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ABSTRACT Automated Human Activity Recognition (HAR) stems from the requirement to seamlessly
integrate technology into daily life, to enhance user experience, improve healthcare, provide improved
operations, ensure safety, deliver data-driven insights, and address various real-world challenges. However,
unscripted Human activity faces challenges that must be understood, and require advances in sensor
technology and machine learning models. This paper presents an Active Transfer Learning (ATL) approach
for real-time HAR using mobile sensor data. Unlike traditional methods, our approach accounts for both
the physical and habitual constraints of individuals. Existing works make an unrealistic assumption of
an omniscient oracle while using the same datasets for both training and testing of the models, which
makes them impractical for industry requirements. Our proposed approach addresses challenges in existing
HAR algorithms, proposing a methodology to adapt models to the real-world datasets while training and
testing on cross datasets. We have tailored an existing Entropy and Memory Maximization algorithm to
work in a real-time environment while considering user constraints. Primarily trained in a well-labeled
controlled environment dataset, we introduce noise injection to prevent the model from overfitting and
enhance its generalization for scarcely labeled real-world datasets. Evaluations on publicly available datasets
demonstrate our approach achieves 80% - 90% accuracy, outperforming the base algorithm accuracy of 12%
- 14%. Importantly, our proposed technique outperforms with limited labeled data, making it valuable for
real-time scenarios where labeling is sparse. This research advances HAR in real-world settings, offering
improved accuracy and adaptability.

INDEX TERMS Active transfer learning (ATL), Human activity recognition (HAR), Internet of Things
(IoT), Machine learning (ML), Ubiquitous computing, Wearable sensor devices.

I. INTRODUCTION
The world is transitioning towards the automation of almost
every domain of life by developing smart homes [1],
smart grids [2], autonomous vehicles [3], smart security
surveillance [4], intensive care units (ICU) and healthcare
systems [5], [6], [7]. Hence, the world is converging into
smart cities [8], where everything would be controlled and
operated by automated computer systems. All these systems
are required to be efficient in human-computer interaction
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to facilitate the people and to ensure the safety of the users.
These systems require the ability to recognize and classify
human activities to operate efficiently. For instance, if a
driver-less vehicle is unable to identify the activities of
the pedestrians around it, then it would be very dangerous
for the passengers as well as the other people on the
road. Therefore, for the successful deployment of automated
systems, their ability of Human Activity Recognition (HAR)
is indispensable. To achieve the ability of HAR, these systems
depend on the sensor devices to record the activity data and
then use Machine Learning (ML) models to recognize and
classify different activities from that received dataset.
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In recent years, the Internet of Things (IoT) sector has
significantly evolved, which has resulted in a vast application
of sensor devices and ubiquitous computing in various
domains of life [9]. As these sensor devices have become
an important part of the HAR applications, together they
form the concept of ubiquitous computing, where it is
very important to provide the real-time identification and
classification of the data being recorded. We can understand
the importance of HAR from the fact that these sensor
devices, connected as pervasive computing, and these ML
models of activity recognition have become part of almost all
the major domains. For instance, in automated manufacturing
units [10] of Industry 4.0 for decision making by ML,
military applications [11] for real-time surveillance using
automated HAR [12], context recognition [13], indoor
navigation [14] as well as navigation systems for self-driving
vehicles using sensor devices and automated HAR [15],
attention management systems [16], smart homes [17], smart
cities [18], [19], and intensive health care [20] domains.
As we can see the applications of HAR by using sensor
devices and automated systems in our lives are rapidly
increasing, the need for ML models that can provide efficient
results in real-time is also very important to enable the
successful deployment of these systems in practical life.

These sensor devices [21] have enabled us to record
different aspects of HAR [22] by using different data collec-
tion methods [23], mainly through the images/videos [24],
ambient sensors [25], and wearable sensors [26]. Each of
these types then further has various categories of receptors
to record the activity data, such as, the ambient sensors
may record the radar waves [27], [28], infrared motion [29],
temperature change [30], and/or RFID based [31] data from
the surroundings. Similarly, wearable sensors may collect
data from accelerometers [32], magnetometers [33], and
gyroscopic measures [34] to record human activities. The
development of various types of wearable sensor devices
has paved the way for the practical implementation of
IoT network-based smart sensing devices. One of the main
objectives of these devices is to improve human well-
being [35], and for this purpose, these devices record a huge
data regarding human activities.

While these sensor devices have partially solved the
problem by gathering real-time data on daily activities, the
issue lies in the lack of proper labels for the observations
recorded through these devices in datasets collected in
the natural setting. And for the analysis of these data,
and detection of important characteristics regarding human
activities, it requires trained models that can recognize the
individual activity performed. As the collection of data
is growing rapidly with the help of increasingly available
sensing devices [36], large datasets are now available.
However, for the training of the ML models, properly
labeled datasets are required, which is costly as well
as effort-intensive to collect perfectly labeled real-time
datasets.

As it is very expensive and effort-intensive to collect
labeled in-the-wild datasets on a very large scale, spanning
different types of activities. There are always some pros
and cons for each dataset type. The collection of data in a
controlled environment is comparatively less effort-intensive
and cost-efficient, but this type of data is based on certain
unrealistic assumptions that are made to collect useful data.
These unrealistic assumptions are related to the user/oracle,
such as the perfect memory of the users, their ability to
respond immediately to the queries correctly, and the user’s
performance of all the activities is always for equal duration
and in equal number of iterations. However, these assump-
tions are not realistic when dealing with real-life events
in day-to-day routine activities. There seems no feasible
solution to this problem where neither the collection of
perfectly labeled real-time datasets is practically affordable,
nor the lab datasets that are produced in control environments
are useful for training the efficient models that can operate
in real-time. Hence, there is a need to optimize the ML
models for performance improvement, when applied in real
life, by making them capable of adapting themselves to new
environments.

In ML, there is a technique called Active Learning (AL)
in which the labels are queried by the user, and based on
those responses the ML models are trained. There is another
technique called Transfer Learning (TL) in which an ML
model, already trained on a similar dataset, is used to predict
the labels, and based on those labels the model retrains/fits
itself. This technique does not require responses from the
user. A hybrid technique based on both AL and TL also exists,
that queries only specific observations from the user that can
provide the maximum gain, and for the rest of the dataset
the model adapts itself based on the technique of the TL
approach. We have used this Active Transfer Learning (ATL)
technique in our methodology. In this technique, the concept
of entropy is used, whichmeans lack of information, disorder,
or randomness. Based on the entropy level, the observations
are sorted and then the observation that hasmaximum entropy
is selected to ask the label from the user, as this particular
observation would provide the maximum information gain
to the model when the correct label would be provided by
the user. After one query from the user, the model retrains
itself and predicts the labels, as well as the probability, for the
remaining unlabeled dataset. Based on that probability, again
the entropy calculation is repeated until the model perfectly
predicts the labels and no observation is below the threshold
to be selected for the query. In this way, the model reduces
the large number of queries that would not require to be
asked from the user. In our proposed methodology, we have
introduced a technique in which the MLmodel is first trained
on the lab dataset by using the information gained along
with the AL approach. Then the model is used to predict the
labels for unlabeled in-the-wild dataset. For the next subject’s
activity recognition, the model is trained using the new lab
dataset as well as the previous subject’s in-the-wild dataset.
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This allows the model to gradually adapt itself according to
the in-the-wild dataset.

A real user does not perform the activities like a
machine that always performs activities on a pre-defined
pattern. Due to this reason, the models do not perform
well when trained on controlled datasets and tested in the
wild environment. The proposed model in this work aims
to overcome these unrealistic assumptions of physical and
behavioral constraints by adding the effect of realism in
datasets of controlled environments, hence, resulting in better
performance in the real-time execution of the algorithm. This
model is applied and has better performance to correctly
identify human activities in scenarios where either we do not
have an in-the-wild dataset to train themodel first, or the users
have very versatile patterns of performing activities based on
their routines. The proposed model can learn/train from the
controlled dataset in the beginning and can adapt itself later
by repeatedly training itself based on each person’s individual
habit and physical ability to perform the activities. In this way,
the model can have better results when applied in the real-
time scenarios.

To overcome the above-discussed issues, we have tailored
the existing Entropy and Memory Maximization (EMMA)
[37] approach to make it work with the supervised but incre-
mentally informed datasets collected in the wild environment.
By implementing our proposed methodology, we have:

• Enabled the model to partially fit itself repeatedly as
many times as it would be required during the iterations
of the algorithm.

