
Received 10 March 2024, accepted 3 June 2024, date of publication 11 June 2024, date of current version 18 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3412656

An Ontological Behavioral Modeling Approach
With SHACL, SPARQL, and RDF Applied
to Smart Grids
MOHAMED LARHRIB 1, MIGUEL ESCRIBANO 2, CARLOS CERRADA 1,
AND JUAN JOSE ESCRIBANO 1
1Systems and Software Engineering Department, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain
2Department of Forecast and Load Scheduling, Red Eléctrica de España, 28109 Alcobendas, Spain

Corresponding author: Juan Jose Escribano (jjescri@issi.uned.es)

This work was supported by the Department of Computer Systems and Software Engineering at the Universidad Nacional de Educación a
Distancia, Spain.

ABSTRACT Every engineering process, especially software, involves two complementary aspects:
structural and behavioral. Behavior is, in essence, transforming the structure associated with the system. As a
language for the object-oriented paradigm, Unified Modeling Language (UML) offers constructs for both
aspects, for example, class diagrams for the structural aspect and activity diagrams for the behavioral aspect.
However, without obtaining directly executable models, in glass-box terms, or reasoning support, on the
other hand, when software engineering is approached with ontologies, only constructs for structural aspects
are provided to develop a directly executable model, thanks to their reasoning capability. However, there are
no constructs or approaches for this paradigm’s specification or definition of behavior. This lack appears
mainly in the early stages of the software engineering process, where there are no constructs similar to, e.g.,
the activity diagram in the object-oriented domain. Object Management Group (OMG) already addressed the
transformation between the two paradigms in structural terms throughout Ontology Definition Metamodel
(ODM) from UML to Resource Description Framework (RDF) and Web Ontology Language (OWL).
However, there is no transformation of the object-oriented behavioral constructs into ontologies because they
are not defined in the ontological paradigm. This paper addresses the definition of behavior in the ontology
paradigm and the transformation of behavioral constructs between the two paradigms. The foundation of
behavior specification is the flow concept, and the basis of this is the transformation of the structural model
in an evaluative sense. Therefore, once the behavior has been defined in the ontology domain, the artifacts
obtained throughout the life cycle are directly executable, and their validation and testing are automatic.
With this approach, the life cycle is reduced to a modeling process. Thus, the resulting software engineering
process improves features such as agility, simplicity, productivity, and formalism. The target audience for this
work is the software engineering community, especially in the Model-Driven Engineering (MDE) paradigm
approached from object-oriented and ontology perspectives. The evaluation of the proposed approach has
been performed in the electric utilities, solving the problem of the validation flow for the interoperability
process specified by the Common Grid Model Exchange Standard (CGMES) standard.

INDEX TERMS Behavioral modeling, CIM for ENTSO-E (CGMES), directly executable, ontology
RDF/RDFS/OWL/SHACL.

LIST OF ACRONYMS
BPMN Business Process Model and Notation.
CGMES Common Grid Model Exchange Standard.

The associate editor coordinating the review of this manuscript and

approving it for publication was Manoj Datta .

CIM Common Information Model.
ENTSO-E European Network of Transmission System

Operators for Electricity.
EQ Equipment.
IEC International Electrotechnical Commission.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 82041

https://orcid.org/0009-0007-7751-0980
https://orcid.org/0000-0001-8211-3962
https://orcid.org/0000-0002-8591-6581
https://orcid.org/0000-0001-6714-3135
https://orcid.org/0000-0001-7515-7166


M. Larhrib et al.: Ontological Behavioral Modeling Approach

MDE Model-Driven Engineering.
OCL Object Constraints Language.
ODM Ontology Definition Metamodel.
OMG Object Management Group.
OWL Web Ontology Language.
QOCDC Quality of CGMES Datasets and Calculations.
RDF Resource Description Framework.
RDFS Resource Description Framework Schema.
SHACL Shapes Constraint Language.
SPARQL SPARQL Protocol and RDF Query Language.
SSH Steady State Hypothesis.
SV State Variables.
TP Topology.
TS Technical Specification.
TSO Transmission System Operator.
UML Unified Modeling Language.
W3C World Wide Web Consortium.
XML Extensible Markup Language.
XSD XML Schema Definition.

I. INTRODUCTION
Any engineering process to obtain a specific artifact involves
building its structural and behavioral components. The two
aspects are dependent since one is built on the other.
In software engineering for the object-oriented paradigm, the
UML is used in the early stages of the life cycle, especially
in the requirements specification and design stage, where
constructs are provided for the structural aspects, such as
class and object diagrams, along with OCL rules. Other
behavioral constructs, such as state machines and activity
diagrams, are provided for the behavioral aspect. However,
the resulting artifacts are neither directly executable nor have
reasoning capacity.

On the other hand, in the ontological paradigm, the
semantic web technologies provided by W3C, such as RDF,
OWL, SPARQL, and SHACL, are used for the structural
aspect, thus obtaining directly executable (without any model
transformation) artifacts given the reasoning capacity they
have implicitly. However, no language is provided for
specifying behavior, similar to what the UML offers, such as
the activity diagram or state machine. Therefore, no language
with an ontological approach is available for the software
engineering process, especially in the early phases of the life
cycle, for the specification and definition of behavior.

The authors have focused and implemented their approach
in the ontology provided by W3C since semantic web
technologies RDF, OWL, SHACL, and SPARQL are widely
used.

To the best of the authors’ knowledge in the state-of-the-
art, no language is available for specifying the behavior in
the development phase. The requirements specification in
the ontological paradigm system’s behavior is realized by
wrapping ontological models into object-orientedmodels and
then performing functions on them (PySHACL [1], SHACL

Jena [2], TOPBRAID [3], and RDFLIB [4]) or directly with
SPARQL CRUD operations.

The provided approach to address this gap is based
on a language founded on the following constructs: task,
precondition, model, and postcondition. The semantics
associated with the language is that a task is executed when
a certain precondition is fulfilled on a specific model, and
an output model can be made available after its execution.
The postcondition has to be validated against the models.
The orchestration of the graph/flow execution that represents
the behavior is achieved through the flow processor, a core
component of the approach.

Therefore, the behavior will be represented by a flow
whose nodes are the tasks represented in Fig. 1., where the
core of the approach and its visual representation as language
are represented.

FIGURE 1. Basic visual elements for defining a flow.

A transformation of the behavioral constructs in the
object-oriented paradigm provided by UML to the proposed
approach constructs has been realized; this enables hetero-
geneous systems and serves as part of the evaluation of the
approach.

The evaluation has been performed on CGMES, a standard
consisting of a UML model representing the elements of the
electric utilities and a set of rules. The rules are classified into
eight levels and specified in natural language and in OCL,
whose transformation into SHACL has been addressed in a
previous work by the authors.

A data model generated by a specific entity, such as a
TSO, is subject to eight validation processes corresponding
to the eight validation levels specified in Quality of CGMES
Datasets and Calculations (QOCDC), a set of rules provided
by CGMES.

The software engineering community, ontology modeling
engineers, the community dedicated to defining standards,
and stakeholders involved in CIM CGMES for electric
utilities will benefit from this behavior modeling approach.

