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ABSTRACT Matrix inversion is a fundamental operation utilized across numerous disciplines such as
mathematics, engineering, and control theory. The original zeroing neural network (OZNN) method has
proven effective in tackling the challenge of time-varying matrix inversion (TVMI) under ideal conditions.
The integration-enhanced zeroing neural network (IEZNN) is commonly used to handle TVMI issues in the
presence of various types of noise. In this paper, we have enhanced the IEZNNmodel’s tolerance to noise by
introducing a dual integral component, resulting in the dual noise tolerant zeroing neural network (DNTZNN)
model. We have further improved this model by incorporating a positive odd activation function to create
the triple noise tolerant zeroing neural network (TNTZNN). This advancement enables the TNTZNN to
effectively solve TVMI problems despite various noise disturbances. Consequently, the TNTZNN model
demonstrates excellent convergence and robustness even under noisy conditions. Furthermore, theoretical
analysis grounded on the Lyapunov theorem validates the convergence and resilience of the TNTZNNmodel
against diverse forms of noise. Computational simulations further substantiate the superior efficacy of the
proposed TNTZNN model in resolving TVMI problems.

INDEX TERMS Activation function, matrix inverse, noise tolerant, time-variant problems, zeroing neural
network, double integral.

I. INTRODUCTION
The task of matrix inversion is a common occurrence in
mathematical disciplines, control theory, and is utilized
across several critical domains such as chaotic systems [1],
[2], image processing [3], [4], robotic kinematics [5], [6], [7],
[8], and beyond. Hence, the development of more efficient
methods for addressing the matrix inversion problem is of
utmost significance.

Typical computational methodologies can be broadly
divided into two categories. One category encompasses
serial numerical techniques, such as the Newton-Raphson
iteration [9], [10], whose computational complexity
increases proportionally with the matrix’s dimensionality.
As the matrix dimension grows, computational tasks
become increasingly challenging. Conversely, parallel neural
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network-based methodologies circumvent this limitation
and are amenable to hardware implementation. Notable
neural network approaches include gradient neural networks
(GNN) [11], [12] and recurrent neural networks (RNN) [7],
[13]. These methods have been employed to address static
matrix inversion problems. However, when confronted with
time-varying matrix inversion tasks, they struggle to achieve
real-time tracking of the theoretical solution due to lag errors,
thereby resorting to approximate solutions instead.

To address this challenge, Zhang et al. introduced a zeroing
neural network (ZNN) [14]. What sets this network apart
from the previously mentioned methods is its capacity to
leverage temporal derivative information from the matrix.
This capability allows the ZNN to counteract lag errors,
consequently empowering it to tackle time-varying matrix
inversion (TVMI) problems.

In the past two decades, a multitude of researchers have
employed various ingenious techniques to optimize, enhance,
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and advance diverse zeroing neural network (ZNN) models
for addressing time-varying challenges [15], [16], [17],
[18], [19]. These encompass a range of scenarios, includ-
ing time-varying linear equations [16], [19], time-variant
Sylvester equations [17], Stein matrix inversion [18], non-
convex optimization [15], among others. The time-varying
matrix inversion problem validated in this paper constitutes
one such instance of these time-varying challenges.

The assessment of the ZNN model’s superior performance
primarily focuses on two key indicators: convergence per-
formance and noise tolerance. Convergence performance
is typically enhanced by optimizing the ZNN models’
convergence behavior using various types of activation func-
tions, including linear activation functions (LAF), versatile
activation functions [20], and novel activation functions [21].
Additionally, accelerating convergence speed and precision
can be achieved by introducing varying parameters and
variable gain. For instance, in the study [19], [22], a variable
gain g(t, x) is employed, while Tan et al. in [23] utilize
0(t) = (tp + p).

Another aspect is the tolerance to noise, in practical
application domains, various types of noise persist and are
unavoidable, including constant static noise, time-dependent
linear noise, time-dependent harmonic noise, and so forth.
The OZNN can only handle TVMI under ideal no noise
conditions. Therefore, some ZNN models [21], [24], [25],
[26], [27], [28]have been proposed to address time-varying
problems under additional noise interference. For harmonic
noise, Guo et al. proposed the modified ZNN specifically
to suppress harmonic noise [25]. By adding an adaptation
term for harmonic noise to the OZNN model, the ZNN
model’s noise suppression capability is enhanced. Inspired
by PID control theory [29], Jin et al. introduced a single
integral term into the model, proposing a noise-tolerant ZNN
model capable of tolerating various types of noise [26], [27],
[28]. Building upon this design, Xiao et al. incorporated a
novel activation function (NAF) and devised the NNTZNN
model [21].
However, single-noise-tolerant ZNN models have limited

tolerance to certain types of noise [21], [30], and their con-
vergence speed is relatively slow. To address this challenge,
in the field of time-varying matrices, this paper introduces
the dual noise tolerant ZNN (DNTZNN) model by leveraging
the accelerating and noise reducing properties of double
integration, enhancing the ZNN model’s tolerance to various
noises (e.g., constant noise, time dependent unbounded noise
(linear noise), time dependent bounded noise (harmonic
noise)).

