω2 − (1 − η
q
2 − ξ

q
2)

ω2 )−((
1 − η

q
1

)ω1
−

(
1 − η

q
1 − ξ

q
1

)ω1
)

∗

((1 − η
q
2)

ω2 − (1 − η
q
2 − ξ

q
2)

ω2 )

〉



=



〈

ζ
q
1
ω1

∗ ζ
q
2
ω2 ,

q

√
1 −

(
1 − η

q
1

)ω1
∗

(
1 − η

q
2

)ω2
,

q

√√√√√
(
1 − η

q
1

)ω1
∗

(
1 − η

q
2

)ω2
−

(1 − η
q
1 − ξ

q
1)

ω1 ∗ (1 − η
q
2 − ξ

q
2)

ω2
,

ζ
q
1
ω1

∗ ζ
q
2
ω2

,

q
√
1 − (1 − η

q
1)

ω1 ∗ (1 − η
q
2)

ω2 ,

q

√√√√ (
1 − η

q
1

)ω1
∗

(
1 − η

q
2

)ω2
−

(1 − η
q
1 − ξ

q
1)

ω1 ∗ (1 − η
q
2 − ξ

q
2)

ω2

〉


= A1

ω1⊗A2
ω2 .

Hence the theorem is true for n = 2.
Step 2: Suppose that the theorem is true for n = k, we

have:

q − SFRGMω (A1,A2, . . . ,Ak) = ⊗
k
i=1Ai

ωi

q − SFRGMω (A1,A2,A3, . . . ,Ak) = A1
ω1⊗A2

ω2⊗A3
ω3

⊗, . . . ,⊗Ak
ωk

=


〈

∏k
i=1 ζ

q
i
ωi

, q
√∏k

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏k
i=1(1 − η

q
i )

ωi −
∏k

i=1

(
1 − η

q
i − ξ

q
i

)ωi
,∏k

i=1 ζ
q
i
ωi

,
q
√∏k

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏k
i=1(1 − η

q
i )

ωi −
∏k

i=1

(
1 − η

q
i − ξ

q
i

)ωi

〉


Step 3: We will prove that the theorem is true for
n = k + 1. For this, we have:

q − SFRGMω (A1,A2, . . . ,Ak ,Ak+1)

= ⊗
k
i=1Ai

ωi⊗Ak+1
ωk+1

= A1
ω1⊗A2

ω2⊗A3
ω3⊗, . . . ,⊗Ak

ωk⊗Ak+1
ωk+1

=


〈

∏k
i=1 ζ

q
i
ωi

, q
√∏k

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏k
i=1

(
1 − η

q
i

)ωi
−

∏k
i=1

(
1 − η

q
i − ξ

q
i

)ωi
,∏k

i=1 ζ
q
i
ωi

,
q
√∏k

i=1(1 − (1 − η
q
i )

ωi ),

q

√∏k
i=1

(
1 − η

q
i

)ωi
−

∏k
i=1

(
1 − η

q
i − ξ

q
i

)ωi

〉


⊗


〈 ζ q

k+1
ωk+1 , q

√
(1 − (1 − η

q
k+1)

ωk+1 ),

q

√
(1 − η

q
k+1)

ωk+1 −

(
1 − η

q
k+1 − ξ

q
k+1

)ωk+1
,

ζ
q
k+1

ωk+1
, q
√
(1 − (1 − η

q
k+1)

ωk+1 ),

q

√
(1 − η

q
k+1)

ωk+1 −

(
1 − η

q
k+1−ξ

q
k+1

)ωk+1

〉


q−SFRGMω (A1,A2, . . . ,Ak ,Ak+1)=⊗
k
i=1Ai

ωi⊗Ak+1
ωk+1

= A1
ω1⊗A2

ω2⊗A3
ω3⊗, . . . ,⊗Ak

ωk⊗Ak+1
ωk+1

=


〈

∏k+1
i=1 ζ

q
i
ωi

, q
√∏k+1

i=1 (1 − (1 − η
q
i )

ωi ),

q

√∏k+1
i=1 (1 − η

q
i )

ωi −
∏k+1

i=1

(
1 − η

q
i − ξ

q
i

)ωi
,∏k+1

i=1 ζ
q
i
ωi

,
q
√∏k+1

i=1 (1 − (1 − η
q
i )

ωi ),

q

√∏k+1
i=1 (1 − η

q
i )

ωi −
∏k+1

i=1

(
1 − η

q
i − ξ

q
i

)ωi

〉


Hence the theorem is true for n = k + 1.