In Section II, related work is presented in the state-of-
the-art related to the proposed approach. Section III presents
the behavioral modeling approach in the ontological domain
and a didactic example of how this approach is applied.
In section IV, the transformation of the basic constructs of
the UML into the proposed approach constructs is performed.
Section V develops the modeling of the validation flow of the
CGMES standard. Finally, Section VI contains conclusions
and future work.

82042 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

II. RELATED WORK
At the state-of-the-art, no work has been found to make the
UML constructs directly executable through a processor, with
reasoning capacity and a glass-box approach.

For the early phases of software engineering, especially
the specification of requirements with ontologies, there are
frameworks and tools for the structural aspect. However,
the community is limited to using the structural modeling
of the ontologies (Protégé [5], SHACL Jena [2], Allegro-
Graph [6], StarDog [7], and RDF4J [8]), and the behavior is
implemented by wrapping the ontologies in object-oriented
technology (Jena [2]) or through SPARQL constructs for
CRUD operations [9]. Hence, a high-level visual language
that stakeholders from different technical and non-technical
backgrounds can consume is needed.

Behavioral modeling in object-oriented with UML [10]
covers the requirements specification phase, such as inter-
action diagrams, activity diagrams, and state machines.
However, no artifacts that are directly executable with
reasoning capacity are provided; even if code can be produced
automatically, a later refinement phase is needed.

To the authors’ best knowledge, no visual language like the
UML or an adaptation of the software process with ontologies
for the early phases is available in the state-of-the-art.

Works found in literature review research related to
ontologies generally consist of developing an ontology for
a given domain. Nevertheless, to the best of our knowl-
edge, no academic research effort addresses the software
development process with ontologies in both the behavioral
and structural aspects. Moreover, the ones that exist are ad-
hoc through a non-reusable process. The following research
works are related to the concepts of the proposed approach,
although they are all developed from an object-oriented
perspective.

The criteria for classifying the related works that are
valuable for the work being developed by the authors are
as follows: i) Direct executability [ED] ii) The use of
BPMN to address flows and orchestration in a given domain
[FBPMN], iii) The application of the ontological approach
to both a structural and behavioral domain [OADD], iv) The
transformation between different paradigms and languages
[TR], v) The validation of models at different levels of
abstraction [VAL], vi) Ontology modeling [MOD-ONT], vii)
Object-oriented modeling [MOD-OO], viii) Frameworks that
address these criteria [FRMK], ix) Literature reviews in the
areas corresponding to these criteria [LR].

Table 1 illustrates the classification of the literature review
according to the set of criteria described above.

The following are efforts that apply ontologies to a
specific domain.

In this work, given the complexity of selecting a web
service that meets the requirements of a user, the authors
have proposed a Semantic-based Business Process Execution
Engine to execute business processes based on selecting web
services and their orchestration at runtime. It uses an ontology
designed to fit the users’ requirements with the specification

TABLE 1. Classification of the literature review.

of the web services to optimize the selection from the service
repository [11].

Adaptive mobile phone interfaces are modeled and imple-
mented in this work through an ontological approach with
semantic web technologies such as SPARQL and OWL, but
SHACL is not used [12].

In this paper, the authors have developed an ontology
for the UML sequence diagram without providing specific
constructs for behavior in development with ontologies [13].

It is another effort that applies an ontology to a specific
domain, in this case, Natural Environment Crisis Manage-
ment. It addresses the IoT to prevent disasters with semantic
web technologies. The workflow is addressed with Business
Process Model and Notation (BPMN); the flow engine is
powered by Activiti [https://www.activiti.org/]. The rules
are designed and implemented separately from the flow
definition, which generates a scalability problem. In contrast
to our approach, rules are an implicit part of the flow [14].
This work is another application of an ontology for a

specific domain, the chemical domain in this case. Despite
being a recent work, it is not addressed with semantic web

VOLUME 12, 2024 82043



M. Larhrib et al.: Ontological Behavioral Modeling Approach

technologies. Instead, automatic code generation is produced
using the graphs for the ontologies [15].

It is a work that integrates an ontology into the domain of
scientific workflows [16].
It is a work where an ontology has been developed for

specific areas corresponding to smart grids, the multi-agent
world, and web services [17].

This work has developed an ontology for the river flow
and flood mitigation domains. The tool used in the ontology
building process is Protegé, which provides only the model’s
structural definition [18].

The work described in this paper involves ontologies,
requirements, and web services [19].

In this work, an ontology has been used to model events
in the electric utilities domain of the Indian National Grid.
Nevertheless, our approach considers that the event is not an
elemental concept but the execution of a performed task when
the precondition is fulfilled on a given model [20].

In this work, the automatic generation of a decentralized
cyber-physical system has been performed using ontology
transformation as part of the MDE approach [21].

This paper presents a platform for the authorization of
linked data using a language for linked data protection
policies. The policy language has been implemented on top
of SPARQL [22].

The following works are literature reviews and surveys
on the criteria related to the approach of this work.

This survey deals with Network Service Orchestra-
tion (NSO), reviewing the historical background, relevant
research projects, enabling technologies, and standardization
efforts [23].

This work is a compilation and presentation of the research
results and the potential benefits of applying ontologies
to address three challenges in software engineering: i)
difficulty in communicating and sharing information; ii)
effective management of software development phases; and
iii) development techniques and environments to support the
production of semantic software through an interdisciplinary
approach [24].

This work is a survey on business process management
suites [25].

It is a valuable job that has performed a systematic
literature review of modeling approaches and tools for
embedded systems [26].
A literature review on the application of ontologies to

systems engineering is presented. Since ontologies allow a
common and unambiguously interpretable vocabulary, both
by humans and machines, in the structural and behavioral
areas of the systems, it is also a survey that presents the
transformation between UML and ontology constructs in
the state-of-the-art. The work criticizes that mapping all the
constructs of both paradigms is impossible. We consider that
the mapping for all constructs is not needed; otherwise, they
would be equivalent paradigms. Therefore, the usefulness
of each one lies in the semantic differences between their
constructs [27].

The following works are related to the use of BPMN
together with criteria such as modeling and transforma-
tion.

This work improves the productivity related to the
implementation of services through M2M and M2T, but
without the following criteria: i) direct executability, ii) glass-
box process, iii) reasoning capacity, iii) using semantic web
technologies [28].
In this work, the microservices composition and orchestra-

tion have been specified in BPMN, and event-based chore-
ography is used to perform their execution. The relationship
between this work and our approach is that the abstraction
level has been raised through BPMN constructs [29].
In this work, abstraction has been performed to encapsulate

event stream processing as a set of business functions, using
Event-driven Process Chains (EPCs) and BPMN 2.0, map-
ping transformations to executable process representation
with an execution engine, and integrating it with third-party
software [30].

This work models the behavior of IoT within the context of
BPMN for business processes, performing a transformation
to Callas code, a programming language for sensors executed
through a virtual machine for IoT devices [31].
It is an effort to integrate BPMN with the process-

driven approach (PDA) paradigm. The processes defined
with BPMN are made executable thanks to a process
engine in charge of orchestrating the flow defined by
BPMN [32].

The foundation for the following works is transforma-
tion.

