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ABSTRACT Vehicle path planning is one of the effective ways to relieve the huge traffic flow pressure of
modern urban transportation system, and it is also an important way to realize carbon emission reduction and
to build green transportation system aswell as smart city. At present, the artificial intelligence (AI) algorithms
with reinforcement learning (RL) as the mainstream have achieved great success in the field of vehicle path
planning. However, RL only conducts policy learning based on the evaluation feedback of the environment,
whereas imitation learning (IL) can obtain more direct feedback from expert decision data, and then obtain
a decision model close to the expert level by comparing with RL. At present, there are very few vehicle
path planning algorithms based on IL, and they are often hindered by the compounding error and sample
complexity dilemma, resulting in poor path planning effectiveness. In order to overcome these problems,
in this paper, a mixed generative adversarial IL (MixGAIL) algorithm has been proposed, which effectively
integrates the transition aware adversarial IL (TAIL) and generative adversarial IL (GAIL) based on
minimum-distance functions (MIMIC-MD)methods under the framework of GAIL. In order to overcome the
optimization dilemma of non-convex and non-smooth objective function after the integration, the proposed
MixGAIL uses mixed policy gradient actor-critic model with random escape term and filter optimization
(MPGACEF), and pioneers the noise projected subgradient descent method with momentum (MNPSGD)
for global optimization. Experiments have shown that by learning expert decision data, MixGAIL has better
vehicle path planning performance and faster iteration speed than classic IL algorithms such as behavioral
cloning (BC), dataset aggregation (DAgger), feature expectationmatching (FEM), game theoretical appraisal
learning (GTAL), TAIL, and MIMIC-MD, and is closer to expert level.

INDEX TERMS Mixed generative adversarial imitation learning (MixGAIL), generative adversarial imita-
tion learning (GAIL), transition-aware adversarial imitation learning (TAIL), generative adversarial imitation
learning based on minimum-distance functions (MIMIC-MD), noise projected subgradient descent method
with momentum (MNPSGD).

I. INTRODUCTION
A. CHALLENGES FOR TRADITIONAL VEHICLE PATH
PLANNING ALGORITHMS
Vehicle path planning is an important decision-making prob-
lem in the field of intelligent transportation, which seeks

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

policies to achieve goals in established transportation sce-
narios. Due to the complexity and variability of vehicle
path planning decision-making, scholars have long been
exploring intelligent decision-making methods that are com-
parable to or even beyond human capabilities. Before deep
learning (DL) methods have been widely used, the combi-
natorial optimization method in operations research played
a leading role in solving the vehicle path planning problem,
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which can be subdivided into accurate methods, heuristic
methods (including a large number of derivative free opti-
mization methods) and model based methods. Although in
real scene applications, accurate methods including dynamic
programming [1], branch-and-cut [2], branch-and-bound [3]
can obtain the global optimal solution, they will also bring
huge computation and high time complexity. Heuristic meth-
ods, including particle swarm optimization (PSO) algorithm
based on two-level local search [4], imperialist competitive
algorithm [5], lkh3 [5], have also been widely studied in the
field of vehicle path planning. however, due to their heuristic
nature, thesemethods also face stubborn problems such as not
always being able to obtain the global optimal solution, long
computation time, and the algorithm performance is heavily
dependent on hyperparameter settings. Model based methods
have also been widely applied in the field of path planning
in recent years, such as methods based on artificial potential
fields [7], methods based on polynomial curves [8], and
controller based planning methods [9], [10], [11]. However,
these methods require that the solution of the problem must
meet all model constraints, be rigid, have poor variability, and
have far less efficient processing ability for large amounts of
data than deep learning network models.

In recent years, with the rapid development of DL, it has
been widely applied to various scenes in transportation field,
deep reinforcement learning (DRL) has also become the
mainstream in the field of vehicle path planning. Vinyals
et al. and Sutskever et al. have used deep neural network
(DNN) to solve the combinatorial optimization problem of
vehicle path planning [12], [13]; Nazari et al. have proposed
a framework based on the pointer network and combined it
with reinforcement learning (RL) [14]; Kool et al. have intro-
duced the attention mechanism into the pointer network and
have demonstrated RL training skills [15]; Kwon et al. have
constructed a construction heuristic through the end-to-end
method which uses parallel learning when training models,
making full use of the symmetry of RL model [16]; Chen and
Tian have proposed a NeuRewriter model and have used RL
actor-critic (AC) framework for training [17]. Lu et al. have
proposed a learning to improve (L2I) algorithm framework
to solve vehicle path planning problems [18]; Nai et al. have
proposed a mixed policy gradient AC model with random
escape term and filter optimization (MPGACEF) method
that combines data-driven and model-driven approaches, and
have demonstrated superior planning and decision-making
capabilities [19]. The main idea of DRL is to enable agents
to learn policies that can maximize the cumulative reward
expectations through reward feedback obtained from the
environment in the process of continuous interaction with the
environment. Usually, rewards are output by reward functions
defined by experts, and the reward function builds the internal
connection between each agent and its goal. In order to let the
agent to achieve its ideal goal, the reward function must be set
appropriately. However, for the complex problem like vehicle
path planning, manually setting appropriate reward functions
is often costly and not very practical. This is just one of the

open challenges in the field of vehicle path planning and even
all intelligent traffic scenarios involving RL.

As there are challenges and drawbacks of RL in the appli-
cation of vehicle path planning, this paper has taken imitation
learning (IL) into consideration. IL can solve decision prob-
lems by imitating samples demonstrated by experts, and it
does not require reward feedback from the environment,
as the feedback information comes from expert decision
samples. In many practical problems, obtaining expert sam-
ples is often easier and less costly than setting appropriate
reward functions. Kuefler et al. have combined recurrent
neural network (RNN) into the policy model, thus expanding
the adversarial IL method to the context based generative
adversarial IL that can use historical observation data to
make decisions, and have applied this to the field of auto-
matic driving, and have achieved safer, more stable and more
efficient driving strategies [20]. In order to achieve safe,
effective, and economical autonomous driving technology,
Bhattacharyya et al. have proposed a multi-agent generative
adversarial IL method based on parameter sharing [21]. Suk-
thankar and Rodrigues-Aguilar have combined a centralized
multi-agent policy gradient optimization learning method
based on parameter sharing on the basis of reactive IL for
autonomous driving problems [22].
It can be seen that although IL has attracted strong attention

from scholars in the field of intelligent transportation, till
now, there are very few reports on the application of IL in
response to challenges for traditional vehicle path planning
algorithms, which also constitutes the research motivation of
this paper.