• Replaced the existing Support Vector Machine (SVM)
[38] model with a modified version of incremental SVM
model. As the incremental SVM model does not exist
itself, we have used the Stochastic Gradient Descent
(SGD) [39] model with the log loss function which
allows us to achieve the characteristics of an incremental
SVM model.

• The SGD model allowed us to have probability calcula-
tions as a byproduct when the log loss function is used.
This probability is later used for calculating the entropy
of the dataset observations.

• The overall performance of the model is improved by
resolving the inconsistency issue regarding the prob-
ability calculation caused by the separate probability
function of the SVM model.

• We have eliminated the requirement of a complete
preloaded target dataset. As the model can now partially
fit itself, it does not require the target dataset to
be available and loaded before the execution of the
algorithm.

• Further eliminated the requirement of a pre-learned
expert model. For this purpose, the existingAL approach
is modified into the ATL [40] technique, which has
enabled our model to adapt itself according to the
target dataset characteristics while incrementally train-
ing/fitting the model.

• This hybrid technique of ATL allows themodel to get the
benefits of both approaches and hence provides a better
accuracy performance by adapting itself according to the
patterns/variations of values in the target dataset.

Besides being able to work in a real-time environment,
the model is also able to acknowledge and reflect the
realistic oracle’s physical and habitual constraints of irregular
activity patterns during initial training from the source
dataset collected in the controlled environment. For this
purpose, the technique of adding the noise [41] is used
which allows generalization while training the model on
lab-generated datasets. Hence, our proposed model has
maintained performance accuracy between 80% to 90%
when trained on the controlled environment dataset and
then applied to the real-time dataset collected in the wild
environment.

The rest of the paper is organized into the following
sections. Section-II is the literature review of the related
work that we have explored during our research and also
discusses the problem statement that is dealt with in our
work. Section-III is covers our proposed methodology. The
section-IV discusses the datasets used and implementation
details of the proposed techniques. Section-V is the results
and discussion section which explains the results we have
achieved through our proposed approaches. At last section-VI
discusses the conclusion and possible suggestions for future
research.

II. LITERATURE REVIEW
There are various approaches that have been proposed
regarding the efficient and optimized algorithms for HAR
systems based on various dataset types and environmental
circumstances. Activity recognition can be studied from three
different aspects which include approaches, label availability,
and feature space. There are various approaches to achieving
the activity recognition objective, but the most popular,
regarding the datasets that we intend to use, are the AL [37]
and TL [42] approaches. And then there is a third category
of ATL [43] that combines the characteristics of both
and achieves much better performance results in terms of
accuracy and reduced annotation efforts.

Furthermore, we can categorize the activity recognition
process based on the availability of the labels for dataset
instances. The availability or unavailability of labels in the
source dataset is termed as Supervised or Unsupervised
activity recognition and the availability or unavailability
of labels in the target dataset is termed as Informed or
Uninformed activity recognition respectively [42]. In this
way, it can be categorized into four types as Informed Super-
vised, Informed Unsupervised, Uninformed Supervised, and
Uninformed Unsupervised activity recognition. And lastly,
we can differentiate the activity recognition based on the
feature space, i.e., the type of dataset being used for activity
recognition. The most common types are Video or Image
frames, Ambient Sensors, and Wearable Sensors’ generated
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datasets. Video stream is a completely different dataset type
that requires algorithms for image frame processing and
identifying the objects in those frames. On the other hand,
ambient sensors and wearable sensors generate numeric
datasets based on the sensor readings in different intervals.
The ambient sensors are fixed in a place, like inside a building
or at an area where the activity is to be observed. They
only record the information when a person comes within the
range of the sensor., Wearable sensors are always carried
by the person in the form of a smartwatch or smartphone
and hence keep recording the user’s activity all the time.
Now as we have learned about different aspects by which
activity recognition can be categorized, we can mention here
the particular domain of this study being conducted. The
area of the paper is ATL based Informed Supervised Activity
Recognition using Wearable Sensor datasets. In this section,
an overview of some of the major approaches, related to the
one under discussion, is provided. A comparison matrix of
the major works is also presented in Table. 1 below, which
provides an overall observation of the related work.

A. RELATED WORK
In a work proposed by [37], the authors have dealt with
the cognitive constraints of human beings while considering
the compliance of the oracle with the activity recognition
system. They have proposed the EMMA algorithm for
activity recognition based on dataset received from wearable
sensing devices. EMMA deals with the cognitive constraints
of the oracle while performing AL by repeatedly asking
queries from the oracle and labeling the dataset. This process
keeps repeating until the assumed budget ends. This budget
represents the cognitive constraints as well as the physical
limit of an oracle and hence imitates the real human’s
capacity to correctly answer the number of queries in real life.
Furthermore, the memory strength of the users is reflected
in the process of selecting the queries for labeling. Although
this parameter is also set as presumed values representing
different memory strengths of the people, it reflects the effect
of memory constraints of an oracle. The authors in this paper
have used three datasets known as HART [44], DAS [45],
[46], [47], andAReM [48] which are publicly available. From
their model, they have achieved 21% to 91% accuracy range
for activity recognition based on the memory strength and
other variable factors of the model. They report an average of
13.5% higher accuracy by their proposed model. However,
there are limitations in the working of the algorithm, as it
never completely implies the characteristics of the dataset
collected in the wild. The duration of activities is fixed as it
works on the dataset collected in the controlled environment,
which is not the same for natural datasets. Moreover, the
model used in this paper for classification is the SVM which
operates as a supervised learningmethod. But this model does
not retrain itself if more labeled data is available and works
only if all the datasets are available in advance, hence, it does
not operate in a real-time environment.

The work [49] has proposed an OptiMapper algorithm for
activity recognition systems in mobile sensing systems. The
OptiMapper algorithm classifies different activities of the
oracle in real time based on the technique of TL. It requires a
source dataset to train the model and then keeps updating the
model by learning from the target dataset while labeling the
target data in each iteration. Through this repeated process
the model is retrained from the updated labels of the target
dataset and hence transforms the model into a better version.
As the labeling and training occur as a repeated process, the
algorithm can work in the partially available data. Hence,
this algorithm achieves the ability to work in a real-time
environment where data is not completely available in hand,
and can train the model from the partially available dataset
in an iterative process. In this study, the authors have used
three datasets known as DAS [46], PAMAP2 [50], and
SmartSock [51] which are wearable sensor datasets. Through
their proposed model they report up to 22.5% improvement
in the accuracy for activity recognition. Although it seems
that the algorithm achieves a better performance theoretically,
in reality, the constraints of the oracle are not dealt with
in the working of the algorithm. In a controlled environ-
ment scenario, the performance of the algorithm seems
promising. But as in a natural setting, the datasets collected
pose certain human physical and cognitive constraints,
as discussed earlier, and these aspects of oracle constraints
must be considered while designing a model for activity
recognition.

Nawal et al. [52] have presented an incremental SVM
based algorithm for HAR. They have tried to solve the
problem of large-scale dataset processing in real-time while
training and deploying the model on target datasets. For
this purpose, they have introduced two different versions of
incremental SVM in the paper. At first, the last reported
event of sensors is used in the algorithm for determining
certain aspects of the dataset while the incremental process
takes place. In the second version, the clustering-based
approach is used to boost the learning performance of
the algorithm. In this version of the incremental SVM,
the relationships between the clusters of datasets and
SVM chunks are established, hence increasing the learning
performance. To implement this proposed model, they
have used Aruba [53] and Tulum [54] datasets which are
available publicly. According to them, their model is 5 to
9 times faster than the existing models and has achieved at
least 5% accuracy improvement. This approach does work
in a real-time environment but lacks the ability to deal
with datasets collected in the wild as it never takes into
consideration the aspects of natural settings.

In this paper, Hasan et al. [57] have implemented a
different approach toward event recognition while taking
into account the contextual aspects of the target object.
The major difference between this paper from our domain
of research is the type of dataset being used for event
recognition, as in this paper image frames are used for event
recognition. The thing to be discussed here is the method
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TABLE 1. Comparison matrix of literature review papers.

used for this purpose, i.e., AL for query selection. They
have proposed a technique of the Conditional Random Field
(CRF) model for this purpose but took AL into account
while making the queries and training the model. Instead of
burdening the oracle to answer a large number of queries,
this algorithm predicts a label for the selected activity for
the query, and based on the oracle’s response it builds a
teacher that allows it to skip a certain number of queries
based on the weights it assigns to its predicted label in case
of correct predictions. Hence, it reduces a great burden by
decreasing the number of queries to be asked from the oracle.
They have used six different datasets for their experiment
out of which, AVA [61], VIRAT [59], and MPII [63] are

mainly discussed. Not providing an average measure, they
have achieved various accuracy rates on different datasets,
mostly achieving superior performance rates.