IV. q−SPHERICAL FUZZY ROUGH CODAS APPROACH
One approach that may be used to illustrate a (MCDM)
problem is to use a decision matrix. When a system is
functioning in a q-spherical fuzzy rough environment, the
components of a decision matrix represent the evaluation
values of all conceivable alternatives with relation to each
criterion. Let the expression X = {x1, x2, x3, . . . , xm} (m≥2)
denotes a discrete collection of m possible alternatives and
the values of all alternatives about each criterion. This will
be done inside the confines of a q-spherical fuzzy rough
environment. When functioning in a rough q-spherical fuzzy
environment, the collection of criteria should be indicated
by C = {C1,C2,C3, . . . ,Cn} . Let’s name the weight vec-
tor that contains all the requirements of w and describe it
as something that must meet the constraints 0≤ωi≤1 and∑n

i=1 ωi = 1 to be considered valid. by marking it as ω =

(ω1, ω2, ω3, . . . , ωn).
Step 1: The person in charge of making choices completes

the assessment matrix using the linguistic terms listed in
Table 1.
Step 2: The decision matrix is converted into a weighted

q-spherical fuzzy rough decision matrix using the q-spherical
fuzzy rough values from Table 1. The weighted q-spherical
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TABLE 1. q-SFRNs with linguistic terms.

fuzzy rough decision matrix is obtained by multiplying the
weights of the criteria by the evaluations and may be pro-
duced using the q-SFRGM operator.
Step 3: Utilizing the score function that is given to defuzzi-

fication of the weighted decision matrix. This can be done by
using the formula below.

Sco
(
Cj (Xiω)

)
=

2 +

(
ζ
)q

+
(
ζ
)q

−

(
η
)q

− (η)q −

(
ξ
)q

−
(
ξ
)q

3
.

Step 4: The Step 3 score values are used to construct
a q-SFRNIS.

For the q-SFRNIS:

X−
=

{
Cj, mini < Score

(
Cj (Xiw)

)
> j = 1, 2, . . . , n

}
Step 5: Evaluate the normalized Hamming distance for-

mula from q-SFRNIS for alternatives by formula.

DH
(
Xi,X−

)

=
q

√√√√√√√√√√√
1
4n

∑n

i=1



∣∣∣ζ qXi − ζ
q
X−

∣∣∣ +

∣∣∣ζ qXi − ζ
q
X−

∣∣∣ +∣∣∣ηqXi − η
q
X−

∣∣∣ +

∣∣∣ηqXi − η
q
X−

∣∣∣ +∣∣∣ξqXi − ξ
q
X−

∣∣∣ +

∣∣∣ξqXi − ξ
q
X−

∣∣∣ +∣∣∣πq
Xi − π

q
X−

∣∣∣ +
∣∣πq

Xi − π
q
X−

∣∣


Step 6: Evaluate the normalized Euclidean distance for-

mula from q-SFRNIS for alternatives by formula.

DE (Xi,X−)

=
q

√√√√√√√√√√√√
1
4n

∑n

i=1



(
ζ q
Xi

− ζ
q
X−

)2
+

(
ζ
q
Xi − ζ

q
X−

)2
+(

ηq
Xi

− η
q
X−

)2
+

(
η
q
Xi − η

q
X−

)2
+(

ξq
Xi

− ξ
q
X−

)2
+

(
ξ
q
Xi − ξ

q
X−

)2
+(

π
q
Xi − π

q
X−

)2
+

(
π
q
Xi − π

q
X−

)2


Step 7: Find the relative assessment matrix by using the

formula as follows:

rik =
(
DEi − DEj

)
+ ω

) (
DEi − DEj

)
·
(
DHi − DHj

)
,

where k∈{1, 2, 3, . . . , n} and ω is a threshold function that
is defined in eq. (11). The decision maker can define the
threshold value of this function. In this study, we practice
ω = 0.03.