B. IL AND ITS CATEGORIES
IL, also known as demonstration learning, solves sequential
optimization decision-making problems by imitating sam-
ples demonstrated by experts [23], [24]. In many scenarios
where artificial intelligence (AI) methods are used to solve
sequential optimization decision-making problems, due to
the involvement of a large amount of artificial engineering,
people find it difficult to do manual programming to teach
intelligent agents to think. Specifically, it is an extremely dif-
ficult task to guide intelligent agents through the large amount
of constraint supervision information contained in certain
scenario. On the contrary, humans can easily complete these
tasks and provide a large number of expert decision-making
example behaviors for intelligent agents. Different from RL,
imitation learning does not require reward feedback from the
environment, and its efficient feedback information comes
from expert decision samples. Compared to finding suit-
able reward functions, obtaining expert decision samples is
easier and more cost-effective. During recent years, IL has
successfully demonstrated good practicality in the fields of
autonomous vehicle [25], [26], [27], [28], [29], [30], robot
control [31], [32], [33], [34], [35], [36], AlphaGo [37],
recommendation system [38], internet ridesharing order dis-
tribution [39], game theory [40], [41], [42], [43], navigation
task [44], [45], [46], cache management [47].
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Basically, IL can be divided into two categories: behavioral
cloning (BC) [48], [49] and IL via inverse RL (IRL-IL) [50],
[51]. BC attempts to minimize the action difference between
the agent policy and the expert policy, transforming IL task
into common regression or classification task. Its main idea
is to directly clone the one-step action mapping of expert
samples at each state, that is, to conduct supervised learn-
ing on expert samples. It does not consider the long-term
impact after the current state. It has good performance on
the premise that there are enough expert samples. However,
BC will gradually magnify the subtle errors in the sequen-
tial decision-making process because it does not consider
the long-term impact, thus, there may be the phenomenon
of compounding errors in practical applications [43], [52],
which can be attributed to the limited high-quality infor-
mation provided by the problem. In order to alleviate the
phenomenon of compounding errors, Rajaraman et al. have
proposed a dataset aggregation (DAgger) algorithm based on
online learning, which continuously interacts with the envi-
ronment to generate new data by cloning behavior. On these
new data, DAgger can apply for examples from expert poli-
cies and train again using BC multiple times to achieve the
goal of reducing compounding errors [53]. However, due to
the unknown distribution of expert policies, the total number
of expert examples required by DAgger may not necessarily
be smaller than the number of expert examples required for
BC, and the actual effect has not changed substantially. The
reason is that the main idea of both BC and DAgger is to
clone the single step action policy of expert samples at various
states, without considering the long-term impact after the
current state.

The main idea of IRL-IL is: for a given expert sample,
the unknown reward function is obtained by using inverse
RL; and then based on this reward function, the optimal
policy is obtained by using RL. At present, the mainstream
method of IRL-IL is generative adversarial IL (GAIL), which
is an IL method combined with the generative adversarial
network (GAN) [54], [55], [56]. The essence of GAIL is state
action distribution matching, namely, it uses two networks to
represent the reward function and policy, and uses adversarial
methods to optimize the parameters of the two networks, that
is, by solving a minimax optimization problem transformed
from dual representation, to seek the optimal reward function
and policy. Moreover, GAIL framework has strong inclusive-
ness and generalization, and classic apprenticeship learning
algorithms such as feature expectation matching (FEM) [54]
and game theoretical apprenticeship learning (GTAL) [55]
can also be described by it. In the context of multimodal
learning, GAIL has a lot of derived methods. To name a
few, conditional GAIL (CGAIL) incorporates conditional
constraints on modal labels in the modeling of policies
and reward functions, making the model more suitable for
real-world applications [56]; GAIL with auxiliary classifier
(ACGAIL) introduces an auxiliary network model to enhance
the ability to fully learn abstract features from labeled data
samples, for effective data is often hidden as latent variables

within the sample and cannot be directly obtained from expert
samples [57]; information maximizing GAIL (InfoGAIL)
utilizes the principle of maximizing mutual information to
enhance the correlation between the samples generated by
the policy and the latent variables, thereby achieving efficient
learning [58]; furthermore, variational autoencoders GAIL
(VAE-GAIL) uses variational autoencoders to infer modal
latent variables in expert trajectory samples, and learns the
latent variables that best represent the entire expert trajectory
in the expert trajectory samples [46]. According to different
observation mechanisms, there are also many other types of
GAIL models: third person IL (TPIL) provides a third person
perspective IL solution to address the phenomenon of differ-
ences in expert samples observed from different perspectives,
which can meet the practical needs of IL applications under
different observation perspectives [59], GAIL with recur-
rent policies (RP-GAIL) combines RNN into GAIL, thereby
improving the ability to make decisions using contextual
semantic relationships of historical observation data [20];
generative adversarial imitation from observation (GAIfO)
can learn the behavioral intentions of experts from sequential
observation samples and improve the reward function [60].
Corresponding to multi-agent RL, Song et al. have pro-
posed multi-agent GAIL (MA-GAIL), which assumes that
the policies of other agents are either expert policies or have
satisfied Nash equilibrium, so that the learned joint policies
can be applied to all intelligent agents [61]. At present, the
relatively more advanced GAIL related methods are tran-
sition aware adversarial IL [62] (TAIL) and GAIL based
on minimum-distance functions (MIMIC-MD) [53]. TAIL
has designed better expert state-action distribution estimation
than previous methods and optimized it usingminimax objec-
tives. MIMIC-MD is a generative adversarial IL algorithm
based on the minimum distance function, given a transition
model and expert certainty, and it is the first adversarial IL
algorithm to overcome the difficulty of sample complexity.

C. CONTRIBUTION OF THIS PAPER
As mentioned in Section I-A, at present, there are quite few
reports on vehicle path planning methods based on IL. In the
only reports related, one type is BC based path planning
methods, and the other type is TAIL or MIMIC-MD meth-
ods based on ‘‘state action distribution matching’’ under the
GAIL framework. However, these methods still have some
drawbacks:

(1) Although the path planning method based on BC is
simple and effective, there is no good solution to the inherent
problem of compounding errors.

(2) Although TAIL effectively suppresses the problem of
compounding errors, the problem of sample complexity has
not been effectively solved. And from the perspective of opti-
mization, the objective functions for policy update and reward
function update are both non-convex functions. Thus,their
final overall optimization goals can only approximate to the
saddle points, and cannot obtain the global optimal solutions.