In this valuable work, a framework for formal verification
in embedded systems design has been developed using
computation tree logic (CTL), OCL for system Verilog, and
a transformation engine to obtain the low-level code from
the highest level defined with Systems Modeling Language
(SysML) and UML [33].
This remarkable work presents a framework to specify

the design and verification of requirements by developing a
profile based on UML and SysML to represent the semantics
of System Verilog from the low abstraction level of RTL
to the high abstraction level provided by UML. As part of
the effort, a transformation engine has been developed to
generate RTL (Register Transfer Level (RTL)) code along
with System Verilog assertion (SVA) code [34].
This paper proposes a transformation process from Com-

putation Independent Model (CIM) to platform-independent
model (PIM) and modeling validation in an ontology-based
approach [35].
The following works address modeling, behavior crite-

ria, and evaluation of modeling languages.
This paper presents a framework for the behavior-

driven development (BDD) approach by introducing UML
profiles [36].
In this work, to evaluate software process modeling

languages, a quality model has been proposed that allows
them to be characterized and compared [37].

82044 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

This paper introduces a system framework grounded
in linked data and ontologies, aiming to facilitate the
efficient sharing and access of safety educational content for
construction workers from diverse sources in a standardized
fashion. To realize this objective, RDF and SPARQL have
been used [38].

This work introduces the CURIOCITY ontology (Cultural
Heritage for Urban Tourism in Indoor/Outdoor Environments
of the CITY) designed to depict cultural heritage knowledge
under UNESCO’s definitions. The ontology incorporates an
automated population process facilitating the conversion of a
museum data repository (in CSV format) into RDF triples,
thereby automating the population of the CURIOCITY
repository [39].

This research introduces a method for modeling and
analyzing knowledge in the context of health management
for IT equipment, utilizing a knowledge graph. It entails
the development of an ontological framework tailored to the
entity-relationship model for creating a maintenance knowl-
edge map. Subsequently, various technologies, including the
knowledge graph, text classification, and Bayesian network,
among others, are systematically integrated and employed to
manage knowledge related to faults in IT equipment, facilitate
fault localization, and enhance fault diagnosis reasoning [40].

This paper presents a classification of knowledge domains
and a method for classifying datasets and ontologies of
Linked Open Data (LOD) based on it. A significant portion
of LOD is classified, and research is conducted to determine
if a set of observed phenomena exhibits domain-specific
characteristics [41].

This paper proposes a novel ontological model to
implement interoperability in distributed Electronic Health
Records (EHR) environments. The proposed semantic onto-
logical model can unify different formats of EHR data. In this
approach, RDF and SPARQL have been used [42].

In this work, to semantically enrich mobility data,
a methodology is presented where a knowledge graph-based
RDF representation is utilized to store datasets related to
trajectories, thereby enabling uniform querying and analysis
of enriched movement data [43].

In this work, a query language for ontologies for JOWL
called SQWRL is proposed, designed as a temporal extension
of the ontology query language [44].

This work proposes an approach that allows building a tem-
poral ontology and managing its incremental maintenance to
accommodate the evolution of this data in a temporal and
multi-schema environment [45].

This work proposes an approach for creating a Knowledge
Representation system on Blockchain involving RDF graph
databases, Linked Data access methods, and Blockchain
functionalities. These elements ensure the immutability, non-
repudiation, and decentralization of the Knowledge Repre-
sentation realized by standard RDF graph databases [46].

In this paper, the authors described a workflow runtime
model concept for scientific workflows while maintaining
a direct connection of individual tasks to their required

infrastructure. However, this work has not involved ontology
modeling, and the workflow does not support reasoning;
furthermore, no flow modeling paradigm is observed [47].

The works addressing direct executability are based on
automatic code generation without reasoning capability.
Although the executability is direct, it is performed in black-
box terms. BPMN is used in some works to model behavior
flow in specific domains, such as the orchestration of web
services. A BPMN engine is needed for the BMPN models
to be executable but is implemented as a black-box artifact
without reasoning capability. BPMN is intended for human
interoperability, although it is forced to be executable on the
machine through a BPMN engine. Many works apply the
ontological approach to a particular domain to obtain models,
but only in structural terms. However, once the ontology
is obtained, models acquire reasoning capability. There are
works dealing with the transformation between different
languages of different levels of abstraction, and paradigms
have also been included. The works consisting of frameworks
that include criteria of interest to the proposed approach have
been considered; this is useful for presenting the proposed
approach as a framework and a tool. Given the criteria of
interest in our approach, the authors have considered surveys
and literature reviews.

The authors’ research found no work dealing with
behavioral modeling with ontology or a visual language that
allows a flow’s direct execution.

III. ONTOLOGY BEHAVIORAL APPROACH
Therefore, since no high-level language is available for
the requirements specification phases, which is helpful for
both technical and non-technical stakeholders for behavioral
modeling for the software engineering process with an onto-
logical approach, this work aims to provide a methodological
approach supported by a visual modeling language to address
the process of behavioral specification in the ontological
field.

Behavior can be represented as a flow. A flow can be
described as a graph. The flow’s basic constructs are task,
transition, event, decision, parallelism, and synchronization,
as represented in Fig. 2. BPMN and the activity diagram,
among others, are specified with this approach for the early
phases of the software engineering life cycle, such as the
specification of requirements.

FIGURE 2. Basic constructs of a flow.

The following are definitions of the basic concepts
involved in behavior.

VOLUME 12, 2024 82045



M. Larhrib et al.: Ontological Behavioral Modeling Approach

The task is a transformation performed on the models.
The transition indicates the path from the execution of one

task to the execution of another one.
event = (previous model, conditions, transformation,

current model, such that previous model ̸= current model).
The decision is what will be executed once a condition has

been validated against a model.
The main idea of the approach in this work stems from

the observation that certain conditions have to be met on a
specific set of resources to execute a specific thing. Even
though it may seem trivial, it is a rigorous definition that
offers enough concepts to develop a visual language directly.

Behavior, in its essence, is the transformation of a
model. What is going to be executed is the task, modeled
with the directly executable ontological paradigm. First,
structural and behavioral information will be defined using
an ontological model. Then, the conditions will be modeled
and implemented with ontological rules to validate the
information model. The decision concept in our approach is
simply whether the information model is compliant with the
rules that define the conditions.

Definition: A transition is a path from one task to
another once the first has finished, which is essentially a
transformation of a model.

Transition = <task1,task2,finished(task1),started(task2)>
The approach for this work consists of the following

basic constructs: task, model, precondition, postcondition,
and transition between tasks (arrows), as illustrated in Fig. 3.

FIGURE 3. Basic constructs of behavioral specification.

The basic idea consists of executing a specific task when a
particular condition is fulfilled on a specific data set (model).

The development of the approach is realized with the
technologies of the semantic web is as follows:

Models are defined using the RDF or OWL languages.
Models can be simple or complex; in this case, they will be
constructed by a group of references to graphs representing
models. The precondition is built using a set of SHACL rules.

The task can be modeled using the SPARQL language to
perform the transformations behind the CRUD operations.

The semantics of the approach in the base case is shown
in Fig. 4.

