IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 April 2024, accepted 31 May 2024, date of publication 10 June 2024, date of current version 5 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3411776

==l survey

Applications of Pruning Methods in Natural
Language Processing

MARVA TOUHEED'!, UROOJ ZUBAIR""", DILSHAD SABIR"!, ALI HASSAN 2,
MUHAMMAD FASIH UDDIN BUTT “'-3, (Member, IEEE), FARHAN RIAZ?,
WADOOD ABDUL?, AND RASHID AYUB'“6

! Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan

2Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology,
Islamabad 44000, Pakistan

3Next-Generation Communications Research Group, COMSATS University Islamabad, Islamabad 45550, Pakistan

4School of Computer Science, College of Health and Science, University of Lincoln, LN6 7DL Lincoln, U.K.

SDepartment of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

SDepartment of Science Technology and Innovation, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Ali Hassan (alihassan@ceme.nust.edu.pk)

This work was supported by Researchers Supporting Project number (RSPD2024R1051), King Saud University, Riyadh, Saudi Arabia.

ABSTRACT Deep neural networks (DNN) are in high demand because of their widespread applications
in natural language processing, image processing, and a lot of other domains. However, due to their
computational expense, over-parameterization, and large memory requirements, DNN applications often
require the use of substantial model resources. This strict requirement of latency and limited memory
availability are hurdles in the device deployment of these technologies. Therefore, a common idea could be
to mitigate the DNN-based models’ size without any performance degradation using different compression
techniques. During the last few years, a great deal of progress has been made in the field of Natural Language
Processing (NLP) using deep learning approaches. The objective of this research is to offer a thorough
overview of the various pruning methods applied in the context of NLP. In this paper, we review several
recent pruning-based schemes used for converting standard networks into their compact and accelerated
versions. Traditionally, pruning is a technique for improving latency, reducing model size, and computational
complexity which is a viable approach to deal with the above-mentioned challenges. In general, these
techniques are divided into two main categories: structural and unstructured pruning methods. Structural
pruning methods are further classified into filter, channel, layer, block, and movement pruning. Whereas,
neuron, magnitude-based, and iterative pruning lie in the category of unstructured pruning. For each method,
we discuss the related metrics and benchmarks. Then recent work on each method is discussed in detail,
which provides insightful analysis of the performance, related applications, and pros and cons. Then,
a comparative analysis is provided to analyze the differences among approaches. Finally, the paper concludes
with possible future directions and some technical challenges.

INDEX TERMS Pruning, convolution neural networks, natural language processing, DNN, model
compression, acceleration.

I. INTRODUCTION
Deep neural networks (DNNs) have demonstrated remark-

able success in a variety of domains, including image recog-
nition, natural language processing (NLP), bio-informatics,
and computer vision [1]. These DNN models have attained

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy

impressive performance in complex tasks including image
classification, machine translation, sentiment analysis,
and speech recognition. However, their success comes
at the expense of high processing requirements, over-
parameterization, and large memory footprints [1].

To address these challenges and facilitate the implementa-
tion of DNN models in environments with limited resources,
researchers have explored various techniques for model

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

89418

VOLUME 12, 2024

https://orcid.org/0009-0005-5975-2121
https://orcid.org/0009-0005-0312-8362
https://orcid.org/0000-0002-5322-9808
https://orcid.org/0000-0002-1505-5157
https://orcid.org/0000-0002-6970-2612
https://orcid.org/0000-0002-5239-2443
https://orcid.org/0000-0002-2471-6375

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

compression and optimization. One such technique that has
garnered considerable attention is pruning, which involves
eliminating certain components from the network to reduce
its size or complexity, such as weights, connections, or neu-
rons, that are considered less important or redundant. The
objective of pruning is to optimize the network’s efficiency,
reduce computational requirements, and potentially improve
its generalization performance.

Although there are other methods of network size reduc-
tion, like weight quantization [2], which lessens the data type
precision of weights without any accuracy degradation, the
technique is often engaged for hardware implementation as
it provides considerable efficiency for the network training
and testing phases. In general, the pruning method completely
removes the insignificant connections, weights, blocks, and
even the layers with almost no accuracy loss. Therefore,
the implications of mitigating the memory and processing
requirements are far greater for the pruning.