VOLUME 12, 2024 85861



Z. Yang et al.: Mixed Generative Adversarial IL Based Vehicle Path Planning Algorithm

FIGURE 1. Imitation learning process under vehicle path abstraction.

(3) MIMIC-MD is the first GAIL method to overcome the
difficulty of sample complexity. However, the optimization
objective function of MIMIC-MD is nonlinear, non-convex
and non-smooth, which is extremely difficult to be solved.
At present, this objective function is usually transformed
into a linear programming problem for solution, so as to
apply linear convex relaxation approximation to non-convex
and non-smooth problems, and to obtain their approximate
solutions rather than solve them accurately.

The main contribution of this paper is just to try to solve
the drawbacks mentioned above, and can be listed as follows:

(1) In this paper, a mixed generative adversarial IL (Mix-
GAIL) has been proposed, and has been applied to vehicle
path planning problems for the first time. MixGAIL com-
bines the advantages of both TAIL and MIMIC-MD, and can
effectively suppress the problem of compounding errors and
overcome sample complexity challenges.

(2) The difficulty of MixGAIL lies in the optimization of
the algorithm. In the TAIL module of MixGAIL, the optimal
policy is updated under the condition of the current reward
function, and this goal is consistent with the goal of RL.
In this paper, a mixed policy gradient AC model with random
escape term and filter optimization (MPGACEF) proposed
by [19], rather than the usual policy optimization techniques,
have been introduced into the field of IL. On one hand,
this method unifies the gradient form of data-driven and
model-driven policies, and for the first time introduces a grad-
ual transformation between data-driven and model-driven
approaches to obtain more change information; and on the
other hand, considering that the optimization objective func-
tion in this step is a non-convex function, the filter technology
and noise gradient technology contained in MPGACEF can
perform global optimization well.

(3) Another optimization challenge for MixGAIL lies in
the two steps involved in the algorithm. One of the steps
is the reward function update link in TAIL module, whose
essence is to solve the minimum problem of a non-convex
optimization problem; The other is the optimization link of
the limited optimal policy in the MIMIC-MDmodule, whose
essence is to solve theminimum problem of a non-convex and
non-smooth optimization problem, and this problem can only

be converted into a linear programming problem for solution,
and there is no accurate optimization scheme that depends on
gradient information. Since both the above two problems are
trying to solve theminimum problem of non-convex function,
in this paper, a unified optimization framework has been
considered, and a noise projected subgradient descent method
with momentum (MNPSGD) method has been proposed. The
momentum structure can accelerate the algorithm in the first
order and improve its computational speed; the noise term and
projection operator can overcome non-convex problems and
facilitate global optimization; and the introduction of subgra-
dient can solve the problem of lacking gradient information
of non-smooth functions.

II. BASIC THEORIES
A. BASIC IDEAS OF VEHICLE PATH PLANNING BASED ON
IL
At first, using IL methods to learn expert data D, thus the
imitator policy π is obtained. Then, abstract the vehicle path
planning problem to be solved as a problem composed of
a group of nodes (n1, n2, . . . , nm). Feasible solution can be
obtained through the imitator policy π . Each node corre-
sponds to a solution, that is, the i-th action ai corresponding to
the i-th ni. The sequence (a1, a2,. . .ai) is called the sequence
of solutions. Under the guidance of the imitator policy π ,
the neural network generates a solution for each node after
completing each learning. Here, the vehicle path planning
problem can be understood as the vehicle executing the i-th
action ai and selecting a node. By guiding vehicles to different
nodes through a sequence of solutions, the function of path
planning is achieved, such idea can be described in Figure 1.

B. CLASSICAL ALGORITHMS OF IL
The development of IL algorithm has roughly gone through
three stages of development.

The first stage is the earliest stage of IL, where algo-
rithms represented by BC and DAgger approximate expert
policies throughmaximum likelihood estimation, but they are
severely affected by composite errors, resulting in poor imi-
tation performance. The BC framework has been described
in detail in [49] and [53]. Its idea is relatively simple and
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direct, which follows the rule of ‘‘policy distribution match-
ing’’. BC first uses maximum likelihood estimation (MLE)
to estimate expert policy πE from expert decision data, and
the imitator policy is represented as π , both πE and π are
essentially random variables. BC hopes to make the policy π

sufficiently similar to the policy πE , and their similarity can
be generally measured by Kullback-Leibler (KL) divergence.
Of course, there are also issues with compound errors in the
practical application of BC. Essentially, the training dataset is
collected through policy πE , but the imitator policy π learned
during the evaluation process is based on the trajectory col-
lected by policy π . This directly leads to the inconsistent
distribution of accessed policy state-action in evaluation test-
ing and state-action in training dataset. Therefore, DAgger
has been proposed afterwards to increase the interaction
frequency between the cloning policy and the environment,
thereby reducing composite errors [53]. However, from the
perspective of practical application effects, due to the limited
expert policy information provided, DAgger still requires a
large amount of training data costs and has not achieved any
qualitative changes by comparing with BC.

The second stage is the early stage of adversarial IL, and
the algorithms at this stage have already taken the embryonic
form of adversarial learning, and have improved the quality
of imitation and achieved lower compound errors. Actually,
representative methods at this stage such as GAIL, FEM, and
GTAL perform even worse than BC and DAgger. GAIL and
its variants, FEM and GTAL, are essentially solving a mini-
max optimization problem. The optimization idea is to obtain
the imitation policy through the policy gradient method under
the given reward function, and then use the online projection
gradient descent method to obtain the latest reward under
the current imitation policy [54], [55], [56], [63], [64]. Thus,
unlike BC which is based on ‘‘policy distribution matching’’,
the core idea of GAIL is adversarial IL minimax modeling
based on the ‘‘state-action distribution matching’’ rule. The
rule refers to that the closer the distance between the state
action distribution Pπ

h of the imitation policy and the state
action distribution PπE

h of the expert policy is, the closer the
goal of IL, that is, the cumulative return of the agent and
the expert policy will be. The advantage of the ‘‘state-action
distribution matching’’ rule is that even on states that have
not been accessed in the dataset, it can still help select actions
that are close to the expert state-action distribution, which can
effectively reduce composite errors. However, as generative
adversarial structures have been introduced into IL, it also
leads to an increase in sample complexity. That is why in
some practical scenarios, the actual effect of GAIL is not even
as good as BC.