FIGURE 4. Base case for the proposed approach.

To execute task 1, model 1 must be valid against precondi-
tion 1, and postcondition 1 must be fulfilled on the models
of interest for the requirements. Once task 1 is executed,
task 2 is executed if model 2 is valid against precondition 2.
According to our approach, the flow processor is in charge
of orchestrating and executing the flow model that represents
the behavior. The semantics representing the behavior flow
will be executed by the flow processor that the authors have
implemented through an algorithm, in this case, in Java.

The transition (green arrow) has an input model, an output
model, a precondition, a postcondition, and a task T, as shown
in Fig. 5. After Task1 is executed, Task2 is executed only if
the input model meets the precondition of the transition, and
the transition task T has been executed.

FIGURE 5. Transition model.

The flow processor architecture is shown in Fig. 6.

FIGURE 6. Flow processor architecture.

The flow of the flow processor shown in Figs. 7 and 8
illustrates the basic concepts and actions to execute the flow.

The process is executed at each node of the graph
representing the flow. The red arrow indicates the iteration.

82046 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

FIGURE 7. Flow of the flow processor for option 1.

FIGURE 8. Flow of the flow processor for option 2.

When the validation result of the input model against
the precondition has false as value, the following options
for configuring the behavior of the flow processor can
be adopted. (i) It remains permanently pending until the
validation result is true to move on to the next task,
as presented in Fig. 7. (ii) It ignores the outgoing tasks
from the current node and never reruns the current task,
as presented in Fig. 8.

The algorithm that corresponds to the flow processor is
shown in Listing 1.

Fig. 9 shows the node class for implementing the proposed
approach.

The graph behind the flow is executed by visiting each
node. The node type can be: (i) StartNode; in this case,
its outgoing edges and the corresponding destination node
are obtained and executed; (ii) GatewayNode; In this case,
the input model is validated against the GatewayNode
precondition, and the EdgeYes, EdgeNo, NodeYes, and
NodeNo are obtained. If the validation is correct, the NodeYes
is executed; otherwise, the NodeNo is executed; finally, all
nodes of type SyncNode that are reachable from the path that
will not be executed are notified not to consider them. (iii)

LISTING 1. The flow processor algorithm.

PerformedTask; this scenario executes the task corresponding
to this node, and the outgoing edges and their corresponding
destination nodes are obtained. If the destination node is

VOLUME 12, 2024 82047



M. Larhrib et al.: Ontological Behavioral Modeling Approach

FIGURE 9. Node class.

not a SyncNode, it is executed; otherwise, the SyncNode is
notified that this edge has already reached this node. If all
incoming edges have arrived, then the node is executed.
(iv) SyncNode; the outgoing edges and their corresponding
destination nodes are obtained. For each node: if it is not
of type SyncNode, it is executed; otherwise (if it is of type
SyncNode), if all incoming edges have arrived, the node is
executed.(v) EndNode; Nothing is done since it must not have
outgoing edges.

The flow processor model with the proposed approach
is illustrated in Fig. 10. Where: (1) represents the flow
processor, enabling direct execution. (2) denotes the flow
model representing the process behind the behavior to be
executed, which is an RDF graph. (3) are the SHACL rules
that establish the syntax conditions for the visual grammar
of the language, defining the flow. (4) is the RDF model
containing the required information about the flow execution
status in structural terms. Finally, (5) are the conditions in
SHACL that must be satisfied once the flow is executed.

The Listing 2 shows an excerpt of the ontological model of
the flow.

LISTING 2. Ontological model of the flow.

‘@prefix bh: <http://www.bh.org/bh#>.’ is the prefix that
represents the namespace of behavioral modeling context.

FIGURE 10. The flow processor model with the proposed approach.

LISTING 3. Syntactical rules defined in SHACL for the proposed approach.

An instance of the ontological model of the flow is
shown in Fig. 11, representing all constructs involved in the
approach.

FIGURE 11. An instance of the ontological model of the flow.

An excerpt of the preconditions for the syntax and
semantics rules of the flowmodel defined in SHACL is shown
in Listing 3.

Fig. 12 shows a simple example of two tasks running
sequentially.

FIGURE 12. A simple flow example.

The RDF corresponding to the previous flow is illus-
trated in Listing 4. The identifiers of the RDF objects
that correspond to visual elements are the values of the
attributes of the SVG elements of each visual concept in the
diagram.

82048 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

LISTING 4. An excerpt from the RDF that represents the model for Fig. 12.

IV. AN EXAMPLE OF THE APPLICATION OF THE
APPROACH TO THE WATER RESERVOIR MODEL
This example illustrates how to address a specific problem
from a particular domain with the ontological paradigm
using our approach: model, precondition, postcondition, and
performed task. The physical model that represents the water
tank is shown in Fig. 13.

FIGURE 13. Reservoir physical model.

The goal is to control the volume of water ‘‘vcurrent,’’
which is regulated by ‘‘vs’’, taking into account that the
minimum volume ‘‘vmin’’ and maximum volume ‘‘vmax’’
are fixed. ‘‘valve1’’ controls the inlet flow rate to the tank,
and ‘‘valve2’’ controls the outlet flow rate. The user decides
which set point to assign, and the system reacts to maintain
the ‘‘vcurrent’’ at the value of ‘‘vs’’ by acting on the two
valves.

The scenarios that have been considered are as follows:
Scenario 1: Open valve2 and close valve1 if vc > vs.
Scenario 2: Close valve2 and open valve1 if vc < vs.
Scenario 3: Close valve 2 and close valve 1 if vc == vs.

LISTING 5. The RDF behavioral model for the water tank.

LISTING 6. RDF for valves model.

According to our approach for a simple water tank model
such as a dam, the behavioral modeling is presented in
Fig. 14.

FIGURE 14. Behavioral modeling for a simple water tank.

The RDF model associated with this flow is shown in the
Listing 5.

For simplicity’s sake, just an excerpt is shown for the three
scenarios.

The RDF for the inputModel representing the two valves
is depicted in Listing 6.

An excerpt of the conditions representing the different
scenarios is defined in SHACL and depicted in Listing 7.

The task behind the scenario of closing the two valves is
modeled in the SPARQL code represented in Listing 8.

VOLUME 12, 2024 82049



M. Larhrib et al.: Ontological Behavioral Modeling Approach

LISTING 7. An excerpt of SHACL shapes for the first gateway precondition.

LISTING 8. SPARQL code for the task of closing the two valves.

LISTING 9. SPARQL for updating the physical system model.

The task of updating the current volume vc takes into
account the valves’ status and the equation vc(t) = vc(t−1)+
k1 ∗ status_val1− k2 ∗ status_val2, is depicted in Listing 9.

TABLE 2. The essential UML diagrams.

For simplicity k1 and k2, which represent the flow rates of
each valve, take the value 1. The variation of the volume of
the tank per unit of time is one unit.