In another work [62], HAR from image frames obtained
from video data is explored, which is a different type of
dataset than ours of sensor-based datasets. However, it aims to
reduce the oracle’s manual efforts for annotating the queries,
using the CRF algorithm. For this purpose, the authors in this
paper have designed an algorithm that takes into account the
contextual information of the object and hence develops the
interrelationship between the knowledge of the context and
the object, and tries to recognize the activity of the oracle.
In this way, it resembles our work of calculating the entropy
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to determine which queries to raise for annotation. Here in
this paper, this concept is discussed as maximum gain and
tries to determine queries that can help obtain maximum gain.
The authors in this paper have used AVA [61], VIRAT [59],
UCLA [60], and UCF50 [58] datasets to check their model’s
performance, and have reported a significantly less amount
of effort required for labeling and have superior performance
rate. This type of implementation is not done for the datasets
collected from the smart sensor devices to recognize human
activity.

There is another category of dealing with the activity
recognition process. In this paper [55], the authors have
devised an algorithm that even does not require the labels of
the source dataset to train the model. It can train the model
from an unseen dataset and use that model to classify the
activities on another dataset. For this purpose, it uses novel
techniques to classify data in the source dataset to build the
model from that classified dataset. It achieves this objective
by using a network clustering method used in bipartite graphs
to establish boundaries between certain types of data features.
They have tested their model on two smart home systems
and have reported it as achieving a significant performance
improvement. Although, this technique of dealing with this
problem is novel, but it also has limitations as it requires all
the data to be available in advance to establish relationships
between two datasets based on their resembling features. This
logic of the algorithm makes it impossible for the algorithm
to work in a real-time environment where data would be
partially available over time.

The authors in [43] have dealt with the large amount
of data required for the case of TL technique for activity
recognition. This proposes the technique of using both AL
and TL algorithms merged to avail benefits from vast datasets
while improving the performance of the algorithm by making
choices for the data to be presented for query from the
user. In this way, the algorithm takes benefit of the large
dataset while keeping the performance on a better scale.
The authors of this study have used two image datasets,
one consisting of riesling grapes and the other containing
traminette grapes images, for evaluating their model and
have found overall better performance for activity recognition
using their proposed image classification model. In this
approach, the author has only considered one problem to
be handled while all the other aspects discussed above
regarding the constraints and environment adaptation for
activity recognition are not discussed in the paper.

In a survey paper [42], an in-depth survey on algorithms
and techniques used in the TL approach is discussed.
It provides details about the major categories of the TL
approach and how those categories are helpful depending
on certain environmental and data availability conditions.
Largely it divides TL algorithms into four major categories
based on the modality of the sensor, types of environments,
availability of data, and type of information transferred.
There are further sub-divisions of the algorithms in each
category, e.g., in the category of modality of sensors, the

algorithms can be differentiated based on the type of sensor
they work with i.e., the video sequences, wearable sensors,
and ambient sensors. And if talking about the algorithms that
work with the wearable sensors, which is also the domain of
algorithm that we are going to work on, they have further
divisions based on the availability of the data, as well as
the type of environment where these algorithms can work
also differs. However, the main part of the paper is the
discussion on limitations, which is described to be a great
constraint for the algorithms to be generalized. Because
these algorithms cannot be generalized, or there exists no
algorithm that can provide good performance for different
scenarios, there is a great need for improvements in the
existing algorithms, so that they can achieve better results in
real-life implementation where these factors may change and
the models should be able to adapt to the new scenarios.

In this paper [70] the SVM classifier is used for activity
recognition from video. The objective of the paper is to
reduce the long training time and the large size of the feature
vector. The model proposed here achieves its objectives
by using the technique of SVM to provide the labels for
the activities and learn the model from fewer number of
examples. Weizmann [71] and UIUC1 [72] are the two
datasets used in this research paper to train and test the
proposed model. According to the authors, the overall
performance of the model is slightly better than the existing
algorithms, but if observed with minute details, it is mostly
better in the case of the Weizmann dataset and had at par or
slightly lower performance in the case of the UIUC1 dataset.
The results they have provided are not of the performance
percentage, but of the rate of recognition of the activity in
comparison with other existing models. In this perspective,
their model has a better rate of recognition of activities as
compared to most of the existing models, or it is at par with a
few of the existingmodels. But as we know the standard SVM
requires an informed dataset and hence the model cannot
perform well in a real-time environment.

The authors in this paper [68] have proposed an approach
for the classification of human emotions based on the linguis-
tic dataset. It uses the AL approach with the incorporation of
deep entropy for clustering the dataset and subset selection
for annotation. This approach is implemented on a linguistic
dataset as it endeavors to classify whether a person is in
depression or not by using Natural Language Processing to
process words to identify the behavior. The use of entropy
for determining the feature labels of clusters of datasets is
perfectly embedded in the system to improve the performance
of the system. In this study, the dataset used is the textual
data, collected from an online forum, website, and social
media site. The data used here is collected by another
study conducted by Mukhiya et al. [69]. The authors have
applied their own proposed model on a blind test set and,
according to them, have achieved 0.85 Receiver Operating
Characteristic (ROC curve) which has improved the detection
rate as compared to earlier algorithms. But as it differs in
dataset type and environmental settings, it does not involve
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the factors of human memory and cognitive constraints that
affect while executing the algorithm for activity recognition.
Although the algorithm has some similarities with respect to
entropy and the AL approach, it differs completely in terms of
activity recognition. Moreover, it aims to solve the problem
of Internet-Delivered Psychological Treatment and is not
focused on real-time identification, hence it has a different
scope of discussion in a different environmental setting.

Qu et al. [64] have proposed a Hyper-spectral image (HSI)
classification algorithm that uses a TL approach to train
the model. As the authors stated almost all of the known
algorithms for image classification do not perform well if
training and testing datasets are from two different domains.
This can cause differences in the number of feature classes
and even the types of classes. To resolve this issue, the TL
approach is used which covers the gap between the source
dataset and target dataset variations and helps generalize the
model to perform better in various environments in real-time.
The model proposed by the authors in this study is called
Physically Constrained Transfer Learning through Shared
Abundance Space (PCTL-SAS) which is applied and tested
on three datasets named PaviaU-PaviaC [65], Houston [66],
[67], and Hanghzou–Shanghai [73]. They have achieved
71.8% performance rate on the Houston dataset, while the
previous one was 67% recorded on that dataset. As this
paper revolves around the classification of images, it never
resembles our problem statement, although the approach
is similar, it has no concerns regarding the cognitive and
memory constraints of the oracle while annotating regarding
the activities performed.

According to the authors of this paper [74], their proposed
algorithm TransNet is based on a supervised TL approach for
activity recognition from wearable systems. The collection
and labeling process of a large amount of data for training
the models is expensive and requires a lot of hectic effort
to make it possible. To cope with these issues, authors have
proposed TransNet which is designed to adapt according to
the new users’ events and add them to its learning vocabulary.
To test their model’s performance, they have used four
datasets consisting of WISDM [75], OPPORTUNITY [76],
Sport and Daily Activity [46], and the fourth one collected
by themselves from wearable devices during their work.
Through their experiments, they have achieved on average
from 88.1% to a maximum of up to 92.7% performance
based on different hyper-parameters. As mentioned earlier,
their main objective is to enable the model to adapt itself
according to the unseen events of a new user. They do not
have considered and dealt with the cognitive, physical, and
behavioral constraints of the real-life oracles in their research.
And all the datasets that they have used are the ones collected
in the controlled environments.

The field of study in the following paper [77] is based on
sentiment analysis and their research objective is to analyze
the opinions of the people for different products. Although
it differs from our research objectives, the methodology they

have proposed for achieving their objective is considerable
for understanding the concepts of TL while building a
model to perform in a cross-domain environment. They have
proposed a model for the classification of opinions by using
four different product domains. They have proposed a model
that is trained on the source domain and can be applied to
the target domain to classify the opinions. Their research is
categorized as a semi-supervised approach based on Entropy
Maximization. To test the performance of their model, they
have used the dataset of SentiWordNet [78] which is a
lexical resource often used for research in opinion mining.
According to the authors, their model has correctly classified
an average of 72.6% domain-specific words, and an average
of 88.4% domain-independent words. This type of model
is also required to be designed for the domain of activity
recognition that can adapt to real-life environments.