The third stage is the current stage of adversarial IL, and
the representative methods such as TAIL and MIMIC-MD
have truly overcome the problem of compound errors. The
reason is that they have all utilized the ‘‘missing mass’’
property of BC, which means that they all perform an
approximate estimation of BC on a subset of expert data.
In terms of optimization, TAIL and MIMIC-MD both have

their own problems. TAIL still uses convex optimization
to solve non-convex optimization problems, so its optimal
solution always approaches the saddle point, and its global
optimization ability is insufficient. MIMIC-MD is essentially
a non-convex and non-smooth optimization problem. The
optimization policy of MIMIC-MD approximates the orig-
inal problem as a linear programming problem, which can
be solved in polynomial time. There is still huge room for
improvement in both the optimization effect and time.

In order to facilitate the expression of the algorithms pre-
sented in this paper, the principles of TAIL and MIMIC-MD
will be briefly discussed below.

1) TAIL
Same as GAIL, TAIL is also based on minimax optimiza-
tion problem for algorithm deduction. The biggest difference
between TAIL and GAIL lies in the estimation methods
for expert state-action distribution. A more straightforward
statement is that TAIL has a more refined estimation of
expert state-action distribution and a smaller error compared
to GAIL.

Define trh as the trajectory truncated to time step h, where
trh = {s1, a1; . . . , sh, ah}, then

PπE

h (s, a) =
∑

trh∈Trh

PπE
(trh)

∏
{trh(sh, ah) = (s, a)} (1)

where Trh is all trajectories truncated to time step h, trh(sh,
ah) represents the state-action pairs accessed at time step.
The probability of (s, a) is the probability of all (truncated)
trajectories occurring containing (s, a). Redefine the set of
truncated trajectories

TrDh := {trh : ∀h
′
∈ [h], trh(sh′ ) = Sh′ (D)} (2)

where trh(sh’) represents the state accessed of truncated tra-
jectory trh at time step h′. That is to say, any state on the
truncated trajectory contained in TrDh has been accessed by
dataset D. PπE

h (trh) is the probability that the deterministic
expert policy πE triggers the occurrence of truncated trajec-
tory trh.
In order to obtain a more precise estimation than GAIL,

the datasetDwas randomly divided into two equal parts:D=
D1 ∪ Dc1. If D1 is given, there is

PπE

h (s, a) =
∑

trh∈Tr
D1
h

PπE
(trh)

∏
{trh(sh, ah) = (s, a)}

+

∑
trh /∈Tr

D1
h

PπE
(trh)

∏
{trh(sh, ah) = (s, a)} (3)

From dataset D1, the expert actions on the state being
accessed by D1 can be seen. Therefore, the transition proba-
bility ofMarkov decision process (MDP) is used to accurately
calculate the first item on the right side of equation (3). For
the second term, MLE can be performed using data set D1:

1
|Dc1|

∑
trh∈Dc1

∏
{trh /∈ TrD1

h , trh(sh, ah) = (s, a)} (4)
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TABLE 1. The definition of actions.

TABLE 2. The definition of states.

Thus, the new estimation P̃πE

h (s, a) of PπE

h (s, a) can be
acquired as equation (5) shows, and the TAIL minimax opti-
mization problem can be get as equation (6) shows.

P̃πE

h (s, a)

=

∑
trh∈Tr

D1
h

PπE
(trh)

∏
{trh(sh, ah) = (s, a)}

+
1
|Dc1|

∑
trh∈Dc1

∏
{trh /∈ TrD1

h , trh(sh, ah) = (s, a)} (5)

min
π∈2

H∑
h=1

DTV(Pπ
h , P̃π

h )

= minmax
π∈2 ω∈W

∑
(s,a)

ωh(s, a)
[
P̃πE

h (s, a)− Pπ
h (s, a)

]
(6)

By utilizing the same optimization method as GAIL, its
solution can be obtained.

2) MIMIC-MD
The idea of MIMIC-MD is to adopt behavior consistent
with experts like BC on already accessed states, and it also

TABLE 3. Composite state examples.

incorporates state-action pair matching criteria. MIMIC-MD
is a true IL algorithm that overcomes the difficulty of sample
complexity. Moreover, MIMIC-MD also randomly divides
dataset D into two equal parts: D = D1 ∪ Dc1, with the opti-
mization objective as equation (7) shows, where for dataset
D1, the set of policies generated by behavioral cloning algo-
rithms is shown in equation (8).

min
π∈2mimic(D1)

H∑
h=1

∑
(s,a)∈S×A

∣∣∣∣∣∣Pπ (trh : trh /∈ TrD1
h , trh(sh, ah)

= (s, a))−
1
|Dc1|

∑
trh∈Dc1

∏
{trh /∈ TrD1

h , trh(sh, ah)= (s, a)}

∣∣∣∣∣∣
(7)

2mimic(D1) {π ∈ 2det : ∀h ∈ [H ], s ∈ Sh(D1),

πh(·|s) = δπE
t (s)

}
(8)

where 2det represents the set containing all deterministic
policies, Sh(D1) represents the set of states accessed in dataset
D1 at time step h, and δπE

t (s)
represents the Dirac distribution

defined in the action space, which means that the distribution
of the probability that each policy in the policy set2mimic(D1)
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will execute expert actions on the states contained in dataset
D1.

For π = 2mimic(D1), π performs expert actions on all
states accessed by dataset D1, so for any truncated trajectory
trh in set TrD1h , there is Pπ (Trh) = PπE

(Trh). Therefore, it is
only necessary to match the probability of truncated trajecto-
ries that are not included in TrD1h .

However, it is worth noting that Formula (7) is essentially
to solve the minimum problem of a non-convex and non-
smooth optimization problem, but till now, this problem can
only be converted into a linear programming problem [65]
or an approximated extended problem [66] for solution, and
there is no accurate optimization scheme relying on gradient
information.

III. MIXGAIL
In this section, the mixed GAIL (MixGAIL), which aims
to integrate the advantages of both TAIL and MIMIC-MD
while overcoming the challenges of compounding errors and
sample complexity, will be proposed and described in detail.
In the process of mixing the two algorithms, the difficulty of
the architecture is that TAIL and MIMIC-MD use different
optimization policies for their own goals and requirements,
that is, the objective functions for policy update and reward
function update in TAIL are both non-convex functions, and
the optimization policy of TAIL can only approximate the
optimal solution to the saddle point, and cannot obtain the
global optimal solution. The optimization objective func-
tion of MIMIC-MD is non-convex and non-smooth, and
the conventional convex optimization method in machine
learning (ML) is ineffective, so at present, it can only be
solved approximately by linear programming method, and it
is difficult to use the unified optimizer to optimize it with
TAIL, which will bring great difficulties to the integration
of the two IL methods. To overcome the above difficulties,
a fast and simple non-convex and non-smooth accelerated
optimization method (which can also handle non-convex and
smooth problems) is proposed in this section.