(x) =

{
1 if |x| ≥ �

0 if |x| ≤ �

Step 8: Estimate how each alternative would do on an
appraisal score. The highest ASi the score represents the
optimal solution.

ASi =

n∑
k=1

rik

Figure 8 shows a widely used framework for multi-criteria
decision-making (MCDM) methodology. The configuration
presented in Figure 8 typically incorporates linguistic terms,
alternatives, criteria weights, distances, and evaluation met-
rics, culminating in a ranking of alternatives.

FIGURE 8. Illustrates the normative framework used in the multi-criteria
decision-making process.

V. DECISION MODEL AND ITS APPLICATIONS WITH THE
HELP OF NUMERICAL EXAMPLE
The research findings of many scientists indicate that the
region of the United States is the finest site in the world to
generate renewable energy due to the natural conditions. The
selection of a site location to create a wind power farm is
an application of the methodology that we have proposed.
Regarding this objective, most of the preference was given
to the following four cities: Evaluations are being done in
four cities (A1: CaliforniaA2: North Carolina,A3: New Jersey,
A4: Colorado). Following an in-depth analysis of the relevant
prior research, four criteria have been established. The envi-
ronmental conditions (C1), the economic situation (C2), the
technical opportunities (C3), and the site attributes (C4) are
all considered to be criteria. To begin, the evaluations of the
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criteria are solicited from a group of individuals responsible
for making decisions about the objective, making use of the
linguistic terms given in Table 1. The person who oversaw
making the choice did not consider the evaluation, which is
shown in Table 2. Figure 9 illustrates a decision tree used for
renewable energy site selection.

FIGURE 9. Decision tree for renewable energy site selection.

TABLE 2. Evaluation of the alternatives for renewable energy site
selection.

These assessments are turned into q-spherical fuzzy rough
sets using the methodological stages outlined in Table 3.

TABLE 3. q-spherical fuzzy rough evaluations.

The next step is to figure out how to make a weighted
decision matrix. The person making the decision picks the
weights of the criteria, which are given in Table 4.

TABLE 4. Weights of the criteria.

The q-SFRWGM operator is used to aggregate the per-
spectives of decision-makers while also accounting for their
relative importance. The weights are multiplied by the deci-
sion matrix to make the weighted q-spherical fuzzy rough
decision matrix. Table 5 shows this.

TABLE 5. Weighted q-spherical fuzzy rough decision matrix.

The next step is to calculate the negative ideal q-SFR
values. To achieve this goal, defuzzification of the q-SFR
values is conducted using the score function. The outcomes
are given in Table 6, which is shown below.

TABLE 6. Defuzzification of the q-SFR values.

The values of the q-SFR Decision Matrix are displayed in
Table 6 after they have been defuzzified.

The NIS values are calculated with the help of the informa-
tion supplied in Table 6, which is followed by the information
displayed in Table 7, which concludes the process.

According to the data shown in Table 8, which represents
the normalized hamming distance and normalized Euclidean
distance. In the last step of the procedure, the relative
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TABLE 7. NIS values.

TABLE 8. The distance of each alternative from NIS values.

FIGURE 10. Graphical representation of normalized hamming distance
and normalized Euclidean distance.

assessment matrix is computed making use of step 7, which
can be found in Table 9.

TABLE 9. The relative assessment matrix of the alternatives.

Following is the graphical representation of Normalized
Hamming Distance and Normalized Euclidean Distance.

Following is the graphical representation of the ranking of
the alternatives based on their appraisal scores.

We have concluded that alternative A2(North Carolina),
which has the highest appraisal ratio, is the most conve-
nient alternative because of the results of the study, and

TABLE 10. Ranking of the alternatives.