In this paper [79], the authors have presented an approach
by combines the techniques of AL and TL for the classifi-
cation of medical image data. In their proposed approach,
they have designed a model that can distinguish between
the queries from the target dataset and iteratively asks the
oracle to label only those queries that can provide maximum
information gain for themodel to train, and remove the source
samples that are not fit for training the adapted model. Hence,
this approach reduces a great number of manual annotations
for the oracle. In order to test their model, they have used ten
different datasets mainly from the University of California
Irvine (UCI) Machine Learning Repository [80] and The
Cancer Imaging Archive (TCIA) [81]. The three major
datasets include p53, eye, and Soft-tissue-Sarcoma publicly
available in above mentioned repositories. According to the
authors, their model has shown 95% effectiveness in the tests.
Our objective is to implement a similar combination of ATL
approach of classification for the wearable sensor datasets in
activity recognition.

Huang et al. [82] have presented a study on an AL
approach based on the oracle epiphany model. In this
theoretical analysis, the authors have dealt with the issue of
an omniscient oracle which is often assumed with its preset
capabilities in the traditional models proposed earlier. The
major reason for assuming such oracles is the convenience
while analyzing the models. According to them, there is
a huge difference between a real-world oracle in terms of
providing the labels, as real-world humans tend to restrain
on certain queries that they find difficult to answer, or the
answers might be influenced by the order of previous queries
and hence result in providing an incorrect label. The authors
have not designed any new model but have performed
analysis on the variants of two existing algorithms named
EPICAL derived from CAL [83] and Oracular-EPICAL
derived from Oracular-CAL [84] to test their proposed
approach of oracle epiphany. For their testing purpose, they
have used the website classification dataset to distinguish
between basketball sports websites or any other website.
The term epiphany here is explained as the delay or wait
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FIGURE 1. Proposed High Level Architecture (HLA).

associated with a query that the oracle is not currently sure
about and it is put into the wait, after experiencing similar
queries, if the oracle suddenly decides the label for those
queries, it then assigned to the queries of the same category.
This wait for the epiphany to happen does cause the penalty
and adds up the extra cost, but according to the authors, the
results have shown that AL is possible to implement with
oracle epiphany which resolves the issues of an assumed
omniscient oracle. This paper highlights the importance of
a realistic oracle that can behave in the same way as a normal
human would behave in a natural setting.

B. PROBLEM STATEMENT
From the above study of related work, it is evident that there
are multiple models proposed by different people to deal with
the activity recognition problem, based on data collected from
sensor devices. But as discussed above, all of them have some
limitations regarding the dataset collection in the controlled
environment, mostly models designed to work only on
preloaded datasets, making assumptions about the capacity
of Oracle to deal with the number of queries, Oracle’s ability
to perform the daily activities on the prescheduled pattern,
i.e., considering the oracle as a machine, or assuming an
omniscient oracle which is infallible. To the best of our
knowledge, there does not exist any model that can work
on partially available unseen target datasets, operating in the
wild environment, and considering the oracle’s physical and
habitual constraints into account.

We have designed an algorithm that can:
• Perform initial training of themodel from source dataset,
collected in the controlled environment.

• Themodel is still able to perform better on incrementally
available target datasets, collected in the wild, where
data is fetched in chunks.

For this purpose, the existing entropy and memory-aware
AL model is tailored:

• To work with supervised but incrementally informed
datasets.

• By incorporating the abilities of TL with the existing AL
algorithm.

• While being able to operate in real-time, it is also able to
acknowledge and reflect the realistic oracle’s constraints
of irregular activity patterns during initial training from
source dataset collected in the controlled environment.

In the next section, a detailed overview of our proposed
methodology is covered.

III. PROPOSED METHODOLOGY
Before deep diving into the explanation of our proposed
methodology, there are a few terms and approaches of ML
that are related to ourwork and are used in the implementation
of the model. Regarding the activity recognition approaches,
there is a technique to train the model by iteratively raising
the query to the user to provide the labels of the activity
observations. The model repeatedly selects/filters a subset
of observations from the unlabeled dataset and queries the
user/oracle to provide the labels, and based on the user query
responses, the model is trained to classify similar activities.
In this approach, the model is trained on the current source
dataset available at hand and is known as AL. There is
another approach for the activity recognition problem in ML
named TL. In the TL approach, an existing model already
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FIGURE 2. Active Learning and Transfer Learning approach in HLA.

trained on any relevant dataset similar to the current source
dataset is used, and gradually the model is adapted according
to the current dataset being processed. In this approach,
the user is not asked to provide the labels for the activity
observations, instead, the model uses its existing knowledge
to predict the labels, and using those predicted labels the
model adapts/refits itself for the new dataset.

In ML, there is also a hybrid implementation of both
the above-discussed approaches, known as ATL. In this
approach, the model also has pre-learned knowledge and
works according to the TL technique, as well as it also
asks the user to provide the labels for certain important
observations that the model finds hard to classify or where
the model has the least information available according to its
existing knowledge. This hybrid technique helps the model to
rapidly learn and adapt to the new dataset as well as enables
the model to operate with partial datasets and improve itself
incrementally.

A. OUR PROPOSED VS EXISTING APPROACH
In our work, we have implemented/merged the TL technique
with the existing AL technique to achieve the incremen-
tal/partial fit ability of the model. The high-level architecture
(HLA) of our proposed methodology is given in Fig. 1.
The unit called ‘‘EMMA (with Noised)’’ in the above
HLA is derived from our base paper by Ashari et al. [37],
in which they have presented their EMMA approach. The
technique of entropy maximization involves finding that
particular case/observation for which it is harder for the
model to classify, as its information is least available, and
the annotation of that particular case can provide maximum
information gain for the model while training. In their work,

they have dealt with the cognitive constraint of the user, but
not have considered the physical and habitual constraints.
Moreover, their model is based on SVM and does not operate
in real-time.

B. HIGH-LEVEL ARCHITECTURE
We have used the noise in the source dataset to modify
the effect of consistent behavior of the oracle, i.e. behavior
to perform each activity on prescheduled intervals and for
a fixed amount of duration as if the oracle is a machine.
By using the random noise in the source dataset, it would be
possible to reflect the habitual constraints of the real user in
the dataset and the effect of a stereotype omniscient oracle
can be reduced from the dataset collected in the controlled
environment. In Fig. 2, the orange highlighted section on the
right side of HLA represents this AL part of the algorithm,
where the user is asked to label the query selected from
this noised dataset by using the EMMA unit, and then it is
added to the training dataset. This approach improves the
performance of the model when applied to the wild dataset.

Moreover, in the Fig. 2, the blue highlighted section on
the left side of HLA represents the implementation of TL
and shows our methodology for making the algorithm operate
in real-time, and for this purpose, the Modified Incremental
SVM model is used. It has enabled the model to update/refit
itself, based on the technique of TL as it helps the model to
build a strong knowledge by learning from the previous user’s
labeled dataset of the observations and by adapting to this
in-the-wild oracle’s pattern of sensor values. Hence, it also
reduces the annotation efforts of the oracle as it improves
itself rapidly instead of being dependent on user responses
only.

VOLUME 12, 2024 88849



U. Alam et al.: Entropy and Memory Aware Active Transfer Learning in Smart Sensing Systems

According to the above HLA, the algorithm begins with
loading the Source Dataset of first Subject/user which is
collected in the controlled environment and scales it to
normalise the values, and then follows the below steps:

• After loading dataset, the algorithm adds the Random
noise into the source dataset and prepares it as the
Training dataset.

• On the next step, a list of 8 observations is selected
from the Training dataset. This list, know as Weak
Knowledge, contains the labelled observations for each
one of the 8 activities.

• After selecting 8 observations, these are used to partially
fit the Incremental Model. The rest of the unlabelled
Training dataset is sent to EMMA for label prediction.
For the first time, this Model would be trained only
with the source dataset of the current Subject. But for
the subsequent Subjects, the labeled target dataset of
previously predicted Subjects would also be used along
with the new Weak Knowledge of next Subject.

• EMMA uses the partially trained model to obtain label
prediction probabilities and calculates the entropy for
these observations.

• Using these probabilities, the observations are sorted
based on the concept of Information Gain.

• The Information Gain is maximum where it is hard
for the model to predict the correct label, and that
observation would be selected for the query from the
oracle to provide the actual label of that observation.

• Oracle’s provided label would be sent to the Model as
Strong Knowledge, and the Model would be partially
fit/trained again.