In the field of artificial intelligence, activation functions
hold significant importance. As mentioned earlier, in the
ZNN domain, as discussed above, activation functions
typically accelerate convergence and suppress noise. Inspired
by numerous studies [17], [31], [32], [33], [34], [35],
[36] utilizing activation functions,this paper introduces a
positive odd activation function into the framework of the
DNTZNN model, resulting in the development of the triple

noise-tolerant ZNN (TNTZNN) model. This ZNN model
further enhances its tolerance to noise.

The principal academic contributions of this paper are
outlined as follows: Firstly, to address TVMI problems under
various noise disturbances, we introduced the DNTZNN
model, leveraging the acceleration and noise reduction
capabilities of dual integration. Building on this, we designed
the TNTZNN model by integrating a positive odd activation
function, resulting in faster convergence and stronger noise
tolerance. Secondly, we conducted a convergence analysis
and robustness analysis against various noises for the
TNTZNN model based on the Lyapunov theorem. The
theoretical proof demonstrates that the TNTZNN model
has superior noise tolerance compared to the IEZNN
model, with an inherent structural advantage. Furthermore,
quantitative comparative experiments with two different
types of time-varying matrices validated the efficient conver-
gence and superiority of the TNTZNN model in noise-free
conditions. Three sets of noise comparison experiments
confirmed the model’s strong noise tolerance. Experiments
with high-dimensional complex matrices demonstrated the
model’s robust noise tolerance and convergence performance
for higher-dimensional and more complex matrices. To the
best of the authors’ understanding, no ZNN model offering
triple noise tolerance for time-varying matrix inversion has
been put forth thus far.

The paper is structured into six sections. The second
section delves into the problem of TVMI and introduces the
related ZNN and IEZNN models. In the third section, the
DNTZNN model is introduced, and the activation function
is chosen via a lemma, followed by the design of the
TNTZNNmodel. In the fourth section, the Lyapunov theorem
is applied to theoretically demonstrate the convergence and
resilience of the TNTZNN model against noise, alongside an
analysis of its inherent structural advantages over the IEZNN
model in terms of noise tolerance. The fifth section presents
comprehensive comparative experiments, illustrating the
superior convergence performance and noise resilience of
the TNTZNN model, as well as its ability to generalize in
high-dimensional complex matrices. Finally, the sixth section
offers a succinct summary of the paper.

II. PROBLEM FORMULATIONS AND RELATED MODELS
The problem of time-varying matrix inversion and the related
solution models will be presented in this section.

A. CONSIDERATION OF THE TVMI PROBLEM
The TVMI problem can be described as follows:

A(t)B(t) = I , or B(t)A(t) = I ∈ Rn×n, (1)

in which A(t) ∈ Rn×n is a non-singular smooth coefficient
matrix varying with time, with rank n, and B(t) ∈ Rn×n,
an unknown matrix which is the inverse of A(t), and I as the
identity matrix. Based on the DNTZNNmodel and TNTZNN
model, the goal of this paper is to rapidly and accurately solve
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for the inverse B(t) of the matrix A(t) under various noise
interferences.

B. OZNN AND IEZNN MODEL
As discussed in [26], OZNN represents a dynamic method
grounded in error functions, ensuring the error function
converges to zero. Under noise-free circumstances, a matrix-
form error function is delineated to oversee the resolution of
the TVMI problem.

Its formula is devised as follows:

E(t) = A(t)B(t) − I . (2)

Derivation of (2) yields

Ė(t) = Ȧ(t)B(t) + A(t)Ḃ(t). (3)

The design formula for the OZNN model is as follows:

Ė(t) = −hE(t), (4)

in which, h is the design parameter, h > 0 ∈ R used
to accelerate the convergence rate. We introduce noise into
Equation (4) as follows:

Ė(t) = −hE(t) + N (t), (5)

where N (t) ∈ Rn×n is the matrix-form noise. By combin-
ing (3) and (5), we obtain the following equation:

A(t)Ḃ(t) = −Ȧ(t)B(t) − h(A(t)B(t) − I ) + N (t). (6)

In reality, various types of noise exist, including constant
noise, environmental noise, interference noise, and so forth.
However, the OZNNmodel cannot effectively suppress these
noises. Therefore, inspired by PID control theory, the IEZNN
model is proposed to overcome this issue. Its design formula
is expressed as follows:

Ė(t) = −hE(t) − λ

∫ t

0
E(τ )dτ + N (t), (7)

where h, λ > 0 are design parameters used to adjust the
convergence rate. It’s worth noting that the integral term is
used to eliminate error. The detailed IEZNN model under
noise interference is expressed as follows:

A(t)Ḃ(t) = −Ȧ(t)B(t) − h(A(t)B(t) − I )

− λ

∫ t

0
(A(τ )B(τ ) − I )dτ + N (t) (8)

As shown in [26], through theoretical analysis and compar-
ative experiments, it is demonstrated that IEZNN can better
handle TVMI problems under various noise interferences.