In charge of updating the physical system, the performed
task models a simple equation: vc(t) = vc(t − 1) + k1 ∗

status_val1 − k2 ∗ status_val2, where time is a discrete
variable. vc(t) is the current volume at the instant t. vc(t − 1)
the volume at the previous instant (one unit before instant t)
k1 and k2 are the amounts of water supplied or withdrawn by
valves val1 and val2, respectively, in a unit of time (flow rate
of val1 and val2), and status_val1 and status_val2 represent
whether the valves are open or closed. In this example, a basic
linear model describes the system’s dynamics. However, the
model can be replaced by a more complex one in which the
differential equation is of a higher order, keeping data from
previous instants in the RDF model and dealing with the non-
linearity of the valves.

V. TRANSFORMATION OF BEHAVIORAL UML
CONSTRUCTS TO THE PROPOSED APPROACH
The proposed approach for behavioral modeling provides a
set of visual or graphical constructs with their corresponding
syntax in the semantic web, RDF SHACL, SPARQL,
or OWL.

A. DEFINITION
A semantic processing entity is an entity with the capability to
receive and send messages and reasoning about them, which
can be represented as graphs.

The UML provides a set of constructs as a language for
the requirements specification, analysis, and design phases.
However, they are not directly executable and are imple-
mented with general-purpose, object-oriented languages. The
essential diagrams are shown in Table 2.

B. ACTIVITY DIAGRAM
The activity diagram is a flowchart comprising the constructs
represented in Table 3.
In order to illustrate our approach, exclusive gateways with

only two yes-or-no outputs are addressed for simplicity’s
sake. Although the most fundamental constructs for flow
elaboration are addressed, the remaining constructs can be

82050 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

TABLE 3. Activity diagram basic constructs with concept mapping of the
proposed approach.

modeled with our approach. Activity nodes also include
control flow constructs such as synchronization, decision, and
concurrency control.

The visual elements of behavioral UML have been reused
for our approach, although the semantics may vary to adapt it
to the ontological domain.

OMG provides, among others, the BPMN, the activity
diagram, and the state machine, which are mainly graphs but
ignore the graph conceptualization, and are just treated as
diagrams.

Our approach assumes that everything is a graph. Thus,
structures, processes, and behaviors are graphs.

Suppose a new construct is needed to cover a specific use
case in the future. In that case, it only is necessary to give a
name as an identifier or a symbol to the construct along with
its semantics and whose implementation will be added to the
behavior graph processor.

C. STATE MACHINE
The basic constructs of a state machine are the states,
transitions, inputs, and outputs, as shown in Fig. 15.

FIGURE 15. State machine basic constructs.

The concept mapping is illustrated in Fig. 16.
Fig. 17 can represent the case when the focus is on the

state node, where an input is expected, a task is performed,
an output is produced, and the transition to the next state is
realized.

Fig. 18 can represent the case when the focus is on the
transition that starts from a state, an input model is expected,
a task is performed, an output is produced, and the transition
to the next state is accomplished.

As in our approach, the transition has its input model,
precondition, output model, and postcondition explicitly;

FIGURE 16. State machine basic constructs with concept mapping of the
proposed approachs.

FIGURE 17. The corresponding flow for a state machine where the focus
is on the node.

FIGURE 18. The corresponding flow for a state machine where the focus
is on the transition.

thus, the behavior of the state machine can be implemented
when the input and output are described in the transition.

If the input and output are described in the state, then the
performed task is used as the state; the state machine input
will be represented by (input model, precondition) and the
output by (output model, postcondition).

D. INTERACTION DIAGRAM
In UML, interaction is mainly represented by sending and
receiving messages, which can carry parameters between two
components or objects.

In our approach, messages are modeled based on a specific
metamodel of instances and the capability to reason about
them. The basic structure for the interaction is represented
in Fig. 19.

VOLUME 12, 2024 82051



M. Larhrib et al.: Ontological Behavioral Modeling Approach

FIGURE 19. The interaction model according to our approach.

LISTING 10. RDF Schema of the interaction diagram constructs.

The RDF graph that corresponds to the interaction diagram
of Fig. 19 is shown in Fig. 20. The MP class is the superclass
that represents the two Message and Process classes.

FIGURE 20. The RDF graph corresponding to the interaction diagram of
Fig. 19.

The RDFS corresponding to the constructs on which the
interaction diagram is based is shown in Listing 10.

The RDF corresponding to component2 of Fig. 19 is shown
in Listing 11.

LISTING 11. RDF corresponding to component2 of Fig. 19.

The implementation of the proposed approach concerning
the interaction diagram from the ontological paradigm has
been performed as follows:

First, the endpoints (interaction processors) are deployed,
already implemented for the proposed approach’s semantics,
which will attend to messages, execute flows and send
messages to other message attendants.

Second, in the modeling/development/deployment phase,
each time-line is loaded in the corresponding endpoint. Once
loaded, the messages are ready to be processed; Thus, the
direct executability.

The modeler’s effort is reduced to defining the models
and conditions together with the organization of the temporal
semantics based on the semantics of the interaction processor
(flow execution metamodel)

Direct execution is performed by the interaction graph
processor corresponding to each time-line. The interaction
processor algorithm is illustrated in Listing 12. In addition,
the authors have implemented the algorithm for the web
domain using the SPRING BOOT framework and STOMP
for messages.

VI. EVALUATING THE PROPOSED APPROACH
‘‘Common Grid Model Exchange Specification (CGMES)
is an IEC Technical Specification (TS) based on the IEC
CIM family of standards. It was developed to meet necessary
requirements for Transmission System Operator (TSO) data
exchanges in the areas of system development and system
operation’’ [48]. In the context of SmartGrids, and according
to European regulation, TSOSmust provide different network
models (IGMs) as a forecast to build (merging process) a
Common Grid Model (CGM). CGMs are the basic building
blocks for different services: coordinated security assess-

82052 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

LISTING 12. Algorithm for attending the messages.

ment, coordinated capacity calculation, outage planning
coordination, and short- and medium-term adequacy. The
Individual Grid Model (IGM) consists of all data instances
necessary to specify a scenario as input and output for a
power flow tool. A CommonGridModel (CGM) is the steady
state of a pan-European system for a given point in time and
a collection of IGMs building an utterly balanced system
with a solved load flow. Merging consists of combining
information frommultiple IGMs and external constraints into
a coherent network model with operating assumptions for
a given time. European Network of Transmission System
(ENTSO-E) provides CGMES standard specification, which
consists of a set of documents. The key documents of
interest for this work are: the XSD file for defining the rules
model; XML files defining QoCDC Rules for each level
which specify how validation reports are produced; Resource
Description Framework Schema (RDFS), and OCL files for
models corresponding to the different profiles which are
described as follows:

• EQ - Network equipment and EQ_BD - Boundary
network equipment. EQ is subdivided into Core, Short
Circuit, and Operation

• TP - Topology and TP_BD - Boundary topology (power
flow buses)

• SV - State Variables (power flow solution)
• SSH - Steady State Hypothesis (power flow input)
• DL - Display Layout
• GL - Geographical Location
• DY - Dynamics data
An IGM is described mainly by six profiles: EQ, TP, SV,
SSH, EQ_BD, and TP_BD.

Basic technical specifications that describe CGMES are:

• IEC 61968-100:2013, Application integration at electric
utilities - System interfaces for distribution management
- Part 100: Implementation profiles.