Pruning is typically performed after a neural network
has been trained or during the training process itself.
Bellec et al. [3] devise a unique method for pruning
neural networks after training. Their methodology involves
iteratively eliminating connections with low importance and
fine-tuning the remaining weights, resulting in highly sparse
networks without sacrificing performance. Various pruning
techniques and criteria can be applied to identify which com-
ponents to prune. These techniques may involve analyzing
weight magnitudes, gradients, activations, or other factors
to determine the importance of individual components.
By removing unnecessary or less impactful components,
pruning can lead to a more compact network that requires
fewer resources for training, inference, and deployment.
Pruning can also help mitigate issues such as over-fitting
and improve the network’s interpretability and generalization
capabilities. After pruning, the pruned network may undergo
further fine-tuning or retraining to restore or even improve its
performance. The overall goal of pruning is to achieve a more
efficient and effective neural network by selectively removing
redundant or less influential components while maintaining
or improving its desired functionality.

In addition to allowing the use of NLP models on devices
with limited resources such as smartphones and embedded
systems, pruning also facilitates faster inference and reduced
memory usage. The effectiveness and implications of pruning
techniques in NLP have been extensively investigated in
numerous research works. Han et al. [4] introduced the
concept of deep compression, which involves a combination
of Huffman coding, pruning and quantization for the
compression of neural networks. Their study demonstrated
that pruning can achieve significant compression (up to 90%
on the weights) without a substantial loss in accuracy.

Islam and Alawad propose [5] a novel method for
reducing the complexity of deep learning models in natural
language processing (NLP) tasks, making them more suit-
able for deployment in resource-constrained environments.

VOLUME 12, 2024

The approach combines compressive sensing and Bayesian
learning to identify and represent the most important weights
in the model in a compressed form. By stochastically pruning
non-critical weights, the model’s accuracy is preserved. The
authors evaluate their approach on various NLP tasks, such
as sentiment analysis and text classification, comparing it
with other compression methods like weight pruning and
knowledge distillation. Results indicate that their method can
significantly reduce model complexity (90% compression)
while maintaining high accuracy (<1% drop). The proposed
technique offers a promising solution for deploying large
language models in resource-limited settings, striking a favor-
able trade-off between model size and accuracy compared to
other methods.

Molchanov et al. [6] built upon structured pruning with the
Group-wise Brain Damage (GBD) algorithm, which prunes
filters within convolutional layers based on their importance.
GBD pruning significantly reduces the amount of parameters
(up to 95%) while maintaining accuracy. Li et al. [7]
improved upon magnitude pruning with iterative magnitude
pruning, which combines many pruning and fine-tuning
processes. Their experiments demonstrated that iterative
magnitude pruning can achieve high sparsity (up to 80%)
while maintaining comparable performance. Combining
pruning techniques with other model compression methods
has also garnered attention. Zhu and Gupta [8] proposed com-
bining pruning with low-rank matrix factorization, achieving
higher compression rates. Their experiments on language
models demonstrated significant model size reduction (up to
20 times) with minimal performance loss.

In addition to model compression, pruning techniques
have been utilized to increase the interpretability of many
NLP models. Voita et al. [9] explored pruning as a tool
for interpretability in neural machine translation (NMT)
models. By pruning the attention mechanism, they were
able to identify important features and gain insights into
the decision-making process of the model. Pruning meth-
ods, in general, present potential approaches for lowering
the size and computing complexities of DNNs in NLP.
of DNNs in NLP. Through the exploration of various pruning
methods and their combinations with other compression
techniques, researchers aim to develop more efficient and
compact models without compromising performance or
interpretability.

Onan et al. [10] presented in the text is focused on the
novel concept of text augmentation in the field of NLP. Text
augmentation is a powerful concept that can significantly
improve the performance of a wide range of downstream
tasks. GTR-GA, the proposed approach, utilizes graph-based
neural networks and genetic algorithms to create diverse and
high-quality augmented text data. The model utilizes a graph
attention network model, called HetGAPN, to obtain node
representation of a heterogeneous graph over text features.
The experimental results show that GTR-GA outperforms the
text augmentation baselines ASC and TowEute and completes

89419

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

close to the state of the art in various NLP tasks, including
sentiment analysis, data scarcity and text classification.