• Now this process of Active Learning would keep
repeating itself until the Budget is consumed.

• Budget represents the ability of a user to answer the
maximum number of queries with correct labels, which
is affected by the memory strength of each user/subject.
To imitate the memory ability of a real user, we have
used 5 different Budget sizes for each subject/oracle.
After repeating this process for all the Budget sizes, the
algorithm then proceeds on next steps.

• On the next step, the Strong knowledge is saved in a
buffer which is later used for partially fit/training the
Modified Incremental SVM Model.

• After training, the Incremental Model is used to predict
the Labels of the Target Dataset which is collected from
in-the-wild environment through various heterogeneous
devices.

• This labeled target dataset is then sent to the previous
Model for partial training for the next Subject.

C. UNDERSTANDING THE ALGORITHM
The basic algorithm structure of the above-discussed
approach can be seen in the algorithm 1. This algorithm
is composed of 4 nested iterations/loops, each according
to the list of subjects (S), list of different budget ranges

(B), number of iterations for calculating the averages of
performance measures (I), and the remaining budget range
(R) respectively. These four loops can be seen in the algorithm
on line number 3, 6, 7, and 17 in the same order.

In this implementation of the algorithm,we have an activity
dataset of 8 subjects, which means the first loop iterates
8 times based on the list of 1-8 subjects shown at line number
3 in the algorithm. The second loop iterates 5 times, as it
is based on the 5 different budget range values provided in
the algorithm. In our implementation, we have used 5, 20,
60, 120, and 200 budget ranges provided in a list budget
range to test the algorithm on different budget sizes to
observe the effect of the number of user query responses
on the performance of the model. The third loop is used to
repeat the training and testing process at certain times to
calculate an average value of model performances against
each particular subject and budget range combination. The
number of iterations for calculating this average value can be
determined manually in the algorithm, and we have set it to
6 iterations to repeat each testing and training process. The
fourth loop is based on the value of the remaining budget (R)
which is calculated according to the following (1) where ‘‘B’’
is the value of the current budget range and the ‘‘B2’’ is the
previous value in budget range list.

R = B− B2 (1)

To calculate the range of the remaining budget, the
difference between ‘‘B’’ and ‘‘B2’’ is calculated in order to
start the training and testing process after the previous budget
value to avoid redundancy. For instance, if assuming that the
third loop does not affect the total number of iterations, in the
first phase this fourth loop will run 5 times as ‘‘B’’ would be
5 and ‘‘B2’’ would be zero initially. But in the next phase,
when ‘‘B’’ would be 20, then ‘‘B2’’ would be 5, this fourth
loop will iterate 15 times as calculated in (1) above.

Ri = Bi − B2i−1 (2)

This process would be repeated with each budget loop and
a new value of ‘‘R’’ would be calculated. Let’s present the
second loop with ‘‘i’’ which iterates ‘‘n’’ times, so the value
of ‘‘R’’ would be computed n-times and can be expressed as
‘‘Ri’’ where ‘‘i’’ represents a particular iteration of the loop.
In this way the values of ‘‘B’’ and ‘‘B2’’ would be ‘‘Bi’’ and
‘‘B2i-1’’ respectively, except that the ‘‘B2’’ would always be
zero for the first iteration. Hence, we get the following (2)
above.

The third loop of the algorithm controls the number of
iterations we want to perform for each combination of subject
and budget range. The performance results produced during
these iterations are averaged at the end of the loop execution.
In this loop, the values of datasets are also loaded if it is
the first iteration of the loop, or accessed from the previous
iterations already loaded and scaled data. Moreover, line
number 11 of the algorithm makes sure that the predicted
data of the previous subject is also included with the training
dataset of the current model, which allows the model to
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Algorithm 1 EMMAWith Active Transfer Learning
Result: Performance of the model

1 subjects = [1, 2, 3, 4, 5, 6, 7, 8];
2 budget range = [5, 20, 60, 120, 200];
3 for subject in subjects do
4 B2 = 0;
5 Avg calculation iterations = 6;
6 for number of values in budget range do
7 for range in Avg calculation iterations do
8 if Avg calculation iterations == 1 then
9 Datasets = Load and scale (from Files);
10 if subject != 1 then
11 Datasets = Append predicted data of previous subject with training data of current subject;
12 end
13 Confidence Error = Calculate by memory strength of subject;
14 else
15 Datasets = Use already loaded datasets for subsequent budget ranges (Data Reference Sets);
16 end
17 for range in remaining budget do
18 Model = Partially fit (on Training dataset);
19 Predictions = Model predictions (on Test dataset);
20 PredictProb = Calculate probabilities (from Predictions);
21 Entropy = Calculate entropy (from PredictProb);
22 Evaluate Factor = Calculate from (Entropy * Confidence Error);
23 Re-sorted Dataset = Sort (Test dataset, using Evaluate Factor);
24 Query Label Assignment = Calculate from (Re-sorted Dataset, using Confidence Error);
25 Training dataset = Append queried observation (Query Label Assignment, in Training dataset);
26 end
27 Model = Partially fit (on Training dataset);
28 Predictions = Model predictions (on Test dataset);
29 Performance Measures = Calculate using (Predictions);
30 Data Reference Sets = Save to avoid reload in subsequent Budget ranges (Datasets);
31 end
32 Average Performance Results = Compute for this budget iteration and Append (Performance Measures);
33 end
34 Predictions Reference Set = Save for next iterations, calculated on Test dataset of current subject (Predictions);
35 Current Subject Average Performance Results = Save (Average Performance Results);
36 end

adapt according to this target dataset gradually by repeatedly
refitting/retraining itself. The iterations of the subjects are
presented by ‘‘j’’, the current subject is represented with
‘‘Sj’’, and the previous subject is expressed with ‘‘Sj-1’’.
The training/labeled dataset is presented with ‘‘L’’ and the
testing/unlabeled dataset is presented with ‘‘U’’. When the
model predicts the labels of the testing dataset (U), this
dataset including its labels is presented with ‘‘P’’.
For the first subject, no previous subjects dataset is

available, this is why the testing is performed on the
source/training dataset and testing is performed on the target
dataset of the same subject only. Whereas for the subsequent
subjects, the previous subject’s predicted dataset, which
is presented as ‘‘Pj-1’’, is available. For each subsequent
iteration, all the predicted observations of the previous

subjects are carried forward for the next subjects. Hence we
can rewrite it as (3) below.

n∑
k=1

Pk (3)

Subject to:

n < j (4)

Here in (4), ‘‘j’’ represents the number of elements/subjects
in ‘‘S’’ list. Hence, this collection of datasets is combinedwith
the current subject’s training dataset presented as ‘‘Lj’’ and
we get a combined dataset represented with ‘‘Tj’’ that is used
to train the model for the current subject. We have computed
the performance results based on two different variations of
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appending these two datasets. In the first implementation of
the TL approach, the following (5) is used to get the ‘‘Tj’’
dataset. For this purpose, we simply took the union of both
the ‘‘Lj’’ and the ‘‘Pj-1’’ datasets.

Tj = Lj ∪
n∑

k=1

Pk (5)

This approach has achieved very promising results, while
initially training the model on a lab dataset and gradually
adapting the model according to the target dataset. However,
the rate of adaptation is slow in this approach due to the
combined datasets which include complete observations of
the lab dataset. As the observations in the lab dataset are
significantly more than the observations in the datasets
collected in-the-wild, the process of model adaptation is slow
even if the datasets are combined. In our second approach,
we have replaced the existing observations in the lab dataset
with the new observations of the in-the-wild dataset. For
instance, if the number of observations in the ‘‘Pk’’ dataset is
‘‘OP’’, as shown in (7) below, we have removed the ‘‘OP’’
number of observations from ‘‘Lj’’ dataset, and then have
combined both the datasets to get ‘‘Tj’’ dataset which now
has less number of ‘‘Lj’’ observations. This process would be
repeated with each iteration and gradually the observations of
the ‘‘Lj’’ dataset would be replaced by the ‘‘Pk’’ dataset. This
produces the following (6) below.

Tj = (Lj−OP) ∪

n∑
k=1

Pk (6)

Subject to:

OP = Number of Observations of
n∑

k=1

Pk (7)

In this method, as the number of observations in the ‘‘Pk’’
dataset increases, the same number of existing observations
from the ‘‘Lj’’ dataset are reduced. Hence, the number of
observations of ‘‘Lj’’ dataset are gradually reduced in the ‘‘Tj’’
dataset for training the current model. This allows the model
to adapt more rapidly as compared to the earlier approach of
TL.