A. MNPSGD
With ML entering the stage of DL, a large number of opti-
mization problems [67], [68], [69], [70], [71], [72], [73],
[74], [75], [76], and various types of accelerated optimization
methods have been developed. For smooth problems, Nes-
terov have proposed the accelerated gradient method (AGD),
which have pioneered the concept of momentum in physics
and extended the derivation of a large number of gradient
methods with momentum [77], [78], [79]. However, such
methods are not suitable for the non-smooth problem dis-
cussed in this paper. For non-smooth problem, Nesterov [80]
and Beck and Teboulle [81] have proposed the accelerated
proximal gradient method (APG) [80], [81], but this method
is not applicable to the non-convex problem in this paper. For
non-convex problems, Rohde and Tsybakov [82], Koltchin-
skii et al. [83], Negahban and Wainwright [84], Jain et al.

TABLE 4. The attributes of hyperparameters.

[85], Hardt and Wootters [86], Zhao et al. [87], Sun and Luo
[88], and Zheng and Lafferty [89] have proposed different
optimization strategies for different non-convex problems in
ML [82], [83], [84], [85], [86], [87], [88], [89]. However,
these methods are not accelerated optimization methods, and
can cause significant computational pressure on physical
operations. In fact, at present, non-convex and non-smooth
problems are still open problems and there is no mature
theoretical solution.

In this paper, the essential difficulty of the integration
of TAIL and MIMIC-MD is to find a unified optimization
framework. For this reason, a fast and concise noise projected
gradient descent method with momentum is proposed for the
first time, the essence of its idea is to use the combination
of projected descent method and gradient descent method to
solve non-smooth problems; then, momentum term is intro-
duced to accelerate the algorithm; and finally the noise term
(escape term) is introduced to jump away from the local
extreme traps and saddle points. For example, to solve the
following non-convex and non-smooth problem:

min
x

8(x) (9)

where 8 is the non-convex non-smooth objective function,
the proposed algorithm can be described as Algorithm 1.

Algorithm 1
1: Initialize z1 = x1 = x0, t1 = 1, t0 = 0.
2: fork = 1, 2, 3, . . . , do
3: yk = xk +

tk−1
tk

(zk − xk )+
tk−1−1
tk

(xk − xk−1),
4: zk+1 = PW

(
yk − αy∂8(yk )

)
+ η1,

5: vk+1 = PW (xk − αx∂8(xk ))+ η2,

6: tk+1 =

√
4t2k+1+1

2 ,

7: xk+1 =

{
zk+1, If 8(zk+1) ≤ 8(vk+1)
vk+1, else

.

8: end for
9: Output xk+1

where αx , αy are step hyperparameters, η1, η2 are standard
Gaussian noise.

B. CORE ALGORITHM OF MIXGAIL
In order to integrate the respective advantages of TAIL and
MIMIC-MD, their specific hybrid IL algorithm will be dis-
cussed and given. The main idea of the integrated algorithm
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TABLE 5. Evaluation indicators.

Algorithm 2

1: Input expert data D, maximum number of iterations T , step size η(t), weight coefficient τ ∈ (0, 1)
2: Initialize reward function ω(1)

3: divide the expert dataset into three equal parts:D = D1 ∪ D2 ∪ D3,
4: get the estimator P̃πE

h in equation (5), namely, calculate:

P̃πE

h (s, a) =
∑

trh∈Tr
D1
h

PπE
(trh)

∏
{trh(sh, ah) = (s, a)} +

1
|D2 ∪ D3|

∑
trh∈D2∪D3

PπE
(trh)

∏
{rh /∈ TrD1

h , trh(sh, ah) = (s, a)},

5: for t = 1, 2, . . . , T, do
6: use MPGACEF in [19] to solve π (t) under the condition of reward function ω(t),
7: solve the corresponding state-action distribution Pπ (t)

h (s, a) for policy π (t),

8: use Algorithm 1 to renew reward function ω(t+1), where F (t)(ω) =
∑

(s,a)∈S×A ωh(s, a)
[
P̃πE

h (s, a)− Pπ (t)

h (s, a)
]
,

9: end for
10: solve average state-action distribution: P̄h(s, a) =

∑T
t=1 P

π (t)

h (s, a)/T ,
11: export policy: π̄h(a|s)← P̄h(s, a)/

∑
a P̄h(s, a),

12: use Algorithm 1 to solve π̃h(a/s), namely, solve

min
π∈2mimic(D3)

H∑
h=1

∑
(s,a)∈S×A

∣∣∣∣∣Pπ
(
trh : trh /∈ TrD3

h , trh(sh, ah) = (s, a)
)
−

1
|D1∪D2|

∑
trh∈D1∪D2

∏
{trh /∈ TrD3

h , trh(sh, ah) = (s, a)}

∣∣∣∣∣,
13: solve π∗(a/s) = τ π̄h(a/s)+ (1− τ )π̃h(a/s),
14: Output policy π∗

is to randomly divide the expert dataset into three equal parts:
D=D1∪D2∪D3. Let TAIL to operateD1 andD2∪D3, and use

the MPGACEF method in literature [19] to solve the policy
for each iteration under the current reward function condition;

85866 VOLUME 12, 2024



Z. Yang et al.: Mixed Generative Adversarial IL Based Vehicle Path Planning Algorithm

FIGURE 2. Performances on CVRP problems by using proposed MixGAIL compared with (a) BC; (b) DAgger; (c) FEM; (d) GTAL; (e) GAIL; (f) TAIL;
(g) MIMIC-MD after 200 episodes of learning.

then, let MIMIC-MD to operate D1 ∪D2 and D3. Both TAIL
and MIMIC-MD utilize optimization method proposed in
Section III-A for optimization; finally, the policies obtained
from TAIL andMIMIC-MD are weighted and combined. The
specific algorithm can be described as Algorithm 2.

IV. NUMERICAL EXPERIMENT
In this section, datasets of the traveling salesman prob-
lem (TSP), capacitated vehicle routing problem (CVRP) in
literature [14], and multiple routing with fixed fleet prob-
lems (MRPFF) in literature [90] are used to be solved via
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TABLE 6. Tour length, gap percentage and average solution time in solving CVRP problems.

TABLE 7. Tour length, gap percentage and average solution time in solving MRPFF problems.

TABLE 8. Tour length, gap percentage and average solution time in solving TSP problems.

FIGURE 3. Performances of (a) CPU time; (b) NIT time for SubGD, PGD and MNPSGD on CVRP problem optimizations.