The proposed work [11] resolves the challenge of a limited
amount of annotated data for Turkish NLP and sentiment
analysis. They suggest using text data augmentation as a
solution by creating synthetic data to increase the diversity
and volume of the annotated dataset. However, there has
been a lack of research on this method for Turkish and
other languages with fewer resources. To fill this gap,
a new ensemble approach to text data augmentation for
Turkish sentiment classification is introduced in the paper.
This method combines specific and general transformations
to enhance the training dataset. The effectiveness of this
approach is demonstrated on the TRSAv1 dataset, showing
superior results compared to existing data augmentation
techniques.

The authors [12] address the issues of creating quality
labeled data for training machine learning models, specifi-
cally in NLP. Human annotators may provide inconsistent
manual annotations due to varying skill levels. To address this
issue, a new framework called SRL-ACO is suggested in the
paper. SRL-ACO integrates Semantic Role Labeling (SRL)
and Ant Colony Optimization (ACO) to produce additional
training data for NLP models. SRL identifies the roles of
words while ACO generates new sentences maintaining these
roles. This method improves the accuracy of NLP models
by offering additional data without manual labeling. Results
from experiments on seven text classification datasets,
including sentiment analysis, are also discussed. Tests on
seven datasets for text classification, such as sentiment
analysis and identifying toxic text, show that SRL-ACO is
effective in boosting the performance of classifiers in various
NLP tasks.

The proposed research scheme [13] introduce a new hierar-
chical graph-based text classification model that incorporates
contextual node embedding and BERT-based dynamic fusion
to better understand the intricate connections between nodes
in the hierarchical graph for more precise text classification.
The model consists of seven steps: Linguistic Feature Extrac-
tion, constructing Hierarchical Nodes using domain-specific
knowledge, Contextual Node Embedding, learning Multi-
Level Graphs, Dynamic Text Sequential Feature Interaction,
Attention-Based Graph Learning, and Fusion with BERT.
By combining their framework with BERT, the researchers
achieve improved classification results, as demonstrated by
evaluations on standard datasets.

Onan [14] explore the sentiment analysis has evolved in
computational linguistics, focusing on the success of deep
neural network models such as CNNs and RNNs like LSTM
and GRU. It also acknowledges the obstacles, like increased
dimensions in feature space and the equal weighting of
features in these models. To overcome these challenges, a new
approach is suggested: a bidirectional convolutional recurrent
neural network. This design uses bidirectional LSTM and
GRU layers to understand both previous and upcoming
information at the same time. It also includes a group-wise

89420

improvement system to focus on key elements and minimize
less important ones. Additionally, convolution and pooling
layers are used to identify advanced characteristics and
decrease the dimensionality of features. Testing has shown
that this design outperforms current results in sentiment
analysis tasks.

This paper is organized into multiple sections. Section II
describes the motivation behind the implementation of
pruning in NLP-based applications. It also expresses the
challenges related to their implementation. Related metrics
and benchmarks utilized for the evaluation of pruning tech-
niques are detailed in section III. Structured and unstructured
pruning schemes are elaborated in section IV. The section
provides the details of pruning methods. Further, section V
compared the related literature review in the paper. While
sections VI and VII give the conclusion and future work.

Il. MOTIVATION AND CHALLENGES OF PRUNING IN NLP
A. MOTIVATION

o Model Size Reduction Pruning allows for the elimina-
tion of redundant or insignificant parameters, leading
to significant reductions in model size and memory
footprint [15].

o Computational Efficiency Pruned models require
fewer computations during both training and inference,
enabling faster processing and lower energy consump-
tion [16].

« Deployment on Resource-Constrained Devices Com-
pact pruned models are more appropriate for use on
computing-constrained platforms, such as smartphones
and embedded computers. [17].

« Interpretability Pruning can help identify the most
important and relevant features or components of the
model, aiding in model interpretation and understand-
ing [18].