III. TNTZNN MODEL
Although IEZNN can partially suppress noise, it requires
further refinement as it can only converge its error function to
zero in TVMI problems under constant noise environments.
However, it fails to fully tolerate unbounded linear noise and
bounded random noise (e.g., harmonic noise). To tackle this
limitation, the DNTZNN model is developed, leveraging the
robust acceleration and noise reduction capabilities of double
integration.

A. DNTZNN MODEL INTRODUCED
The error function equation for DNTZNN under noise
interference is as follows:

Ė(t) = −(2ξ + h)E(t) − (2ξh+ ξ2)
∫ t

0
E(τ )dτ

− ξ2h
∫ t

0

∫ τ

0
E(σ )dσdτ + N (t), (9)

where ξ, h > 0 are design parameters. We substitute E(t) =

A(t)B(t)−I and the detailed dual noise tolerant zeroing neural
network model can be obtained as:

A(t)Ḃ(t) = −Ȧ(t)B(t) − (2ξ + h)(A(t)B(t) − I )

− (2ξh+ ξ2)
∫ t

0
(A(τ )B(τ ) − Idτ

− ξ2h
∫ t

0

∫ τ

0
(A(σ )B(σ ) − Idσdτ

+ N (t). (10)

B. TNTZNN MODEL DESIGN
In the domain of neural networks, activation functions
hold significant importance. Within the realm of zeroing
neural networks, activation functions typically demonstrate
noise reduction and acceleration of convergence effects.
Building upon this notion, we introduce positive odd
activation functions into the framework of the DNTZNN
model. Common types of positive odd activation functions
encompass linear-like, sigmoid-like, signal-like, composite
trigonometric functions, among others [ [17], [19], [22]].
In this study, we exemplify with the Power Activation
Function (PAF), Power SigmoidActivation Function (PSAF),
and Signal-Bi-Power Activation Function (SBPAF). The
explicit forms of these positive odd activation functions are
delineated below:

• PAF:

81(x) = x3 (11)

• PSAF:

82(x) =

 xr1 , if|x| ≥ 1
1 + exp(−r2)
1 − exp(−r2)

·
1 − exp(−r2x)
1 + exp(−r2x)

, if|x| < 1

(12)

where,r1 ≥ 0, p is odd,r2 ≥ 3.
• SBPAF:

83(x) = (k1|x|η + k2|x|ω)sign(x) + k3x, (13)

where sign(·) is a symbolic function,and design param-
eters are k1 > 0, k2 > 0, k3 > 0, η > 0, 0 < ω < 1.

However, finding the most suitable activation function is
a challenging task. Zhang et al. [22], based on the Lyapunov
stability framework, proposed a convergence time theorem,
which indicates that the convergence speed of a system is
correlated with the derivative near its origin. Specifically,
the larger the absolute value of the derivative, the shorter
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FIGURE 1. Three sorts of positive odd activation functions are presented:
Power Activation Function (PAF) (red solid line), Power Sigmoid
Activation Function (PSAF) (purple solid line, r1 = 3, r2 = 4), Signal
Bi-Power Activation Function (SBPAF) (blue solid line,
k1 = 2, k2 = 4, k3 = 1, η = 3, ω =

1
3 ).

the convergence time of the system, and the more stable
the model. According to the above theorem and Figure 1,
it can be concluded that SBPAF outperforms PSAF, and
PSAF outperforms PAF. Therefore, SBPAF, as a positive odd
function, is used in this paper.

Therefore OZNN adopts the following design equation:

Ė(t) = −h8(E(t)) (14)

in which, 8(·): Rn×n
→ Rn×n is an array of positive odd

activation functions.
Shifting the right side of the equation to the left side of the

equation, we get

Ė(t) + h8(E(t)) = 0.