IV. IMPLEMENTATION
A. DATASETS
In this work, we have used two datasets for the training and
testing of our proposed model. As Table. 2 shows, these
datasets include the Daily and Sports Activity (DAS) [46]
dataset which is used in the base paper and the second
is ExtraSensory (ES) [85], [86] dataset. According to our
proposed methodology, we have trained the model on the
DAS dataset which is a lab/controlled environment dataset,
and the testing of the model has been done on the ES
dataset which is an in-the-wild dataset collected in a real-time
environment. From both datasets, eight activities are selected
consisting of sitting, standing, laying on the back, ascending

TABLE 2. Datasets used in our work.

stairs, descending stairs, running/running on a treadmill,
exercising, and cycling. After determining these eight similar
activities in both datasets, the available features/columns for
these activities are compared. The features in datasets consist
on the values provided in columns that are recorded through
the sensor devices used for collecting that dataset. Each
feature/column in the dataset represents a particular type of
values in that column. Because we have to perform the cross
dataset analysis by training the model on DAS and testing
it on ES, it is necessary to match the columns/features for
each type of sensor values being used in both datasets. From
both datasets, we have selected three sensors’ data, and from
each sensor’ data we have selected three features/columns
of values titled as X, Y, and Z. We have insured that the
features are ordered correctly to avoid the wrong comparison,
i.e. training the model on Accelerometer sensor data from
source dataset and testing it on the Magnetometer sensor
data in the target dataset. The works that are performed
on the same datasets do not require consideration of the
feature’s similarity while training and testing of the models.
The authors of the base paper have used the processed form
of the DAS dataset which is obtained by performing Principal
Component Analysis (PCA) on the large feature size and
hence reducing it to their required feature size. They first
processed the raw values of the dataset to obtain the particular
characteristics of the data, i.e. min, max, mean, kurtosis,
skewness, frequency values, and autocorrelation from those
raw values of the sensors, and then by performing PCA on
that resulting 1170 columns dataset, they converted it into
30 columns dataset. This processed form of the DAS dataset
is not useful for our research as it does not correspond to the
actual features when compared with other datasets. For our
work, we have found three types of sensors that are available
in both datasets and separated the columns of accelerometer,
gyro, and magnetometer features. Each sensor meter has
three types of raw values named as X, Y, and Z for each
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observation. Hence, the total number of features/columns
selected is nine, three of each sensor type from both datasets.

B. EMMA
The base paper implementation of the EMMA uses the SVM
as the classifier model for the prediction of labels. In EMMA,
the entropymeans randomness or disorder of information and
memory means the oracle/user’s cognitive ability to provide
the correct labels. The objective of EMMA is to maximize
both the entropy and the memory of the user for selecting
the observation for the query. This approach is based on AL
where the model asks the user to provide the labels for the
unseen dataset and then trains itself on that labeled dataset.
The authors of our base paper have considered the cognitive
constraint in their implementation of the EMMA approach
to creating the environment of a real user while taking the
labels from query responses generated through the Oracle
algorithm, the machine itself. They have used the memory
retention and budget to calculate the memory strength of
the user, and have implemented it to represent different user
capacities to answer labels.

The budget represents the number of queries that a real user
can respond to in a certain time, and it has different capacities
according to the different users. Similarly, memory retention
represents the rate of a user’s ability to provide correct labels.
The product of budget and memory retention defines the
memory strength of a user for consideration in EMMA. The
second value used in EMMA is the maximum entropy of
the observations. The observation with maximum entropy is
selected for the query as it helps the model to gain maximum
information after getting its label from the user. Observation
with maximum entropy means it is hard for the model to
classify this observation, and when the model gets the label
for this particular observation from the user, it helps themodel
to know most disordered observations, hence the information
gained for the model is also maximum. In the base paper, they
have also implemented the clustering of the dataset sample
to increase the possibility that each time the observation for
query is selected from a well-distributed space of the dataset.
However as that algorithm code with clustering implemented
is not shared by the authors, the code we have used in our
research is the one publicly shared by them, and have rest
of the implementation same as discussed above. Moreover,
to proceed with further alterations and implementation of
our proposed methodology, the aspect of memory retention
is considered static for all the users, although the memory
strength is still being separately calculated the same way as
in the base paper implementation.

The results of the base paper provide the performance of
their model for the DAS dataset. On different budget sizes,
their model has an average accuracy between 35% to 98%
corresponding to the increase in budget. From their results,
we can see that the performance is not so good when the
budget size is small, in other words, when the user can
provide the labels only for a limited number of queries, the
performance of the model is low. But when the budget size

is 200 queries (the actual number of queries asked differs
due to previous budget size subtraction and the number of
iterations determined before executing the algorithm) there
can be a great improvement in the performance. At the 200-
budget size, the accuracy performance is 98% achieved in the
base paper implementation of EMMA.

C. PRELIMINARY TESTS
As discussed earlier in the datasets section above, due to
the requirement of our proposed methodology and because
of the research gap that we have identified in the training
and testing methods, used for the existing activity recognition
models, we have to use two different datasets for the training
and testing of the model respectively. The reason behind
this is because of the large size availability of the lab or
controlled environment datasets which can be used for the
initial training of themodel and thenwith the gradual increase
in the availability of real-time datasets that are collected
in the wild, the model adapts itself according to that new
dataset. This transfer of model learning source during the
real-time implementation allows the model to adapt itself
better according to the user-specific dataset being collected in
real time. Because of this purpose, we have to use only such
features of the dataset that can be found in both datasets being
used. Hence, we could not use the processed or manipulated
form of the dataset for our model. During the preliminary
tests, we have attempted to replicate the original work, and
for this reason, these tests are performed only on the DAS
dataset for training and testing of the model. From the DAS
dataset, we have selected the data of three sensors, i.e.
accelerometer, gyro meter, and magnetometer sensors data
for feature training of the model. The results of the existing
EMMA algorithm can be seen in Fig. 3 when we applied
the EMMA on this raw form of the DAS dataset. On the
X-axis of the above Fig. 3 are the different budget sizes and
on the Y-axis is shown the prediction accuracy performance
of the model according to those budget sizes. It can be
seen that the performance of the algorithm is quite similar
to the original work on the maximum budget size. At this
point, we do not have preprocessed the dataset by making
the changes in the base paper algorithm to avoid scaling
of the data, and we have replicated similar results of 95%
performance accuracy on the same 200 budget size.

In the next step, because we need both datasets to be
normalized to improve the model’s prediction accuracy in
later stages of our work, we used the original EMMA which
scaled both the training and testing datasets. The results
of this second test can be seen in Fig. 4 where data is
normalized before the training and testing process. It can
be seen that the performance of the model has reduced to
around 45% accuracy after enabling the preprocessing of
the dataset. These are the results of the original EMMA
algorithm while implemented on the DAS dataset only, for
both training and testing of themodel. Although currently, the
scaling of the dataset shows a bad impact on the performance
of the algorithm, the normalization is required later during
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FIGURE 3. DAS without Normalized.

FIGURE 4. DAS Normalized.

training and testing of the model with two different datasets
respectively.

In the next phase of preliminary tests, we have just changed
the dataset for testing the model. When the original model
is trained on the DAS dataset and tested on the ES dataset
when the datasets are not normalized, the performance of the
model can be seen in Fig. 5 which shows that the performance
accuracy has drastically dropped to 5% on the 200-budget
size, whereas the number of queries being asked from the
user has been increasing. Increasing the number of queries
to be asked from users means that more observations of the
DAS dataset are provided to the model for its training. And
we can see that as the model trains more on the DAS dataset,
its performance of prediction decreases on the ES dataset.
This same test is performed again, but this time we have
normalized the datasets before training and testing of the
model on DAS and ES datasets respectively. In the Fig. 6 we
can see the performance of the model which shows a minor
improvement in the accuracy of the model. Although the
accuracy has increased from 5% to 12.5% on the 200-budget
size, still this accuracy of the model for activity recognition
is very poor, which makes the model useless when trained on
a lab dataset and implemented in the real-time environment
on an unseen dataset collected in-the-wild when data is not

FIGURE 5. DAS, ES without Normalized.

FIGURE 6. DAS, ES Normalized.

available in hand as preloaded but would be available in
chunks gradually.