• IEC 61970-301:2016 RLV (Red Line Version), Energy
management system application program interface
(EMS-API) - Part 301: Common information model
(CIM) base.

• IEC 61970-452:2017 (Edition 3.0), Energymanagement
system application program interface (EMS-API) - Part
452: CIM static transmission network model profiles.

• IEC 61970-453:2014 (Edition 2.0) andAMD1:2018CSV,
Energy management system application program inter-
face (EMS-API) - Part 453: Diagram layout profile.

• IEC 61970-501:2006 (Edition 1.0), Energymanagement
system application program interface (EMS-API) - Part
501: Common InformationModel Resource Description
Framework (CIM RDF) schema.

• IEC 61970-552: 2013 (Edition 1.0), Energy manage-
ment system application program interface (EMS-API)
- Part 552: CIMXML Model exchange format.

• IEC TS 61970-600-1:2017, Energy management sys-
tem application program interface (EMS-API) - Part
600-1: Common Grid Model Exchange Specification
(CGMES) - Structure and rules.

• IEC TS 61970-600-2:2017, Energy management sys-
tem application program interface (EMS-API) - Part
600-2: Common Grid Model Exchange Specification
(CGMES) - Exchange profiles specification.

• IEC 62325-451-1, Framework for energy market com-
munications - Part 451-1: Acknowledgement business
process and contextual model for CIMEuropeanmarket.

• IEC 62325-451-5, Framework for energy market com-
munications - Part 451-5: Status request business
process and contextual model for CIMEuropeanmarket.

The authors consider that the elements provided by the
CIM standard (CGMES) can be used to evaluate the proposed
approach. CIM and especially CGMES have created an
ontology in the form of RDFS graphs for the structural part
of the standard together with a set of rules classified in
8 levels and specified in natural language and OCL. This
standard enables TSOs to create models that conform to the
RDF schemas and rules. Furthermore, the CGMES standard
specifies that the validation process is done in sequence from
level 1 to level 8.

Each of the validation levels is described as follows [49]:
Level 1 defines metadata in file names and packaging of
CIMXML files,

Level 2 defines the structure and syntax of the individual
CIM/XML files as well as the metadata header,

Level 3 includes constraints that can be evaluated within
the scope of the CIMXML files,

Level 4 describes issues that can be detected during model
assembly,

Level 5 includes cross-profile consistency of data,

VOLUME 12, 2024 82053



M. Larhrib et al.: Ontological Behavioral Modeling Approach

Level 6 covers diagnostic information that may help solve
convergence issues by identifying modeling issues that seem
troublesome,

Level 7 describes the coordination of IGMs regarding
neighboring TSOs and reference values.

Level 8 covers the convergence behavior of IGMs and
CGMs and the plausibility of the CGM.

If a model does not conform to the rules of a certain level,
a violation report is returned, and the next validation level is
not performed. Therefore, the validation process specified by
the CGMES is a flow of validation tasks against the rules of
the standard on data models, which are mainly ontologies.
Moreover, this approach has provided a solution developed
using the W3C standards for validating CIM (CGMES)
models, both for the structural and behavioral aspects.

All standards are a set of concepts, relationships, rules,
and flows of transformations that can be represented with
graphs or ontologies to perform the reasoning task. Thus,
any standard from another domain could have been chosen
and applied the same approach for validation against the
standard’s rules.

Any business process can be considered as a flow. Hence,
having a flow processor along with a flowmodeling language
that supports reasoning and, therefore, direct executability.
Therefore, the effort is saved in the different phases of
the development process (specification of requirements,
implementation, testing, and postdelivery tasks). As a result,
improvement of transparency (glass box), and scalability,
among others, are achieved.

Fig. 21 shows the flow modeling of the validation process
of the eight levels of the CGMES standard. Each level’s
precondition corresponds to the standard’s rules for that level
and is modeled in SHACL. The input model is the needed
model for a given level of validation. The reason contains the
validation report for each level.

FIGURE 21. Flow for the process of the eight validation levels of the
CGMES standard.

The authors have developed a platform whose architecture
is shown in Fig. 22. The platform has been developed in Java,
specifically as a Spring Boot project using the JENA library
for managing RDF graphs and the Fuseki endpoint for storing
the RDF graphs that represent the models.

FIGURE 22. The architecture of the flow and interaction processors
platform.

The application mainly consists of a flow processor and an
interaction processor. The former is a processor of process
flows, initially defined by the modeler as an RDF graph.
The latter is a processor for communication and interaction
between different components that can be hosted on different
machines. For using these two processors, API REST services
have been implemented for loading and executing flow and
interaction graphs. In addition, Javascript libraries have been
developed to create, execute, and monitor the execution of
these diagrams from a web browser. The platform integration
layer can be built on top of the API REST services that expose
the flow and interaction processors.

FIGURE 23. Visual constructs, core concept and RDF language model.

Fig. 23 illustrates the proposed visual language within
this framework. The foundational elements for defining
a flow are positioned on the left side of the diagram.
These include a blue rectangle representing PerformedTask,
a green circle denoting startNode, a red circle indicating
endNode, a diamond symbolizing the decision-making Gate-
way, an arrow indicating the transition, and a vertical bar
signifying syncNode. In the central portion, the fundamental
concept of the framework is elucidated. The RDF SCHEMA

82054 VOLUME 12, 2024



M. Larhrib et al.: Ontological Behavioral Modeling Approach

definition of the proposed language for specifying a flow is
presented on the right side of the diagram. This approach
enables direct executability of the model once it has been
established using this language.

VII. LIMITATIONS
The authors have considered the following limitations: (i)
The CGMES version on which the approach was evaluated is
2.4.15. (ii) Only semantic web technologies for ontological
modeling have been used. (iii) The modeling language
of the rules for the preconditions and postconditions has
been defined in SHACL only. (iv) Other constructs can
be added to the approach, such as the concept of a loop
in the interaction diagram. (v) It has only been limited to
mapping the Object-Oriented paradigm (UML) for mapping
fundamental behavioral concepts to the proposed approach,
such as activity diagram, state machine, and interaction
diagram.

VIII. CONCLUSION AND FUTURE WORKS
In the software engineering process with ontologies for
behavior specification, an approach has been provided with
its corresponding visual language for requirements speci-
fication, design, implementation, and testing-our approach
considers a process defined as an evolutionary modeling
process. The testing phase can be treated as a validation
process, viewed as a model against the population of test
instances. The behavioral modeling paradigm consists of
tasks performed when their conditions are accomplished
against their input model, considering a model as a set of
concepts and relationships related to the task. The two aspects
of behavior that have been addressed and implemented are
flow and interaction. A transformation has been realized from
the fundamental UML behavioral diagrams to the proposed
approach, including the activity diagram, the interaction
diagram, and the statemachine diagram. In this work, only the
most common constructs for behavior have been addressed;
For the temporal logic of behavior, no constructs have been
provided with their corresponding visual syntax in RDF
and its semantics. However, even in the absence of these
constructs, modeling the behavior’s temporal logic can be
addressed with our approach using the input model and the
precondition. In case a new construct is needed to cover a
specific use case in the future, only it is necessary giving a
name (identifier or symbol) to the construct and its semantics
whose implementation will be added to the behavior graph
processor. Temporal diagram, processminingwith semantics,
process improvement, and its application in the security
domain are proposed as future works. The evaluation of the
approach has been conducted in the domain of smart grids;
for modeling and achieving direct execution of the CGMES
validation process.