We let

S(t) = Ė(t) + h8(E(t)), (15)

and set

S(t) = −ξ

∫ t

0
S(τ )dτ. (16)

Combining (15) and (16), we get

Ė(t) = −h8(E(t)) − ξ

∫ t

0
S(τ )dτ (17)

and

Ė(t) + h8(E(t)) = −ξ

∫ t

0
S(τ )dτ

= −ξ

∫ t

0
(Ė(τ ) + h8(E(τ )))dτ

= −ξE(t) − ξh
∫ t

0
(E(t))dτ. (18)

Similarly, we let

L(t) = Ė(t) + ξE(t) + h8(E(t)) + ξh
∫ t

0
8(E(τ ))dτ,

(19)

setting,

L(t) = ξ

∫ t

0
(L(t))dτ. (20)

Bringing (19) into (20) yields

Ė(t) + ξE(t) + h8(E(t)) + ξh
∫ t

0
(8(E(τ )))dτ

= −ξ

∫ t

0
(Ė(τ ) + ξE(τ ) + h8(E(τ ))

+ ξh
∫ τ

0
(8(E(δ)))dδ)dτ

= −ξE(t) − ξ2
∫ t

0
E(τ )τ − ξh

∫ t

0
8(E(τ ))dτ

− ξ2h
∫ t

0

∫ τ

0
8(E(δ))dδdτ. (21)

Rearranging (21), we get the following TNTZNNmodel as
follows:

Ė(t) = −ξ2h
∫ t

0

∫ τ

0
8(E(δ))dδdτ

− 2ξh
∫ t

0
8(E(τ ))dτ

− ξ2
∫ t

0
(E(τ ))dτ

− 2ξE(t) − h8(E(t)). (22)

Adding the effect of noise, the TNTZNN model is rewritten
as the following equation:

Ė(t) = −ξ2h
∫ t

0

∫ τ

0
8(E(δ))dδdτ

− 2ξh
∫ t

0
8(E(τ ))τ

− ξ2
∫ t

0
(E(τ ))dτ

− 2ξE(t) − h8(E(t)) + N (t). (23)

Bringing (2) and (3) into the above equation, the detailed
TNTZNN model is obtained as follows:

A(t)Ḃ(t) = −Ȧ(t)B(t) − ξ2h
∫ t

0
8(A(δ)B(δ) − I )dδdτ

− 2ξh
∫ t

0
8(A(τ )B(τ ) − I )dτ

− ξ2
∫ t

0
(A(τ )B(τ ) − I )dτ

− 2ξ (A(t)B(t) − I )

−h8(A(t)B(t) − I ) + N (t) (24)

Bringing the specific positive odd activation function
SBPAF 8(x) = (2|x|3 + 4|x|1/3)sign(x) + x, chosen above
brought into (24) is obtained

A(t)Ḃ(t) = −Ȧ(t)B(t) − ξ2h
∫ t

0

∫ τ

0
(2|A(δ)B(δ) − I |3

+ 4|A(δ)B(δ) − I |1/3sign(A(δ)B(δ) − I )
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+ (A(δ)B(δ) − I ))dδdτ

− 2ξh
∫ t

0
(2|A(δ)B(δ) − I |3

+ 4|A(δ)B(δ) − I |1/3sign(A(δ)B(δ) − I )

+ (A(δ)B(δ) − I ))dδ

− ξ2
∫ t

0
(A(τ )B(τ ) − I )dτ − 2ξ (A(t)B(t) − I )

−h(2|A(t)B(t) − I |3

+ 4|A(t)B(t) − I |1/3sign(A(t)B(t) − I )

+ (A(t)B(t) − I )) + N (t) (25)

IV. THEORETICAL ANALYSES
A. CONVERGENCE
Theorem 1: For a non-singular, smooth time-varying

matrix A(t) ∈ Rn×n, the TNTZNN model, equipped with a
positive odd activation function 8(·), achieves convergence
towards the theoretical inverse of the time-varying matrix
A(t). This convergence initiates from an arbitrary initial value
B(0) ∈ Rn×n and proceeds towards the theoretical inverse
A−1(t) ∈ Rn×n as t → ∞. In essence, as t → ∞, the
Frobenius norm of the error matrix E(t) tends towards zero:

lim
t→∞

∥E(t)∥F = 0

The proof of Theorem 1 proceeds as follows.
Proof: From the previous subsection, we have L(t) = −ξ

∫ t

0
L(τ )dτ,

L̇(t) = −ξL(t),
ξ > 0, (26)

and their elemental terms are lij(t) = −ξ

∫ t

0
lij(τ )dτ,

l̇ij(t) = −ξ lij(t),
(27)

A Lyapunov function is defined as follows:

ϵ(t) = l2ij(t). (28)

Its derivative is

ϵ̇(t) = 2l̇ij(t)lij(t). (29)

Combining (27) and (29), we obtain

ϵ̇(t) = −ξ l2ij(t). (30)

As t → ∞, it is evident that ϵ(t) is positive definite, and its
derivative ϵ̇(t) is negative definite. According to Lyapunov
stability theory, we deduce that

lim
t→∞

|ϵ(t)| = lim
t→∞

|l2ij(t)| = lim
t→∞

|lij(t)| = 0. (31)