MPGACEF, so as to obtain the state-action dataset for each
problem. Considering the efficiency ofMPGACEF in solving
the above three problems, these three state-action datasets
are considered as expert datasets. These three expert datasets

are provided to BC, DAgger, FEM, GTAL, GAIL, TAIL,
MIMIC-MD, and the proposed MixGAIL in this paper to
learn and imitate expert policies, and then solve the TSP,
CVRP, and MRPFF problems.
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FIGURE 4. Performances on MRPFF problems by using proposed MixGAIL compared with (a) BC; (b) DAgger; (c) FEM; (d) GTAL; (e) GAIL; (f) TAIL;
(g) MIMIC-MD after 200 episodes of learning.

The experimental data learned by each model in this
section is the expert trajectories (the state-action sequences
generated by experts solving specified tasks). 1000 expert
trajectories for the CVRP20 scenario, 1000 expert tra-
jectories for the CVRP50 scenario, and 1000 expert tra-

jectories for the CVRP100 scenario are provided, and
the number and proportion of data provided for the
MRPFF20 and TSP20; MRPFF50 and TSP50; MRPFF100
and TSP100 scenarios are corresponding to the CVRP20,
CVRP50, CVRP100 problem, so there are a total of
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FIGURE 5. Performances of (a) CPU time; (b) NIT time for SubGD, PGD and MNPSGD on MRPFF problem optimizations.

9000 expert trajectories. Each expert trajectory consists of
200 state-action pairs generated by expert policies, each
state action pair includes a 4-dimensional state vector
and a 4-dimensional action vector. So the total num-
ber of our experimental data is 3600000 4-dimensional
vectors.

In fact, the definition of state-action vectors is not unique.
The action definition of vehicle path planning generally
adopts the 8-direction or 4-direction definition method. The
definition of state is generally based on the existing exper-
imental data situation. For example, if the existing data is
image data, convolutional neural networks (CNNs) or graph
neural networks (GNNs) are generally used to extract features
from image samples, and the effective feature data vector
obtained is considered as the state vector.

Of course, obtaining global image data is costly, so it is
generally possible to define state vectors based on vehicle
driving road features, especially road intersection features.
Based on the characteristics of the existing experimental data
in this paper, the action is defined by 4-dimentional vectors,
4 unit vectors can express forward, backward, left, and right
directions, as shown in Table 1. The use of this definition
method is concise and clear, moreover, the sparsity of the unit
vector data helps subsequent network algorithm steps to learn
clearly and quickly.

Moreover, in this paper, the state is also defined by using
4-dimentional vectors, 4 unit vectors can express the basic
driving directions that the vehicle can choose under the cur-
rent road conditions, as shown in Table 2. Based on the
specific road conditions, in each 4-dimensional basic state
vector shown in Table 2, the current drivable direction is
defined as 1, while the non-drivable direction is defined as 0.
It should be pointed out that the real road conditions are much
more complex than the 4 unit vectors shown in Table 2, but
they can all be represented by adding up these 4 unit vectors.
Table 3 shows 4 composite state examples.

TABLE 9. Tour length, gap percentage and average solution time in
solving the problem in real-world scenario.

All algorithms have been used to train the same NN archi-
tecture for all tasks. It includes a policy network π̄ , which
includes two hidden layers, each with 100 neurons, and a
nonlinear tanhactivation function enabled in the middle. The
policy network π̃ , and the discriminant networks correspond-
ing to the two policy networks also use the same hidden layer
architecture. All networks are always randomly initialized at
the beginning of each experiment.

The parameters of the entire model include network
parameters and hyperparameters. Due to the fact that the
optimization objective of IL is to find the optimal policy
and reward, in essence, it optimizes the corresponding policy
network the parameters and discriminant network parame-
ters. Specifically, network parameters include the parameters
contained in the policy network π̄ , policy network π̃ , and
discriminator network. The input state vector of the policy
network π̄ is a 4-dimensional vector, so each neuron in the
first hidden layer includes 4 weight parameters and 1 bias
parameter. The second hidden layer neuron is connected
to the first hidden layer neuron, so each neuron includes
100 weight parameters and 1 bias parameter. After the two
hidden layers, a softmax function will be connected to output
a 4-dimensional action vector. This softmax function will
contain 100 weight parameters and 1 bias parameter. So the
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FIGURE 6. Performances on TSP problems by using proposed MixGAIL compared with (a) BC; (b) DAgger; (c) FEM; (d) GTAL; (e) GAIL; (f) TAIL;
(g) MIMIC-MD after 200 episodes of learning.

policy network π̄ has a total of 10701 parameters. The pol-
icy network π̃has the same structural settings as the policy
network, so it also has 10701 parameters.A 4-dimensional
action vector output from a certain policy network, com-
bined with the 4-dimensional state vector and 4-dimensional
action vector of expert data, indicates that each neuron in

the first hidden layer of the discriminative network includes
12 weight parameters and 1 bias parameter. And, each neuron
in the second hidden layer includes 100 weight parameters
and 1 bias parameter. The discriminant network finally uses
the softmax function to output the discriminant probability,
so the softmax function will contain 100 weight parameters
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FIGURE 7. Performances of (a) CPU time; (b) NIT time for SubGD, PGD and MNPSGD on TSP problem optimizations.

FIGURE 8. The map of Huzhou with the starting and ending points in the problem of
real-world scenario marked.

and 1 bias parameter. In summary, the discriminative net-
works corresponding to the two policy networks have a total
of 23002 parameters, and there are a total of 44404 net-
work parameters. The network parameters are optimized and
solved through Algorithm 1.
The hyperparameter τ linearly combines the action output

vectors of policy network π̄ and π̃ , and its distribution is
uniform. The policy netwok π̄ and π̃ are optimized indepen-
dently through Algorithm 1, so there will be 2 sets of (αx ,
αy) learning rate parameters. In summary, there are 5 hyper-
parameters in total. Table 4 provides the necessary attributes
of each hyperparameter.