D. OUR PROPOSED IMPLEMENTATIONS
1) ADDING THE NOISE
In real life, different users have different types of constraints
while performing their daily life activities. For instance,
a young person’s daily activity routine would be very
different from that of an elderly person. There would certainly
exist some activities that a young person would be doing
more frequently than an elderly person who even might
not be doing those activities for many days. To develop a
better understanding of this concept, consider a household
environment where a young child might be performing
ascending and descending stairs activity more frequently,
even daily, to bring stuff from the first-floor attic, whereas the
grandparent in that house might not use the stairs for weeks.
These types of behavioral constraints of the users would result
in generating different sets of values from the sensor devices.
Similarly, the same activity done by the two different users
would result in producing different sensor values due to their
physical constraints. These constraints might occur due to
their age factors, disabilities, or any other circumstances. For
instance, the activity of running done by an athlete and an
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overweight person would certainly result in different sensor
values. Similarly, the activity of climbing the stairs done by
a young child and an elderly person with knee pain would
result in producing different values from sensor devices.

Moreover, as we know the datasets of controlled or lab
environments are collected by using the same type of sensors,
i.e. the devices being used for data collection are more likely
to be the same for all the subjects doing the activities. Due
to this factor, the collected dataset tends to have very similar
sensor values for similar activities. The same is the case with
the DAS dataset, for which the Xsens MTx units were used to
collect data from all the participants performing the activities.
Whereas, the datasets collected in the wild tend to have
different brands of sensor devices. These different devices
cause variations in the values to be produced by the sensors
for a particular activity. For instance, the ES dataset, that we
have used for testing the model, is collected from various
heterogeneous smartphones including different models of
iPhone as well as various brands of Android smartphones
and their different models. These heterogeneous devices do
possess different sensor devices embedded in them and hence
produce the sensor data with varying calibration that results in
slightly different values being produced for the same activity
being performed.

This difference in lab and in-the-wild datasets needs to be
taken care of while being used for the training and testing of
the same model. For this purpose, the technique of adding
the noise [41] in the source or lab dataset is used to help the
model generalize instead of overfitting according to the lab
environment dataset. There are different approaches to adding
noise, such as Gaussian noise, Salt and Pepper, Poisson noise,
and Random noise. The approach that we have used in our
work is random noise, in which a certain noise value or values
are used to replace the dataset values by selecting those values
at random. Our intention to use Random noise is based on
the fact that it avoids any biasness by adding noise values
on random places in the dataset. Whereas, in Gaussian noise,
random noise values are normally distributed in the entire
dataset. It may produce an almost evenly distributed interval
at which the values are added in the dataset. The Salt and
Pepper noise uses two values, one extreme minimum and
other extreme maximum value, to replace with the dataset
values in order to add the noise. This approach was not
required in our case as it would result in adding such values
in the dataset which are useless for the model training. The
Poisson noise is used for image processing which involves
datasets in matrix form. Whereas, feature values in our case
are in single columns. In our work, we computed the median
of each column/feature and then used that median value
wherever the value would be replaced from a random place
in that column. This adds a certain level of distortion in
the dataset, which helps improve the performance of the
model, not always but sometimes, by reducing overfitting and
increasing the generalization ability. The rate of noise that we
choose is 0.10 which would replace only 10% values in each
feature column. Choice of this rate is selected after generating

and testingmultiple noised dataset variants, andwe found this
rate to be ideal with DAS dataset. We found no set rule for
determining the rate of noise, which would be different for
each dataset, and left it for further studies in future work.

2) INCREMENTAL CLASSIFIER
The authors in the base paper have implemented the Support
Vector Classifier (SVC) from the sklearn library of Python,
to classify the activities. This SVC classifier belongs to the
SVM ML models, that use the hinge loss function and hence
do not calculate the probability by default. The probabilities
of each observation are used in the EMMA algorithm to
calculate the entropy of that observation as discussed in the
above section. To compute the observation probabilities of
being classified into a particular class, the extra parameter of
probability is manually set to true in SVMmodel parameters.
But this parameter slows down the working of the model
because of the five-fold cross-validation being used to
compute those probabilities. Hence, the ‘‘predict_proba’’
function of the SVC linear model may be inconsistent with
the ‘‘predict’’ function [87]. Moreover, the SVM classifier
does not work with incrementally available datasets, as it
cannot partially fit itself repeatedly. Due to this limitation,
this model needs all the datasets to be used to be available
in hand before starting the training and testing process. As a
result, this fails to be able to work in a real-time environment
where data is to be fetched in chunks.

Whereas, we have replaced the SVM classifier with the
SGD Classifier. The SGD classifier with the same hinge loss
function can be referred to as the incremental SVM because it
is also a linear classifier that works the same way as the SVM
classifier but can partially fit itself with the new dataset. But
similar to the SVM, it also never computes the probabilities
with the hinge loss function. Due to this reason, we have
made a variation and used the log loss function in the SGD
classifier which has the probabilities computed by default
as a byproduct of the loss function. Hence, this modified
incremental SVM, or in other words, the SGD classifier with
log loss, allows us to partially fit the model each time the
new part of the dataset becomes available. This characteristic
of the model enables it to be used in a real-time environment
where all the data is not available in advance.

3) TRANSFER LEARNING
Aswe have discussed the technique of TL in themethodology
section above, we know that it is used to adapt a pre-learned
model according to the newly available dataset. As part of
our implementation of the proposed methodology, we have
used this technique to adapt a model that is pre-trained onto
the dataset but as the new ES dataset becomes available after
initial predictions, the model partially transfers its learning
source toward the ES dataset. Because the SGD Classifier
model can partially fit itself repeatedly, in the subsequent
iterations of the algorithm, we have also partially trained the
model on the ES dataset which is a real-time dataset. For the
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FIGURE 7. Trained on Processed DAS, and Tested on ES.

first subject/user training and testing, only the DAS dataset is
used for the training purpose and tested on the ES dataset. But
for the subsequent users/subjects, the model has trained on
DAS as well as the previous subject’s ES dataset. In this way,
the model gradually adapts itself according to the ES dataset
which is increasing for each next subject. Hence, the model
carries its learning from the previous subjects’ ES dataset as
a weak model for the next iterations and improves itself by
adapting to the new user’s dataset after predicting the labels
for that user. Previous user’s data is used to adapt the model
because the same user’s subsequent days’ data is not available
in this dataset. In a real-time environment, the model can
learn from as many increments of the user’s new data being
collected daily.

In the next step of our implementation of this technique,
instead of appending the previous user’s ES dataset with the
current user’s DAS dataset for the training of the model,
we have replaced the existing observations of the DAS
dataset with the observations of the ES dataset from previous
user/subject. This allows the model to rapidly adapt itself to
the new ES dataset by learning the pattern of values in the ES
dataset. It helps to increase the process of TL for the model.

V. RESULTS AND DISCUSSION
A. THE EFFECT OF NOISE
After adding the noise in the DAS dataset for training the
model, the results of the model’s classification prediction on
the ES dataset can be seen in Fig. 7, where we can see a major
improvement in the performance of the model. The accuracy
of the model has increased up to 44% for the 200-budget
size. On average, the performance of the model lies between
60% to 40% accuracy. Although, the overall performance
of the model still tends to decrease with the increase in
the DAS dataset observations for the training of the model,
the model’s ability to predict the correct labels for the ES
dataset has increased due to the generalization during the
model training which is achieved due to the noise being added
in the source dataset. This noise prevents the model from
overfitting itself for the DAS dataset only and hence enables

FIGURE 8. Processed DAS, Incremental Classifier, Tested on ES.

it to have better predictions on the dataset collected in-the-
wild environment. The decrease in the performance due to
the increase in the DAS dataset is still proof that the model
overfits itself according to the source dataset as the number
of observations increases with the query budget.

B. USE OF INCREMENTAL CLASSIFIER
By implementing the SGD classifier for the incremental
training of the model, the average performance of the model
has increased maximum of up to 85% accuracy. In Fig. 8
we can see the performance difference between the SVM
classifier, which slows down due to the five-fold cross-
validation method used when the prediction probability is
computed which also affects the consistency of the predict
function, and the performance of the SGD classifier with log
loss function which automatically computes the probabilities
by default. The SGD classifier’s ability to perform better with
large datasets allows it to have better accuracy as compared
to the SVC when trained and tested on two different datasets.
But even though the overall performance has improved, still
we can see the issue of overfitting is still present, and as the
model’s training on the DAS dataset increases, its ability to
predict labels in the ES dataset gradually starts decreasing.