The sub-elements of (19) can be expressed as

lij(t) = ėij(t) + ξeij(t) + h8(eij(t)) + ξh
∫ t

0
8(eij(τ ))dτ,

(32)

and the sub-elements of (15) can be expressed as

sij(t) = ėij(t) + h8(eij(t)), (33)

where eij(t) and sij(t) are the element terms of row i and
column j of E(t) and S(t) respectively. By combining (32)
and (33), we obtain

lij(t) = sij(t) + ξ

∫ t

0
sij(τ )dτ. (34)

Then, from (34), we can deduce

lim
t→∞

|lij(t)| = lim
t→∞

|sij(t) + ξ

∫ t

0
sij(τ )dτ | = 0. (35)

From (35), we obtain sij(t) = −ξ

∫ t

0
sij(τ )dτ,

ṡij(t) = −ξsij(t),
as t → ∞, (36)

and we design another Lyapunov function as follows:

ρ(t) = s2ij(t). (37)

Deriving the above equation, we get

ρ̇(t) = 2ṡij(t)sij(t) = −2ξs2ij(t) < 0. (38)

Similarly, since ρ(t) ≥ 0, ρ̇(t) ≤ 0, ρ(t) is globally
asymptotically stable. We can deduce:

lim
t→∞

|sij(t)| = 0.

Due to sij(t) = eij(t) + h8(eij(t)),

lim
t→∞

|ėij(t) + h8(eij(t))| = 0, (39)

then, we obtain ėij = −h8(eij(t)), as t → ∞.
By the same method, we define a Lyapunov function

η(t) = e2ij(t). (40)

We obtain that

η̇(t) = 2ėij(t)eij(t) = −2h8(eij(t))eij(t). (41)

Since 8(.) is a positive odd function and does not change
sign, we have

η̇(t) ≤ 0.

Therefore, we conclude that η(t) is globally asymptotically
stable, so that

lim
t→∞

|η(t)| = lim
t→∞

|e2ij(t)| = lim
t→∞

|eij(t)| = 0. (42)

Thus (42) is converted to matrix form as

lim
t→∞

∥E(t)∥F = 0. (43)

Thus, Theorem 1 is proven.
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B. ROBUSTNESS TO NOISE
In various practical industrial application scenarios, noise
exists and is unavoidable, so it is necessary to take noise
into consideration. In this subsection, we mainly discuss and
analyse the robustness of TNTZNN under noise interference.
Theorem 2: For a non-singular, smooth time-varying

matrix A(t) ∈ Rn×n, along with the identity matrix I ∈ Rn×n,
and considering any initial value B(0), the TNTZNN model,
incorporating a positive odd activation function 8(·), swiftly
converges to its theoretical solution A−1(t) ∈ Rn×n, despite
the presence of a constant but unknown noise N (t) ∈ Rn×n.
This convergence is characterized by the Frobenius norm of
the error matrix E(t) approaching zero as t → ∞,

lim
t→∞

∥E(t)∥F = 0

Proof: The proof of Theorem 2 is as follows. The
constant noise can be expressed in the following form

N (t) = P, (44)

where P is a constant coefficient matrix belonging to Rn×n.
Its elemental terms are written as:

nij(t) = pij. (45)

When there is constant noise interference, (20) can be
transformed into

L(t) = −ξ

∫ t

0
(L(τ ))dτ + N (t), (46)

and the corresponding elemental terms are

lij(t) = −ξ

∫ t

0
(lij(τ ))dτ + nij(t). (47)

Incorporating nij(t), we get

lij(t) = −ξ

∫ t

0
(lij(τ ))dτ + pij. (48)

Taking the first and second derivatives of the above equation,
we get {

l̇ij(t) = −ξ lij(t),
l̈ij(t) = −ξ l̇ij(t).

(49)

Suppose a Lyapunov function

θ (t) = l2ij(t). (50)

Deriving it yields

θ̇ (t) = 2l̇ij(t)lij(t) = −2ξ l2ij(t). (51)

Since θ ≥ 0 and θ̇ ≤ 0, signifying the Lyapunov stability
condition, θ (t) is globally asymptotically stable, and hence
we get

lim
t→∞

|θ (t)| = lim
t→∞

|l2ij(t)| = lim
t→∞

|lij(t)| = 0. (52)

Since

lij(t) = sij(t) + ξ

∫ t

0
sij(τ )dτ,

so,

lim
t→∞

|sij(t) + ξ

∫ t

0
sij(τ )dτ | = 0. (53)

Derivation of this yields

lim
t→∞

|ṡij(t) + ξsij(t)| = 0, (54)

and

ṡij(t) = −ξsij(t), t → ∞.

This equation is the same as (36) in Theorem 1, so it is easy
to derive

lim
t→∞

|eij(t)| = 0,

and the corresponding matrix form

lim
t→∞

∥E(t)∥F = 0.

The proof is complete.
Theorem 3: For a non-singular, smooth time-varying

matrix A(t) ∈ Rn×n and its corresponding unit matrix I ∈

Rn×n, the TNTZNN model, incorporating a positive singular
activation function 8(·), demonstrates rapid convergence to
the theoretical solution A−1(t) ∈ Rn×n in the presence of
linear noise in matrix form, starting from any initial value
B(0). Put differently,

lim
t→∞

∥E(t)∥F = 0.