This paper adopts the mainstream Bayesian optimization
method to solve the above hyperparameters [91]. The action

vectors output by the policy network π̄and the policy net-
work π̃ are linearly combined, as described in Algorithm 2,
to obtain the action output vector of policy π∗. An L2 error
loss function is constructed with the expert action vector,
which is used as the optimization objective function, and
Bayesian optimization method is used to optimize the search
area (10−6, 10−1) × (0, 1). Due to the unknown form of the
objective function and its derivative, it is essentially a black
box optimization problem, but this is just the problem that
Bayesian optimization method is good at. To solve the above
5 hyperparameters, Bayesian optimization method is set as
follows: firstly, the kernel function of the Bayesian linear
regression part of the Bayesian optimization method is set to
a Gaussian kernel function; secondly, the sampling function
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FIGURE 9. Performances on the problem of real-world scenario by using proposed MixGAIL compared with (a) BC; (b) DAgger; (c) FEM; (d) GTAL;
(e) GAIL; (f) TAIL; (g) MIMID-MD after 200 episodes of learning.

in Bayesian optimization methods is set to probability of
improvement.

For subsequent numerical experiments, the following
standardized indicators including tour length (TourL), gap
percentage (Gap), algorithm operation time (Time), ρs(τ ) and
average reward are introduced as shown in Table 5.

A. CVRP PROBLEM
In this section, imitated policies learned from BC, DAg-
ger, FEM, GTAL, GAIL, TAIL, MIMIC-MD, and MixGAIL
according to expert policy are used to solve the CVRP
problem, 1000 random instances of CVRP20, CVRP50, and
CVRP100 instances have been given. Table 6 reports the
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FIGURE 10. Performances of (a) CPU time; (b) NIT time for SubGD, PGD and MNPSGD on the problem optimizations of real-world scenario.

running time in seconds (‘‘s’’ in short). It can be seen that
all indicators for MixGAIL are superior to existing methods.

Figure 2 shows the approximation of average rewards
to expert rewards by BC, DAgger, FEM, GTAL, GAIL,
TAIL, MIMIC-MD, and MixGAIL in the CVRP problem
after 200 episodes of learning, with the vertical axis aver-
age reward and the horizontal axis learning steps. It can be
intuitively seen that MixGAIL has the best approximation for
expert rewards.

Due to the fact that the optimization objective function
in this paper requires the use of non-smooth optimization
techniques for optimization, here in numerical experiment,
two most common non-smooth optimization methods –
projected gradient descent (PGD) and subgradient descent
(SubGD) inML are chosen to compare their optimization per-
formance with proposed MNPSGD method. For convention
of expression, the number of iterations has been recorded as
NIT. Figure 3 shows the performance of three optimization
methods in CVRP problems, it is evident that MNPSGD out-
performs other methods in optimizing performance in both
CPU time and NIT time.

B. MRPFF PROBLEM
In this section, imitated policies learned from BC, DAg-
ger, FEM, GTAL, GAIL, TAIL, MIMIC-MD, and MixGAIL
according to expert policy are used to solve the MRPFF
problem, the application instance of 20, 50 and 100 user
nodes have been given. Table 7 reports the running time in
seconds. It can also be seen that all indicators for MixGAIL
are superior to existing methods.

Figure 4 shows the approximation of average rewards to
expert rewards by BC, DAgger, FEM, GTAL, GAIL, TAIL,
MIMIC-MD, and MixGAIL in the MRPFF problem after
200 episodes of learning, with the vertical axis average
reward and the horizontal axis learning steps. It can also be

intuitively seen that MixGAIL has the best approximation for
expert rewards.

Figure 5 shows the performance of three optimiza-
tion methods in MRPFF problems, it is also evident that
MNPSGD outperforms other methods in optimizing perfor-
mance in both CPU time and NIT time.

C. TSP PROBLEM
In this section, imitation expert strategies learned from BC,
DAgger, FEM, GTAL, GAIL, TAIL, MIMIC-MD, and Mix-
GAIL are used to solve the TSP problem, the application
instance of 20, 50 and 100 user nodes have been given. Table 8
reports the running time in seconds. It can still be seen that
all indicators for MixGAIL are superior to existing methods.

Figure 6 shows the approximation of average rewards
to expert rewards by BC, DAgger, FEM, GTAL, GAIL,
TAIL, MIMIC-MD, and MixGAIL in the TSP problem after
200 episodes of learning, with the vertical axis average
reward and the horizontal axis learning steps. It can still be
intuitively seen that MixGAIL has the best approximation for
expert rewards.

Figure 7 shows the performance of three optimization
methods in TSP problems, it is still evident that MNPSGD
outperforms other methods in optimizing performance in
both CPU time and NIT time.

D. REAL-WORLD SCENARIO
In this section, real-world scenario case is presented in the
city of Huzhou, China. Vehicles are required to travel from
Huzhou College to Huzhou Railway Station with a total dis-
tance at about 13 kilometers, as shown in Figure 8. In the case
study, experienced human drivers drive the vehicle and gen-
erate 200 trajectories as expert data, each trajectory contains
200 action-state pairs, and it is assumed that the average
reward value for human experts is the highest. Furthermore,
all of the algorithm network models are trained and tested,
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and the actual performance and average reward of various
IL tasks are evaluated based on standardized indicators. The
performance of the optimization algorithm proposed in this
paper is also evaluated based on standardized incidators.

Imitation expert strategies learned from BC, DAgger,
FEM, GTAL, GAIL, TAIL, MIMIC-MD, and MixGAIL are
used to solve the problem in real-world scenario, Table 9 has
also shown that, all indicators for MixGAIL are superior to
existing methods.

Figure 9 shows the approximation of average rewards to
expert rewards by BC, DAgger, FEM, GTAL, GAIL, TAIL,
MIMIC-MD, and MixGAIL in the problem of real-world
scenario after 200 episodes of learning, with the vertical axis
average reward and the horizontal axis learning steps. It can
be intuitively seen that MixGAIL has the best approximation
for human expert rewards.

Figure 10 shows the performance of three optimization
methods in the problem of real-world scenario, it is still evi-
dent that MNPSGD outperforms other methods in optimizing
performance in both CPU time and NIT time.

V. CONCLUSION
In order to overcome the bottleneck of composite error and
sample complexity in TAIL andMIMIC-MD, this paper fused
these two GAIL methods mentioned above, but it is not just
a simple fusion on the algorithm logic level. The deep-seated
fundamental obstacle to the fusion of TAIL and MIMIC-MD
lies in the need for a unified optimization algorithm frame-
work. In this paper, the proposed non-convex and non-smooth
accelerated optimization method MNPSGD is used to over-
come this bottleneck, and then leads up to the proposed
MixGAIL whichis in essence a hybrid form of the TAIL and
MIMIC-MD. By applying the proposed MixGAIL method
in CVRP, MRPFF, TSP, and real-world path planning prob-
lems respectively, it can be seen that MixGAIL outperforms
various current IL methods in approaching expert rewards
in standardized vehicle path planning indicators and average
rewards.