REFERENCES
[1] A. Sommer. (2017). A Python Validator for SHACL. Accessed:

Mar. 10, 2024. [Online]. Available: https://github.com/RDFLib/pySHACL

[2] T. A. S. Foundation. (2017). Apache Jena SHACL. Accessed:
Mar. 10, 2024. [Online]. Available: https://jena.apache.org/documentation/
shacl/

[3] H. Knublauch. (2017). SHACL API in Java Based on
Apache Jena. Accessed: Mar. 10, 2024. [Online]. Available:
https://github.com/TopQuadrant/shacl

[4] (2023). Pure Python Package for Working With RDF. Accessed:
Mar. 10, 2024. [Online]. Available: https://github.com/RDFLib/rdflib

[5] (2016). A Free, Open-Source Ontology Editor and Framework for
Building Intelligent Systems. Accessed:Mar. 10, 2024. [Online]. Available:
https://protege.stanford.edu/

[6] (2009). Allegrograph Rdfstore Web 3.0’s Database. Accessed:
Mar. 10, 2024. [Online]. Available: http://www.franz.com/agraph/
allegrograph

[7] (2009). Enterprise Knowledge Graph Platform. Accessed: Mar. 10, 2024.
[Online]. Available: https://www.stardog.com/

[8] E. Foundation. (2015). Open-Source Framework for Storing, Querying,
and Analysing RDF Data. Accessed: Mar. 10, 2024. [Online]. Available:
https://rdf4j.org/

[9] (2008). Sparql Protocol and RDF Query Language. Accessed:
Mar. 10, 2024. [Online]. Available: https://www.w3.org/TR/sparql11-
query/

[10] (2017). Unified Modeling Language. Accessed: Mar. 10, 2024. [Online].
Available: https://www.omg.org/spec/UML/

[11] M. Fahad, N. Moalla, and Y. Ourzout, ‘‘Dynamic execution of a Bus.
Process via web service selection and orchestration,’’ Proc. Comput. Sci.,
vol. 51, pp. 1655–1664, Aug. 2015.

[12] M. W. Iqbal, N. A. Ch, S. K. Shahzad, M. R. Naqvi, B. A. Khan, and
Z. Ali, ‘‘User context ontology for adaptive mobile-phone interfaces,’’
IEEE Access, vol. 9, pp. 96751–96762, 2021.

[13] M. Elsayed, N. Elkashef, and Y. F. Hassan, ‘‘Mapping UML sequence
diagram into the web ontology language OWL,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 11, no. 5, pp. 1–17, 2020.

[14] S. Poslad, S. E. Middleton, F. Chaves, R. Tao, O. Necmioglu, and
U. Bügel, ‘‘A semantic IoT early warning system for natural environment
crisis management,’’ IEEE Trans. Emerg. Topics Comput., vol. 3, no. 2,
pp. 246–257, Jun. 2015.

[15] A. T. Elve andH. A. Preisig, ‘‘From ontology to executable program code,’’
Comput. Chem. Eng., vol. 122, pp. 383–394, Mar. 2019.

[16] J. Fabra, M. J. Ibáñez, P. álvarez, and J. Ezpeleta, ‘‘Behavioral analysis
of scientific workflows with semantic information,’’ IEEE Access, vol. 6,
pp. 66030–66046, 2018.

[17] B. Teixeira, G. Santos, T. Pinto, Z. Vale, and J. M. Corchado, ‘‘Application
ontology for multi-agent and web-services’ co-simulation in power and
energy systems,’’ IEEE Access, vol. 8, pp. 81129–81141, 2020.

[18] M. H. Mughal, Z. A. Shaikh, A. I. Wagan, Z. H. Khand, and S. Hassan,
‘‘ORFFM: An ontology-based semantic model of river flow and flood
mitigation,’’ IEEE Access, vol. 9, pp. 44003–44031, 2021.

[19] M. Driss, A. Aljehani, W. Boulila, H. Ghandorh, and M. Al-Sarem, ‘‘Ser-
vicing your requirements: An FCA and RCA-driven approach for semantic
web services composition,’’ IEEE Access, vol. 8, pp. 59326–59339, 2020.

[20] Y. Pradeep, S. A. Khaparde, and R. K. Joshi, ‘‘High level event ontology
for multiarea power system,’’ IEEE Trans. Smart Grid, vol. 3, no. 1,
pp. 193–202, Mar. 2012.

[21] C.-W. Yang, V. Dubinin, and V. Vyatkin, ‘‘Ontology driven approach
to generate distributed automation control from substation automation
design,’’ IEEETrans. Ind. Informat., vol. 13, no. 2, pp. 668–679, Apr. 2017.

[22] R. Stojanov, S. Gramatikov, I. Mishkovski, and D. Trajanov, ‘‘Linked data
authorization platform,’’ IEEE Access, vol. 6, pp. 1189–1213, 2018.

[23] N. F. Saraiva De Sousa, D. A. Lachos Perez, R. V. Rosa, M. A. S. Santos,
and C. Esteve Rothenberg, ‘‘Network service orchestration: A survey,’’
Comput. Commun., vols. 142–143, pp. 69–94, Jun. 2019.

[24] S. Isotani, I. Ibert Bittencourt, E. Francine Barbosa, D. Dermeval, and
R. Oscar Araujo Paiva, ‘‘Ontology driven software engineering: A review
of challenges and opportunities,’’ IEEE Latin Amer. Trans., vol. 13, no. 3,
pp. 863–869, Mar. 2015.

[25] A. Meidan, J. A. García-García, M. J. Escalona, and I. Ramos, ‘‘A survey
on business processes management suites,’’ Comput. Standards Interface,
vol. 51, pp. 71–86, Mar. 2017.

[26] M. Rashid, M. W. Anwar, and A. M. Khan, ‘‘Toward the tools selection
in model based system engineering for embedded systems—A systematic
literature review,’’ J. Syst. Softw., vol. 106, pp. 150–163, Aug. 2015.

VOLUME 12, 2024 82055



M. Larhrib et al.: Ontological Behavioral Modeling Approach

[27] M. Mejhed Mkhinini, O. Labbani-Narsis, and C. Nicolle, ‘‘Combining
UML and ontology: An exploratory survey,’’ Comput. Sci. Rev., vol. 35,
Feb. 2020, Art. no. 100223.

[28] I. Zafar, F. Azam, M.W. Anwar, B. Maqbool, W. H. Butt, and A. Nazir, ‘‘A
novel framework to automatically generate executable web services from
BPMN models,’’ IEEE Access, vol. 7, pp. 93653–93677, 2019.

[29] P. Valderas, V. Torres, and V. Pelechano, ‘‘A microservice composition
approach based on the choreography of BPMN fragments,’’ Inf. Softw.
Technol., vol. 127, Nov. 2020, Art. no. 106370.