Proof: The proof of Theorem 3 is as follows. The linear
noise can be expressed as follows:

N (t) = Pt + Q ∈ Rn×n, (55)

where P ∈ Rn×n and Q ∈ Rn×n are constant coefficient
matrices, and their elemental terms are written as

nij(t) = pijt + qij. (56)

According to equations (26) and (27) in Theorem 1, the
TNTZNN model under linear noise interference can be
written as

L(t) = −ξ

∫ t

0
(L(τ ))dτ + N (t), (57)

and its sub-element terms are

lij(t) = −ξ

∫ t

0
(lij(τ ))dτ + nij(t). (58)

Taking the derivative of lij(t) once, we get

l̇ij(t) = −ξ lij(t) + nij(t). (59)

Taking the second derivative, we get

l̈ij(t) = −ξ l̇ij(t) + ṅij(t) (60)

Differentiating linear noise separately, we have{
ṅij(t) = pij
n̈ij(t) = 0.
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Hence, l̈ij(t) = −ξ l̇ij(t).
We define a Lyapunov function as

ϑ(t) = l̇2ij(t). (61)

Thus,

ϑ̇(t) = 2l̈ij(t)l̇ij(t) = −ξ l̇2ij(t). (62)

Since ϑ ≥ 0 is positive definite, and its derivative ϑ̇ ≤ 0
is negative definite, therefore, ϑ(t) is globally asymptotically
stable and, we get

lim
t→∞

|ϑ(t)| = lim
t→∞

|l2ij(t)| = lim
t→∞

|lij(t)| = 0. (63)

Substituting (59) back in, we get

lim
t→∞

|l̇ij(t)| = lim
t→∞

| − ξ lij(t) + ṅij(t)| = 0. (64)

Using ṅij(t) = pij, we have

lim
t→∞

| − ξ lij(t) + pij| = 0.

Thus, we conclude

lim
t→∞

|lij(t)| =
pij
ξ

.

Taking the derivative, we get

lim
t→∞

|ṡij(t) + ξsij(t)| = 0, (65)

which implies

ṡij(t) = −ξsij(t), t → ∞.

Notice that the above equation is the same as (36), so it is
easy to deduce that

lim
t→∞

|eij(t)| = 0,

and the corresponding matrix form

lim
t→∞

∥E(t)∥F = 0.

Thus, Theorem 3 is proven.
It’s noteworthy that since 83(x) represents a specific form

of the positive odd function 8(x), the TNTZNN model
employing 83(x) SBPAF (25) also satisfies the convergence
and robustness theories mentioned above. The methodology
for establishing the convergence and robustness of the
DNTZNN model closely mirrors that of the TNTZNN, thus
necessitating no extensive elaboration here.

It is also worth noting that Jin et al. in their paper [26] men-
tioned that when the IEZNN is contaminated by matrix-form
linear noise, its steady-state error is given by

lim
t→∞

∥E(t)∥F =
∥N (t)∥F

ξ

where ξ > 0. In contrast, the TNTZNN model proposed in
this paper, under linear noise interference, exhibits a limit
of the steady-state error approaching 0. This theoretically
demonstrates the inherent superiority of the double integra-
tion structure in the TNTZNN model for noise suppression.

V. SIMULATION AND COMPARATIVE NUMERICAL
EXPERIMENTS
In this section, three sets of comparative numerical exper-
iments are conducted to validate the effectiveness and
superiority of the TNTZNN model over the DNTZNN
model and IEZNNmodel in handling time-varying problems,
as well as its tolerance to various types of noise and its
generalization capability to high-dimensional matrices. For
the sake of comparison and simplicity, all design parameters
of the three models are set to 4.

Convergence serves as a pivotal indicator for evaluating
the efficacy of ZNN models. In this experiment, we conduct
a comparative analysis of the convergence time among the
IEZNN, DNTZNN, and TNTZNN models to delineate their
convergence characteristics. The convergence and efficacy
of the TNTZNN model in tackling the TVMI problem are
validated through two sets of model comparison experiments
with fixed initial values.

A. EXPERIMENT 1: CONVERGENCE
A two-dimensional time-varying matrix is delineated as
follows:

A(t) =

[
sin(3t) cos(3t)

−3 cos(3t) 3 sin(3t)

]
∈ R2×2. (66)

To demonstrate the efficacy of the TNTZNN model in
solving the TVMI problem, we numerically compute the
theoretical inverse of the aforementioned time-varyingmatrix
as follows:

A−1(t) =

[
sin(3t) −1/3 cos(3t)
cos(3t) 1/3 sin(3t)

]
∈ R2×2. (67)

In the absence of noise, we compared the IEZNN,
DNTZNN, and TNTZNN models with their design param-
eters set to 4. They all started from the same initial state

B(0) =

[
3 3
3 3

]
.