C. THE TRANSFER LEARNING TECHNIQUE
In Fig. 9 we can see that the implementation of the TL
technique for model training and adaptation has helped
improve the performance of the model. After the first
implementation in which the real-time dataset is appended
with the existing lab dataset, the average performance has
improved up to 82% accuracy on 200-budget size. Due to
the ability to adapt the model through TL, the issue of
overfitting the model has been finally resolved. In the next
step of implementing the TL technique, we have replaced the
existing DAS dataset observations with the new ES dataset.
This allows the model to adapt to the new dataset faster
as compared to the previous approach. In Fig. 10 we can
see the performance of the model has further improved and
lies on average between 80% to 90% accuracy. This is the
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FIGURE 9. Trained on DAS and ES, Incremental Classifier, Tested on ES.

FIGURE 10. Trained on DAS and ES, Incremental Classifier, Tested on ES.

highest possible accuracy that we have achieved through the
implementation of our proposed methodology to overcome
the identified research gaps.

Moreover, we can see the comparison of other performance
measures for our proposed algorithm as well as the existing
implementation in the Table. 3 below, including the Precision,
F1-Score, and Recall measures. With the changes in budget,
the performance variations can be noticed. In precision
measures of our proposed implementation, the results show
that the algorithm has very promising performance as the
results can be seenwith up to 90%performance. Similarly, the
results with recall measures have achieved 88% performance.
Only in the case of the f1-score, the performance of the
algorithm show less improvement of up to 85%, which is
still much improved as compared to the existing approach.
The existing model of base paper resulted up to 6% only in
the F1-Score when that model is trained and tested on the
cross datasets. We can see that the overall performance of our
model has improved and can classify all the activities with a
minimum to maximum performance difference of 10% only.
It means that even if the user has provided only a limited
query response and the budget is very low, even then the
performance of the model would not fall drastically as it was
the case with the existing algorithm.

TABLE 3. Comparison of performance measures.

D. DISCUSSION
From the above-discussed results of the model performance,
it is evident that our proposed approach has improved the
accuracy of the existing model regarding the factors caused
by the real-time implementation of the EMMA algorithm.
The reason behind this huge performance difference between
the existing methodologies and our proposed methodology
in real-time implementation is because of the difference
between the training and testing methods used for the model
building. The Fig. 11 shows the difference in technique that
is used for selecting the dataset for the model training and
testing. To better understand the concept, only three activities
done by three users are shown in that Fig. 11, where the upper
three users’ activities represent how the datasets are used for
building the model in controlled environments. To the best
of our knowledge, all the sensor-based HAR models that are
trained and tested on lab/controlled environment datasets are
trained and tested for the model’s performance on the same
dataset observations. In other words, if a model is trained on
the DAS dataset, it would also be tested on the DAS dataset.
Even if those models were tested on multiple datasets, still
the training and testing of the models would have been done
individually on each dataset separately.

The upper half of the Fig. 11 shows the same thing as if
the controlled environment model trains on the feature set
of users A, B, and C, it is also tested on the observations
of users A, B, and C. Moreover, in this training and testing
process, all the features are equally split into a training set
and testing set, most often found is the 70% and 30% split
ratio between the training and testing dataset. Whereas, the
lower half of that Fig. 11 shows our implementation of the
training and testing process, where if the model is trained
on the feature set of users A, B, and C, it is then tested
to predict the same activities but by different users X, Y,
and Z’s activity observations. Moreover, the split ratio of the
dataset for training and testing of the model is different for
each activity by each user. The number of observations can
be the same in controlled datasets, but in-the-wild datasets
are collected in a real-time environment and do not have
the same number of observations for each activity as the
users have different physical constraints as well as habits
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FIGURE 11. Lab vs Real-time Environment Implementation.

FIGURE 12. Evolution of Base EMMA [37] algorithm into our Approach.

of doing certain activities vary according to their routines.
The reason for our proposed approach is that the models
have to deal with the same scenario when implemented
for real-time execution. To improve the performance of
the model in this particular situation, as discussed above,
we have implemented our proposed methodology which has
resulted in promising performance of the model in real-time
implementation.

This new modified model is incrementally informed and
does not require the complete target dataset to be available
in advance for training of the model, and also eliminates
the requirement of a pre-learned expert model for label
prediction as the new approach allows it to improve itself
gradually. Moreover, the new approach allows the model to
operate with in-the-wild datasets collected in the real-time
environment. It is also able to overcome the target dataset
variations due to users’ physical and behavioral constraints
by reflecting them in the source dataset using noise. Hence,
the model can execute in a real-time environment and have
better performance as compared to the original algorithm
that can neither operate in the real-time environment nor
handle the differences between lab datasets and in-the-wild
datasets. Moreover, in the case of the cold start of the
algorithm, our model has significantly better performance as
compared to the base paper implementation. In the original
EMMAapproach themodel is trained separately for each new
user/subject’s activities prediction. Whereas, in our discussed

approach above, the model carries its previous learning for
the next users’ prediction process and hence its performance
for a new unseen user’s activity prediction is comparatively
better than the base EMMA approach. Moreover, if the new
user’s activity data were available in a couple of chunks
for activity prediction, the model would be able to rapidly
improve its performance by adapting to that user’s previous
activity patterns through TL.

We can see the accuracy improvement of the model in
Fig. 12, while the model evolves from the base EMMA into
our proposed approach. The accuracy difference between
the base model and our final modified model is huge.
As we can see, the base model performs drastically poor
when trained and tested on the cross dataset. Whereas,
our proposed approach enables the model to evolve and
provide higher accuracy when trained and tested in cross
dataset environment. The Fig. 12 summarises all the accuracy
results for each step of the modification process of the
model and shows that our final approach has achieved upto
88% accuracy by modifying the model to work in real-time
environment.

With the implementation of our proposed methodology,
although the model’s performance accuracy has significantly
improved, still there is a 10% to 12% deficiency in the
prediction of all the activities perfectly. We could not obtain
above the 88% accuracy with our implementation of the
algorithm. One of the factors that might be the reason is
the fact that there is a possibility of errors by the users in
providing the labels for the ES dataset while performing their
daily activities., The base paper implementation of EMMA
includes the factor of human cognitive ability while training
the model, which calculates the possibility of a user’s ability
to remember the label correctly for the activity done, based
on the time difference between when the activity is done and
when the query is asked to provide the label. In the base
paper implementation, the model was then tested on the lab
environment dataset which did not have wrong labels against
activity observations. Whereas, the ES dataset we have used
for testing the model is collected in a real-time environment
and very much has the possibility of wrong labels provided
by the users. Hence, this could be one factor for not being
able to achieve further higher accuracy, unlike those HAR
models that have achieved higher results but in controlled
environment implementations.

VI. CONCLUSION AND SUGGESTIONS
A. CONCLUSION
After implementing our proposed methodology to overcome
the research gap, identified in the EMMA approach for
activity recognition, we have successfully trained the model
on the controlled dataset and applied it to the dataset collected
in the wild environment while dealing with the variable
activity patterns of the oracle. This modified model have
maintained on average between 80% to 90% performance
accuracy. Secondly, we have designed this model that is now
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capable of incremental model adaptation on incrementally
available target datasets, and it eliminates the requirement
of a pre-learned expert model. Also, by adding the noise in
the source dataset we have reflected the characteristics of in-
the-wild dataset. Finally, with the help of TL, the model can
learn better even if the user’s annotated dataset is not available
in large size while applying the model for real-time activity
recognition.

B. SUGGESTIONS
These modifications have enabled the model to perform
better in several situations while implemented in a real-time
environment. Still, there can be certain limitations of the
model that are not yet encountered and might be observed
in the future. One such future improvement might be the
optimum control on the rate of adding noise in the source
dataset by understanding the most effective rate of noise
to make the learning of the model more generalized for
the activities done by different humans. The model might
also be improved if somehow the noise could be added on
run-time and the values to be replaced could be computed
from the target dataset, instead of the source dataset, which
would better help the model to adapt to the target sensor
device variations of the values. The largest in-the-wild human
activity dataset, collected with wearable sensor devices,
available in open source, that we could arrange for our
research is ES. Because of the feature space limitations, to be
matched in source and target datasets, the number of datasets
that we could use was limited. We aim to conduct further
analyses in our future work by finding other datasets that
have the same features for cross dataset training and testing of
the model. In-the-wild datasets are considered prone to have
a certain rate of wrong labels provided by the users against
activities. If there could be the datasets, collected in-the-wild
but annotated by expert observers by watching the camera
feed of the users. Such datasets can result in better training
and performance of themodel.Moreover, further experiments
of the model can be performed on low-powered devices that
are actually deployed in the wild, to measure the performance
in terms of latency and power consumption.
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