FIGURE 11. Graphical representation of ranking of the alternatives based
on their appraisal score.

we have come to this conclusion based on the data. This
alternative is followed by A3(New Jersey), A4(Colorado), and
A1(California).

A. EFFECT OF q ON RANKING ORDER AND SCORE VALUES
To fulfill the constraint requirement (0≤ζA

q ( )+ηA
q ( )+

ξA
q ( ) ≤1) and (0≤ζA

q
( )+ηA

q ( )+ ξA
q
( ) ≤1), and

then by examining the attribute values, the decision maker
is capable of identifying a minimum numerical parameter q.
For example, while evaluating an alternative, if the attribute
values are (0.8,0.7,0.9,0.9,0.8,0.7), one should choose q as
3 or q as 4, as both configurations meet the criterion.
However, we employed several values of q in Step 4 of
the novel approach to solve the case to fully evaluate the
effect of parameter q on the experimental results. Table 9
presents the results of these modifications and indicates
that A2 is at the top, followed by A3, A4, and finally, A1.
Notable is the relevance of the best alternative and the
unchanging ranking. Table 10 illustrates this point. Specifi-
cally, when q equals 1. The alternatives and ratings offered
do not adhere to the requirements of either 1 (i.e., under
PFRS environment

(
0≤ζA ( ) + ηA ( ) + ξA ( ) ≤1

)
and(

0≤ζA ( ) + ηA ( ) + ξA ( ) ≤1
)
) or 2 (i.e., under SFRS

environment (0≤ζA
2 ( ) + ηA

2 ( ) + ξA
2 ( ) ≤1) and

(0≤ζA
2
( ) + ηA

2 ( ) + ξA
2
( ) ≤1).

Table 11 illustrates the consistent consistency in the rank-
ing order of alternatives at different q-parameter values. This
enduring stability of the hierarchy offers decision-makers a
reliable framework for evaluating test alternatives within a
limited set. It establishes a safe and flexible environment for
careful examination and informed decision-making based on
defined parameters.
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TABLE 11. Sorting alternatives according to their respective parameter q
values.

B. TEST OF VALIDITY
To demonstrate the versatility of the proposed technique in
diverse contexts, we use the evaluation protocol introduced
by Wang and Trianafilo [35] as follows:
Step 1: Changing the ranking values of sub-optimal alter-

natives that indicate inferior quality is not expected to affect
the identification of optimal alternatives. It preserves the
highest-ranked choice, assuming a constant relative weight
for the criteria.
Step 2: Transitivity should be followed in the procedure.
Step 3: When using the same decision-making process

for a given problem that has been broken into smaller
ones, the initial ranking of the alternatives should be
preserved.

1) TEST OF VALIDITY UTILIZING CRITERIA 1
The alternatives ranked by using our suggested method are
A2 > A3 > A4 > A1. Based on test criteria 1, we replaced
the non-optimal alternative A1 with the lowest alterna-
tive A∗

1 to evaluate the stability of the suggested method.
(0.58,0.45,0.89,0.65,0.74,0.63), (0.58,0.85,0.74,0.63,0.25,
0.87), and (0.85,0.25,0.85,0.85,0.78,0.36) were used as the
rating values of A∗

1. The aggregated score values for the
alternatives were as follows after we used our suggested
methodology: Sco(A2) = 0.8523, Sco(A3) = 0.78561,
Sco(A4) = 0.6589, and Sco(A∗

1) = 0.4523. As a result,
A2 > A3 > A4 > A1 is the new ranking order, and the
best alternative still adheres to the first suggested strategy.
Consequently, our method meets test requirement 1 by pro-
ducing a consistent result.