[30] S. Appel, P. Kleber, S. Frischbier, T. Freudenreich, and A. Buchmann,
‘‘Modeling and execution of event stream processing in business
processes,’’ Inf. Syst., vol. 46, pp. 140–156, Dec. 2014.

[31] F. Martins and D. Domingos, ‘‘Modelling IoT behaviour within BPMN
Bus. Processes,’’ Proc. Comput. Sci., vol. 121, pp. 1014–1022, May 2017.

[32] E. Schäffer, V. Stiehl, P. K. Schwab, A.Mayr, J. Lierhammer, and J. Franke,
‘‘Process-driven approach within the engineering domain by combining
Bus. Process model and notation (BPMN) with process engines,’’ Proc.
CIRP, vol. 96, pp. 207–212, Apr. 2021.

[33] M. W. Anwar, M. Rashid, F. Azam, A. Naeem, M. Kashif, and W. H. Butt,
‘‘A unified model-based framework for the simplified execution of
static and dynamic assertion-based verification,’’ IEEE Access, vol. 8,
pp. 104407–104431, 2020.

[34] M. W. Anwar, M. Rashid, F. Azam, M. Kashif, and W. H. Butt, ‘‘A
model-driven framework for design and verification of embedded systems
through SystemVerilog,’’ Des. Autom. Embedded Syst., vol. 23, nos. 3–4,
pp. 179–223, Nov. 2019.

[35] N. Silega, M. Noguera, and D. Macias, ‘‘Ontology-based transforma-
tion from CIM to PIM,’’ IEEE Latin Amer. Trans., vol. 14, no. 9,
pp. 4156–4165, Sep. 2016.

[36] I. Lazăr, S. Motogna, and B. Pârv, ‘‘Behaviour-driven development of
foundational UML components,’’ Electron. Notes Theor. Comput. Sci.,
vol. 264, no. 1, pp. 91–105, Aug. 2010.

[37] J. A. García-García, J. G. Enríquez, and F. J. Domínguez-Mayo,
‘‘Characterizing and evaluating the quality of software process modeling
language: Comparison of ten representative model-based languages,’’
Comput. Standards Interface, vol. 63, pp. 52–66, Mar. 2019.

[38] A. Pedro, S. Baik, J. Jo, D. Lee, R. Hussain, and C. Park, ‘‘A linked
data and ontology-based framework for enhanced sharing of safety
training materials in the construction industry,’’ IEEE Access, vol. 11,
pp. 105410–105426, 2023.

[39] A. Pinto, Y. Cardinale, I. Dongo, and R. Ticona-Herrera, ‘‘An ontology
for modeling cultural heritage knowledge in urban tourism,’’ IEEE Access,
vol. 10, pp. 61820–61842, 2022.

[40] W. Lin, S. Yuchen, F. Haixiang, B. Huihui, and S. Liang, ‘‘Design
and implementation of IT health diagnosis system based on knowledge
graph and artificial intelligence technology,’’ in Proc. IEEE 3rd Int. Conf.
Electron. Technol., Commun. Inf. (ICETCI), May 2023, pp. 1232–1236.

[41] L. Asprino and V. Presutti, ‘‘Observing LOD: Its knowledge domains and
the varying behavior of ontologies across them,’’ IEEE Access, vol. 11,
pp. 21127–21143, 2023.

[42] E. Adel, S. El-Sappagh, S. Barakat, K. S. Kwak, and M. Elmogy,
‘‘Semantic architecture for interoperability in distributed healthcare
systems,’’ IEEE Access, vol. 10, pp. 126161–126179, 2022.

[43] F. Lettich, C. Pugliese, C. Renso, and F. Pinelli, ‘‘Semantic enrichment
of mobility data: A comprehensive methodology and the MAT-builder
system,’’ IEEE Access, vol. 11, pp. 90857–90875, 2023.

[44] Z. Brahmia, F. Grandi, and R. Bouaziz, ‘‘TSQWRL: A TSQL2-like query
language for temporal ontologies generated from JSONbig data,’’BigData
Mining Analytics, vol. 6, no. 3, pp. 288–300, Sep. 2023.

[45] Z. Brahmia, F. Grandi, andR. Bouaziz, ‘‘τ JOWL:A systematic approach to
build and evolve a temporal OWL 2 ontology based on temporal JSON big
data,’’ Big Data Mining Analytics, vol. 5, no. 4, pp. 271–281, Dec. 2022.

[46] M. Sopek, D. Tomaszuk, S. Glab, F. Turobos, I. Zielinski, D. Kuzinski,
R. Olejnik, P. Luniewski, and P. Gradzki, ‘‘Technological foundations of
ontological ecosystems on the 3rd generation blockchains,’’ IEEE Access,
vol. 10, pp. 12487–12502, 2022.

[47] J. Erbel and J. Grabowski, ‘‘Scientific workflow execution in the cloud
using a dynamic runtime model,’’ Softw. Syst. Model., vol. 23, no. 1,
pp. 163–193, Jun. 2023.

[48] ENTSO-E. (2019).Common InformationModel. Accessed: Mar. 10, 2024.
[Online]. Available: https://www.entsoe.eu/digital/common-information-
model/

[49] ENTSO-E. (2022).Quality of Cgmes Datasets and Calculations for System
Operation. Version 3.3. Approved by Opde Tt. Accessed: Mar. 10, 2024.
[Online]. Available: https://eepublicdownloads.azureedge.net/clean-
documents/digital/QualityOfCGMESdatasetsAndCalculations_v3_3.pdf

MOHAMED LARHRIB received the M.S. degree
in computer engineering and the Ph.D. degree
from Universidad Nacional de Educación a Dis-
tancia, Spain, in 2015 and 2023, respectively. His
research interests include software engineering,
power systems data exchange formats, semantic
web, common information model, and model
driven engineering.

MIGUEL ESCRIBANO received the M.S. degree
in industrial engineering and the Ph.D. degree
from the Polytechnic University of Madrid, Spain,
in 1999 and 2005, respectively. Since 2005, he has
been an Assistant Professor with the Financial
Economics, Statistics and Operations Research
and Actuarial Science, Universidad Complutense
de Madrid, Spain. Since 2008, he has been a
Power Engineer with Red Eléctrica de España. His
research interests include software engineering,

power systems data exchange formats, semantic web, and common
information model.

CARLOS CERRADA received the M.S. degree
in industrial engineering and the Ph.D. degree
from the Polytechnic University of Madrid, Spain,
in 1983 and 1987, respectively. He is currently
a Full Professor with the Systems and Software
Engineering Department, Universidad Nacional
de Educación a Distancia, Spain. He was a
Fulbright Scholar with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA,
from 1989 to 1990. His research interests include

software engineering, robotics, pattern recognition, 3D object representation,
and ubiquitous computing. He is a member of the IFAC.

JUAN JOSE ESCRIBANO received the M.S.
degree in industrial engineering from the Poly-
technic University of Madrid, Spain, in 1995,
and the Ph.D. degree from Universidad Nacional
de Educación a Distancia, Spain, in 2003. Since
2001, he has been an Assistant Professor with the
Systems and Software Engineering Department,
Universidad Nacional de Educación a Distancia.
His research interests include software engineer-
ing, semantic web, and common information
model.

82056 VOLUME 12, 2024