The corresponding findings are depicted in Fig. 2(a)
and Fig. 2(b). From the trajectory plot of neural states in
Fig. 2(a), it is apparent that the solution state B(t) derived
by the IEZNN model converges to the theoretical solution
A(t)−1 within 3.7 seconds, whereas the DNTZNN model
achieves proximity to the theoretical inverse A(t)−1 within
2.3 seconds. In contrast, the TNTZNN model achieves
convergence to the theoretical solution within a mere
0.3 seconds, outperforming the IEZNN model by a factor of
12 and the DNTZNNmodel by a factor of 7 in terms of speed.
This underscores the efficiency and superior convergence
capability of the TNTZNN model in addressing the TVMI
problem.

To further substantiate the convergence, efficacy, and
superiority of the TNTZNN model, we propose an additional
set of matrices as follows:

A(t) =

[
exp(3t) − exp(3t) + 1

− exp(3t) + 1 exp(3t)

]
∈ R2×2. (68)
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FIGURE 2. Convergence comparision of IEZNN, DNTZNN and TNTZNN.

FIGURE 3. Convergence comparision of IEZNN, DNTZNN and TNTZNN.

Its theoretical inverse is represented as shown below:

A−1(t) =
1

2 exp(3t) − 1

[
exp(3t) 1 − exp(3t)

1 − exp(3t) exp(3t)

]
∈ R2×2.

(69)

The initial conditions and design parameters of the
IEZNN, DNTZNN, and TNTZNNmodels remain consistent.
Their neural state trajectory plots and residual error plots
are depicted in Fig. 3(a) and 3(b), respectively. From
Fig. 3(b), it is evident that the residual errors ∥E(t)∥F =

∥A(t)B(t) − I∥F of the IEZNN model converge to 0 within
3.8 seconds, the DNTZNN model within 2.3 seconds, and
the TNTZNN model within 0.3 seconds. This observation
suggests that even when applied to more generalized time-
varying matrices, these three models demonstrate similar

convergence behaviors, further affirming the efficacy and
superiority of the TNTZNN model.

In the subsequent experiment, a comparative analysis of
the three models will be undertaken under diverse matrix
noise conditions to further corroborate the convergence and
tolerance capabilities of the TNTZNN model.

B. EXPERIMENT 2: ROBUSTNESS TO VARIOUS NOISES
In this experimental set, we compared the tolerance capa-
bilities of the IEZNN, DNTZNN, and TNTZNN models
to various forms of noise. For simplicity, all design
parameters of these three models were set to 4. We con-
ducted experiments using the time-varying matrix (66) from
Experiment 1.
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FIGURE 4. Robustness comparision of IEZNN, DNTZNN and TNTZNN.

FIGURE 5. Robustness comparison of IEZNN, DNTZNN, and TNTZNN.

We considered the following three types of noise scenarios
for computer simulations of TVMI:

1) Constant noise
2) Linear time-varying noise
3) Bounded noise( such as harmonic noise)

Now, we begin to investigate the case of constant noise.

1) CONSTANT NOISE
In numerous hardware implementations, constant noise is an
inherent challenge. For the sake of comparison, every element
of the constant noise matrix is set to 10. The comparative
residual error outcomes of the IEZNN, DNTZNN, and
TNTZNN models for addressing the TVMI issue amid
constant noise, commencing from any initial value B(0) ∈

[−4, 4]2×2, are depicted in Fig. 4(b).

From the observations derived from Fig. 4(b), it’s apparent
that IEZNN, DNTZNN, and TNTZNN all display some
level of noise mitigation in the presence of constant noise.
Nonetheless, IEZNN achieves error convergence to zero
approximately around 3.9 s, while DNTZNN and TNTZNN
accomplish this in merely 2.3 s and 0.3 s, respectively. This
suggests that DNTZNN exhibits stronger noise suppression
capabilities in comparison to IEZNN. Similarly, TNTZNN
demonstrates enhanced noise tolerance relative to DNTZNN.

2) LINEAR NOISE
The trajectories and residual error plots of the three models
addressing the TVMI problem under matrix-form time-
varying linear noise are depicted in Fig. 5(a) and Fig. 5(b),
respectively. The matrix-form linear noise is characterized by
N (t) = [10 + 10t]2×2.
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FIGURE 6. Robustness comparison of IEZNN, DNTZNN, and TNTZNN.

TABLE 1. Comparison of the steady-state residual error of IEZNN, DNTZNN, and TNTZNN for three different matrix-form noise types.