2) TEST OF VALIDITY EMPLOYING CRITERIA 2 AND 3
The fragmented decision-making subcases are regarded as
{A1,A2,A3} , {A2,A3,A4} and {A1,A3,A4} to assess the
validity based on criteria 2 and 3. They rank in the following
sequence via the procedures mentioned: A2 > A3 > A1,
A2 > A3 > A4 and A3 > A4 > A1. After combining all
the findings, the overall ranking appears as A2 > A3 > A4 >

A1, This is perfectly consistent with the results of the initial

decision-making process. Consequently, our proposed strat-
egy meets the criteria stated in requirements 2 and 3.

VI. MANAGERIAL IMPLICATIONS
The framework shows remarkable industry flexibility and
efficacy in a variety of decision-making contexts. Executives
in a variety of fields can effectively use the q-SFR CODAS
model’s capacity for a range of objectives. For example,
it demonstrates its value in the renewable energy site selection
procedure by subsidiary the estimation of various consid-
erations of the procedure to establish the best beneficial
energy supply. Moreover, it might assist in the choice of
conservation performances, granting supervisors to select the
beneficial approach to preserve their tools or approach. The
additional region where the demonstration may be worked
is in the assessment of machines in developed situations,
which can assist supervisors in deciding the effectiveness
and pertinence of numerous automated organizations. It may
also be consumed in the collection of substantial operating
tackle, and supplementary executives in making sophisticated
findings observing the best and highest beneficial tools for
their requirements. It is significant, nonetheless, to identify
that the executive construction procedure within this struc-
ture is manipulated by the inclinations of specialists and
participants. While the template suggests a systematic and
methodical methodology for decision-making, the assump-
tions and standings are determined by the decision-makers’
conclusions and inclinations. As an outcome, involving pro-
fessionals and participants is significant in confirming the
legitimacy and reputation of the conclusions. The two most
important assessments are conceded to enhance the trust-
worthiness and sturdiness of the attained outcomes. The two
most important assessments are conceded to enhance the
trustworthiness and sturdiness of the attained outcomes.

This conclusion is an effective tool for decision-makers to
rank, consider, and judge conclusions from several alterna-
tives, each explored using separate conditions. It promotes
a better knowledge of trade agreements and allows for
more informed decision-making by highlighting the advan-
tages and disadvantages of each possibility. By performing
a sensitivity analysis, important insights are gained about
the stability and sensitivity of the results. Decision-makers
can examine how various factors influence their choices,
enhancing their ability to make adaptive decisions in a
dynamic environment. Incorporating this analysis into the
decision-making process enables managers to increase reli-
ability and confidence in their strategic decisions.

The q-SFR CODAS model, combined with comparative
and sensitivity analysis, offers a comprehensive framework
that equips managers in diverse industries and applica-
tions with the tools needed to make informed and flexible
decisions.

A. COMPARATIVE ANALYSIS
A comparative study is conducted to validate the robust-
ness and effectiveness of this research against other
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contemporary multiple criteria decision-making (MCDM)
methods. To achieve this goal, the problem is solved using six
different MCDM models that operate within the framework
of spherical fuzzy and fuzzy methods. The models selected
for comparison include SF TOPSIS [22], SF CODAS [32],
SF EDAS [36], IF TOPSIS [37], IF CODAS [38], and IF
EDAS [39]. Table 12 presents the evaluation rankings derived
from both the proposed model and the existing six MCDM
models, highlighting comparative evaluations in different
decision-making frameworks. The references for the other
models selected for comparison should indeed be provided
for transparency and academic integrity. These references
would typically include the sources or publications where the
SF TOPSIS [22], SF CODAS [32], SF EDAS [36], IF TOP-
SIS [37], IF CODAS [38], and IF EDAS [39] models were
introduced or described. As for why these specific models
were chosen for comparison, several factors might have influ-
enced their selection.

TABLE 12. Appraisal scores of different approaches.

Amidst the propositions, calculations, and practical appli-
cations outlined above, the distinct advantages of embracing
q-spherical fuzzy rough sets come to light, illuminating a path
toward enhanced decision-making:
1. Traditional fuzzy sets and intuitionistic fuzzy sets, while

valuable, often falter in capturing comprehensive infor-
mation in certain contexts. The constraints imposed by
membership and non-membership degrees can stifle the
expression of nuanced opinions by decision-makers.