At present, the cutting-edge methods of path planning
mainly revolve around the extension of RL theory, but RL
requires a sound reward mechanism and system. To obtain
this reward mechanism and system, it often requires a large
amount of professional knowledge, experience, and labor
time costs, which are largely manual, time-consuming, and
resource intensive. Moreover, even if IL methods that can
directly learn expert data layout policies without setting
rewards in advance, have been introduced into the field of
path planning research, their algorithm effectiveness is often
constrained by composite errors and sample complexity.
In this background, the MixGAIL proposed in this paper
introduces IL methods into vehicle path planning problems,
effectively overcoming the challenges of composite errors
and sample complexity.

From the perspective of the future evolution trend of this
research direction, at the macro level, RL is accelerating the
integration of quantum field technology, and it is particularly

noteworthy that the deep intersection of RL and variational
quantum circuit technology has greatly improved the com-
putational ability of RL. IL, which can be regarded as the
inverse problem of RL, also has great potential to integrate
with quantum technology in theory. It is foreseeable that its
theoretical research will occupy a place in the forefront of
vehicle path planning methods. At the micro level, MixGAIL
can be combined with many branches of AI. If MixGAIL is
combined with curriculum learning, it can be trained from
simple to complex, and expert strategies can be learned more
efficiently. For example, the integration of MixGAIL with
multitasking andmulti-agent methods can expand the breadth
and depth of path planning application scenarios.

APPENDIX A
ABBREVIATIONS
AC Actor-critic.
ACGAIL Generative adversarial imitation learning

with auxiliary classifier.
AGD Accelerated gradient method.
AI Artificial intelligence.
APG Accelerated proximal gradient method.
BC Behavioral Cloning.
CGAIL Conditional generative adversarial imitation

learning.
CNN Convolutional neural network.
CVRP Capacitated vehicle routing problem.
DAgger Dataset aggregation.
DL Deep learning.
DNN Deep neural network.
DRL Deep reinforcement learning.
FEM Feature expectation matching.
GAIfO Generative adversarial imitation from obser-

vation.
GAIL Generative adversarial imitation learning.
GAN Generative adversarial network.
GNN Graph neural network.
GTAL Game theoretic apprenticeship learning.
IL Imitation learning.
InfoGAIL Information maximizing generative adver-

sarial imitation learning.
IRL-IL Imitation learning via inverse reinforcement

learning.
L2I Learning to improve.
lkh3 3rd-generation Lin-Kernighan-Helsgaun

TSP solver.
MA-GAIL Multi-agent generative adversarial imitation

learning.
MDP Markov decision process.
MIMIC-MD Generative adversarial imitation learning

based on minimum-distance functions in the
setting where the transition model is given
and the expert is deterministic.

MixGAIL Mixed generative adversarial imitation
learning.
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ML Machine learning.
MLE Maximum likelihood estimation.
MNPSGD Noise projected subgradient descent method

with momentum.
MPGACEF Mixed policy gradient actor-critic model

with random escape term and filter opti-
mization.

MRPFF Multiple routing with fixed fleet problem.
NeuRewriter The algorithm that learns a policy to pick

heuristics and rewrite the local components
of the current solution to iteratively improve
it until convergence.

NN Neural network.
PGD Projection gradient descent method.
PSO Particle swarm optimization.
RL Reinforcement learning.
RNN Recurrent neural network.
RP-GAIL Generative adversarial imitation leaerning

with recurrent policies.
SubGD Subgradient descent method.
TAIL Transition-aware adversarial imitation

learning.
TPIL Third-person imitation learning.
VAE-GAIL Variational autoencoders generative adver-

sarial imitation learning.

APPENDIX B
NOMENCLATURE
D Expert data.
π Imitator policy.
ni An abstract node for solving vehicle path

planning problem.
l The number of abstract nodes.
ai The i-th action.
πE Estimated expert policy.
DKL Kullback-Leibler (KL) divergence.
2 The set of all random policies.
Pπ
h The state-action distribution of imitation

policy π at time step h.
PπE

h The state-action distribution of the expert
policy at time step h.

DTV Total variation distance.
h Time step.
H Maximum time step.
tri The i-th state action sequence in expert data.
P̂πE

h The estimated PπE

h value from maximum
likelihood estimation at time step h.

5 Indicative function.
A Action space.
a An action in the action space.
aih An action in the i-th state action sequence in

expert data at time step h.
S State space.
s A state in the state space.

sih An state in the i-th state action sequence
in expert data at time step h.

m The number of state action sequence in
expert data.

π̂ Optimal imitation policy.
ω Reward function.
ωh The reward function at time step hwhen

π is given.
W The set of reward function.
π (t) Imitation policy for the t-th iteration.
ω(t) Reward function for the t-th iteration.
F (t)(ω) Optimization objective function of

GAIL.
ηω Step length.
PW Projection operator.
u Intermediate variable.
trh Trajectory truncated to time step h.
Trh All trajectories truncated to time step h.
trh(sh, ah) State-action pairs accessed at time step

h.
TrDh The set of truncated trajectories which

contains any state on the truncated tra-
jectory that has been accessed by dataset
D.

trh(sh′ ) State accessed of truncated trajectory trh
at time step h′.

D1, D2, D3 Expert data subsets.
Dc1 The complement of D1.
PπE

(trh) Probability of truncated trajectory trh
induced by expert policy πE .

P̃πE
(s, a) Refined estimation of PπE

h (s, a) in
TAIL.

2mimic(D1) The set of policies generated by the
behavioral cloning algorithm for dataset
D1.

2det The set containing all deterministic
policies.

Sh(D1) The set of states accessed in dataset D1
at time step h.

δπE
t (s)

The Dirac distribution defined in the
action space (which means that the dis-
tribution of the probability that each
policy in the policy set 2mimic(D1) will
execute expert actions on the states con-
tained in dataset D1).

αx , αy Step size hyperparameter.
k The number of iterations.
zk , xk , yk , tk , vk Parameters that participate in iterations.
8 Non-convex non-smooth objective

function.
∂8(·) Subgradient of function 8(·).
η1, η2 Standard Gaussian noise.
T Maximum number of iterations.
η(t) Step size of the t-th iteration.
τ Weight coefficient.
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Pπ (t)

h The corresponding state-action distribution
under the premise of policy π (t).

P̄h Average state-action distribution.
π̄h Output policy of TAILmodule inMixGAIL.
π̃h Output policy of MIMIC-MD module in

MixGAIL.
π∗ Final output policy of MixGAIL.
ρs(τ ) The standard indicator of the possibility of

solution.
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