From the residual error plot in Fig. 5(b), it is evident
that the IEZNN model fails to converge under linear noise
conditions and displays considerable deviation. In contrast,
both the DNTZNN and TNTZNN models achieve complete
convergence to zero within 2.5 seconds and 0.3 seconds,
respectively. This further underscores the inherent structural
tolerance of the DNTZNN and TNTZNN models, leveraging
the double integration framework to mitigate linear noise
interference.

3) HARMONIC NOISE
Harmonic noise is a common type of bounded noise
often encountered in real-world environments. Experimental
validation demonstrates that the structure of the TNTZNN
model proposed in this study inherently exhibits tolerance
to harmonic noise. The computational simulation results are
depicted in Fig. 6(a) and Fig. 6(b).
From Fig. 6(b), it’s evident that when subjected to

harmonic noise (with Nb1 = 3, Nb0 = 1, N (t) = Nb0 ×

sin(Nb1 × π × t + 2)), the residual error ∥A(t)B(t)−I∥F
of both the IEZNN and DNTZNN models fails to converge
completely to zero, regardless of the initial value B(0) within
the range of [−4, 4]2×2. However, the error obtained by the
DNTZNN model is notably smaller than that of the IEZNN
model, indicating that the model with the double integration
structure exhibits a degree of tolerance to harmonic noise
interference. Furthermore, the TNTZNN model, leveraging
the SBPAF activation function combined with the double

integration structure, achieves complete convergence within
0.3 seconds even under harmonic noise interference. This
highlights the superior tolerance of the SBPAF activation
function to bounded random noise (harmonic noise), further
emphasizing the inherent superiority of the proposed triple
noise-tolerant ZNN model in terms of noise tolerance.

The experiments conducted highlight the significant capa-
bility of the proposed TNTZNN model in approximating the
theoretical value A−1(t) with the computed value B(t) within
a relatively short time frame, even amidst various forms of
noise interference. This underscores the impressive tolerance
of the TNTZNN model to diverse types of noise interference
when addressing the TVMI problem.

C. EXPERIMENT 3: APPLICATION ON
HIGH-DIMENSIONAL COMPLEX TIME-VARYING MATRICES
To further substantiate the superiority and applicability of
the proposed TNTZNNmodel, we simulated its performance
alongside the other two ZNN models on high-dimensional
time-varying Toeplitz matrix inversion. The time-varying
Toeplitz matrix can be represented as follows:

A(t) =


a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)
a31(t) a32(t) . . . a3n(t)

...
...

. . .
...

an1(t) an2(t) . . . ann(t)

 ∈ Rn×n (70)
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with aij(t)donates the ijth element-wise of A(t). Thereinto

aij(t) =


n+ sin(3t), i = j
cos(3t)/(i− j), i > j
sin(3t)/(j− i), i < j.

(71)

This set of experiments utilized matrices of dimension 3.
For the ease of comparison and readability for readers,
the noise resistance capabilities of IEZNN, DNTZNN, and
TNTZNN against three different matrix-form noises, namely
constant noise, time-varying linear noise, and harmonic
noise, are presented in Table 1.

Clearly, for constant noise, all three models exhibit strong
noise tolerance, with residual errors accurately converging
to 0. However, concerning linear noise, the residual error of
the IEZNN model is significantly higher, reaching the order
of 3, while the residual errors of the TNTZNN and DNTZNN
models both exceed the order of 10−3. In terms of harmonic
noise, the errors of the IEZNN and DNTZNN models reach
0.7 and 0.2, respectively, with large residuals unable to fully
converge to 0. However, when using the TNTZNN model to
compute the TVMI problem, the residual error reaches the
order of 10−3. These experiments demonstrate that even in
the case of high-dimensional time-varying complex matrix
inversions, TNTZNN performs well in handling various
types of noise interference. This further confirms the strong
tolerance of the TNTZNN model to both unbounded and
bounded random noise.

VI. CONCLUSION
To address the TVMI problem under various noise dis-
turbances more effectively, we introduced a dual integral
component to the integral-enhanced zeroing neural network
model, resulting in the dual noise tolerant zeroing neural
network. Inspired by the noise reduction capabilities of acti-
vation functions, we incorporated a positive odd activation
function into our design formula and, based on this formula,
constructed and studied the novel triple noise tolerant zeroing
neural network model. Using the lyapunov theorem, we rig-
orously analyzed and proved the convergence and robustness
of the TNTZNN model against noise. We also derived
its inherent structural superiority over the IEZNN model.
Through quantitative comparative experiments with two
different time-varying matrices, we confirmed the superior
convergence of the TNTZNN model. Additionally, through
three sets of comparative experiments with various types of
noise, we demonstrated the model’s strong tolerance to noise.
Finally, by applying the TNTZNN model to the problem of
inverting high-dimensional, complex, time-varying matrices
under various noise conditions, we demonstrated its general-
izability. Although the proposed TNTZNNmodel has a more
complex structure, future work may include optimizing its
architecture and applying it to practical engineering fields.
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