2. In response to these limitations, Yager’s introduction of
Pythagorean fuzzy sets broadened the scope of represen-
tation, allowing for a more diverse array of applications.

3. However, within the realm of uncertain information, such
as in voting systems, the rigidity of picture fuzzy sets may
prove restrictive, particularly in accommodating decision-
maker flexibility.

4. Enter spherical fuzzy numbers, offering a solution
that gracefully navigates diverse information sets with-
out exceeding the bounds of unity. This adaptability
empowers decision-makers to allocate membership values
according to their unique preferences.

5. The incorporation of q-spherical fuzzy rough sets, along
with associated algorithms, presents a versatile framework
with far-reaching implications across various decision-
making processes.

6. Furthermore, the proposed aggregation operators excel in
handling imprecise information, offering a level of relia-
bility that surpasses existing methodologies.

7. The applicability of q-spherical fuzzy rough sets spans a
multitude of domains, including stock investment analy-
sis, airline service quality evaluation, investment banking
authority selection, and electronic learning factor assess-
ment, underscoring their broad utility and relevance.

8. By embracing the advantages inherent in q-spherical fuzzy
rough sets, decision-makers are better equipped to traverse
the intricate landscapes of decision-making with height-
ened confidence and precision.

9. Regarding the specific concerns about the limitations of
picture fuzzy rough sets (PFSRS) and spherical fuzzy
rough sets, it’s important to acknowledge that they are
constrained by specific numerical bounds within their
approximations. In contrast, q-spherical fuzzy rough sets
offer a broader scope of representation, allowing for a
more nuanced handling of information sets. This distinc-
tion underscores the versatility and potential superiority of
q-SFRS in handling complex decision-making scenarios.

10. q-spherical fuzzy rough sets are more general than other
algebraic structures because they incorporate lower and
upper approximations with membership, neutral, and non-
membership degrees. The inclusion of a q-parameter
further enhances their robustness compared to picture
fuzzy sets and spherical fuzzy sets. Additionally, themerg-
ing of CODAS methods strengthens their robustness.

Table 13 represents the pros and cons of the proposed
operators and existing operators along with their year of
publications.

TABLE 13. The pros and cons of both the proposed and existing
operators.

It is important to recognize that each approach comes
with its own set of limitations. For example, the FFRS
technique allows decision-makers to rank alternatives within
the constraints of (0≤ζA

3 ( ) + ηA
3 ( ) + ξA

3 ( ) ≤1)

and (0≤ζA
3
( ) + ηA

3 ( ) + ξA
3
( ) ≤1). In contrast,

the spherical fuzzy rough approach directs decision mak-
ers to rank the alternatives obeying the condition that
(0≤ζA

2 ( ) + ηA
2 ( ) + ξA

2 ( ) ≤1) and (0≤ζA
2
( ) +

ηA
2 ( ) + ξA

2
( ) ≤1). To overcome these limitations, the

proposed approach provides a more flexible environment
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for decision-makers. By reducing these constraints, decision-
makers can provide more accurate classifications and make
well-informed decisions. The unique features of different
techniques including the comparison characteristics of the
proposed approach are presented in Table 14.

TABLE 14. Comparison of characteristics between different methods.

Figure 12 represents some particular cases of q-spherical
fuzzy rough sets.

FIGURE 12. Some particular cases of different algebraic structures
compared to q-spherical fuzzy rough sets.

B. SENSITIVITY ANALYSIS
In this study, to validate the developed model, two sepa-
rate sensitivity analyses concerning changes in criteria and
decision-making weights on the final ranking are presented.
In this first study, a temporal sensitivity analysis is performed
based on each criterion. For this purpose, the weight values
of the reference criteria, i.e., high importance, equal impor-
tance, and low importance, are determined to see the effect
of changing the criteria weight on the final ranking. Then,
assigning these reference values to each criterion one by one,
the model is run, and the alternatives are ranked. The results
obtained according to the total 12 scenarios thus obtained are
presented in Figure 13.

In all scenarios, alternative A2 ranks first and alternative
A1 ranks last. Even with extreme values, altering the crite-
rion weights has little effect on model output. In the second
analysis, the weights of the decision makers are significantly
changed, and 15 different scenarios are obtained based on
different values of the weights. Figure 14 presents the final
ranking of the decision makers’ weight distribution. Alterna-
tive A2 is the best choice in all scenarios, while alternative
A1 is the worst choice. Although the ranking order of the
two alternatives may vary depending on the combination of

FIGURE 13. Alternative classification considering variations in criteria
weights.

FIGURE 14. Alternative rankings in response to adjustments in
decision-making weights.

weights used, the proposed approach generally produces reli-
able results and has reasonable consistency across different
decision-weighting scenarios.

C. ADVANTAGES
The proposed technique has various benefits:
1. The addition of parameter q to the aggregation operators

gives decision-makers a great deal of freedom. This ver-
satility allows them to tailor the settings to the individual
needs and preferences of the decision-making scenar-
ios. The decision process’s versatility allows for varying
degrees of membership and non-membership, making it
appropriate for a broad range of real-world scenarios.

2. The parametric character of the suggested operators
enables decision-makers to fine-tune the impact of mem-
bership and non-membership degrees. This degree of
control enables decision-makers to accurately tailor the
aggregation process to their preferences and the unique
aspects of the situation at hand.
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3. The symmetry of the suggested aggregation operators
concerning the parameter ensures that the ranking orders
of alternatives stay generally consistent across parame-
ter values. This stability is critical in decision-making
because it prevents the outcomes from being impacted by
the decision-makers’ pessimism or optimism.

D. LIMITATIONS
Every research endeavor inherently has limitations, and the
methodology proposed in this study is no exception. Below
is a discussion of these constraints:
1. The applicability of the proposed technique may be

limited to specific domains or decision contexts. Under-
standing these limitations is critical to determining the
optimal use of the recommended strategy.

2. Aswith any research approach, the proposedmethod relies
on certain assumptions and simplifications to facilitate
analysis. It is important to recognize that these assump-
tions may not align perfectly with real-world scenarios,
potentially limiting the broad or practical applicability of
the results.

3. The accomplishment of the suggested framework is estab-
lished through a case study including four alternatives
and four characteristics. It is critical to identify that the
pattern may be expanded to integrate more possibilities
and abilities in future efforts.

4. For several values of the parameter q, alternative ranking
orders are calculated. It is important to note that more
investigations might be conducted to investigate the hier-
archical order for other values of these considerations.

VII. CONCLUSION
The execution of the q-spherical fuzzy rough CODAS knowl-
edge signifies substantial progress in the decision-making
method. Its flexibility offers a vast scope of relevance, mak-
ing it a valued apparatus for decision-makers in a variety
of fields. Future revisions should concentrate on evaluation
investigations, evaluating q-SFR CODAS to other CODAS
additions, and measuring similarities. This comparison anal-
ysis will focus on the advantages and difficulties of various
decision-making approaches, which will aid in the expan-
sion of the q-spherical fuzzy rough CODAS methodology.
Additionally, utilizing this investigation involves investigat-
ing other decisive factors and studying the combination of
alternative pieces of knowledge. Such adaptations would
improve the performance’s flexibility, acknowledging it to
manage challenging decision-making circumstances in a vari-
ability of restraints. A multidimensional methodology for
decision-making is also needed. Discovering numerousmeth-
ods and methods to the same difficulty grants researchers
a better identification of the elements that influence deci-
sion conclusions. The full expertise of the strong suit and
boundaries of each approach may be achieved by comparing
the outcomes produced from these diverse methods. To sum
up, the q-spherical fuzzy rough CODAS methodology has
substantial assurance and impacts substantially on the field of

decision-making. Its continuing expansion, association with
alternative procedures, and examination of different views
will strengthen its relevance and provide a more open and
capable decision-making method. In the future, we can apply
this approach using different algebraic structures like soft
sets, etc.
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