B. CHALLENGES

« Impact on Model Performance Pruning can potentially
lead to a degradation in model performance, including
accuracy, fluency, or coherence, depending on the
pruning method and the pruning rate applied [19].

o Transferability Pruned models may not generalize well
to unseen data or different tasks, necessitating careful
fine-tuning or transfer learning strategies [16].

o Fine-tuning Strategies Determining the optimal
fine-tuning approach to recover and retain model
performance after pruning is an ongoing research
challenge [20].

+ Robustness Pruning methods need to be robust to vari-
ations in data distribution, input format, and linguistic
phenomena to ensure consistent performance across
different NLP tasks and domains [21].

In this paper, we examine the various pruning methods
used in NLP and discuss their advantages, limitations, and
associated challenges. By understanding these motivations

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

and challenges, we aim to provide insights into the
cutting-edge pruning methods for NLP models.

Ill. METRICS AND BENCHMARKS

There are various metrics and benchmarks to evaluate the
performance of pruning in natural language processing. Some
of them are described below.

A. METRICS

o Model Accuracy
This metric evaluates the pruned model’s performance
on a specific NLP task. To evaluate the effect of pruning
on accuracy, it contrasts the performance of the pruned
model with the original, unpruned model.

o Parameter Reduction
This metric quantifies the extent to which parameter
reduction is achieved through pruning, providing a
measure of the size and complexity of the pruned
model based on the total number of pruned parameters,
connections, or units.

o Inference Speed
This metric evaluates the speed or runtime of the pruned
model during inference. It measures the time taken by
the pruned model to process a given input compared to
the unpruned model, highlighting the efficiency gained
through pruning.

o Memory Footprint
This metric assesses the reduction in memory usage
achieved by pruning.In comparison to the unpruned
model, it compares the amount of memory needed
to hold the pruned model’s weights, activations, and
intermediate tensors.

o Compression Ratio
This metric calculates the compression ratio achieved
through pruning. The size ratio of the pruned model to
the original model is quantified, providing an indication
of the level of compression achieved.

« Robustness
Reporting adversarial robustness in addition to accuracy
[22]. Smaller neural networks are more susceptible
to adversarial attacks [23]. Compressed pretrained
language models are much less resistant on out-of-
distribution (OOD) data in addition to adversarial
resilience [24].

B. BENCHMARKS
To evaluate the performance of pruning techniques in NLP,
several widely-used benchmarks have been employed. These
benchmarks serve as standard tasks or datasets for assessing
the effectiveness of pruning methods across different NLP
domains. The following benchmarks are commonly used in
the literature:
« Text classification

The benchmark for text classification commonly

includes datasets such as the IMDb movie reviews

dataset [25], AG’s News dataset, or the 20 Newsgroups

VOLUME 12, 2024

dataset. These datasets consist of labeled text documents
across various categories, and the accuracy measure
is used to assess the classification performance of the
pruned models.

« Machine Translation
For machine translation tasks, the benchmarks often
involve large-scale datasets such as the Workshop
on Machine Translation (WMT) dataset [26] or the
International Workshop on Spoken Language Transla-
tion (IWSLT) dataset. These datasets contain parallel
sentences in multiple languages, and evaluation metrics
such as Bilingual Evaluation Understudy (BLEU) score
are used to assess the quality of translation produced by
pruned models.

« Sentiment Analysis
Sentiment analysis benchmarks commonly include
datasets such as the Stanford Sentiment Treebank [27],
the Amazon Product Reviews dataset, or the Twitter
Sentiment Analysis dataset. These datasets contain text
samples that have been labeled with sentiment polarity,
and measures like F1 score or accuracy are used to assess
how well the pruned models classify sentiment.

« Named Entity Recognition
For named entity recognition tasks, popular benchmarks
include the CoNLL-2003 dataset [28], the OntoNotes
dataset, or the ACE (Automatic Content Extraction)
dataset. These datasets provide labeled text documents
with annotated named entities, and different metrics
like precision, recall, and F1 score are used to evaluate
the pruned models’ effectiveness in identifying named
entities.

IV. METHODS
Different pruning techniques exist in NLP with the goal of
reducing the size and extent of neural network models. The
paper discusses the pruning schemes that are summarized in
Figure 1.

Here are some commonly used pruning methods along
with their brief descriptions:

A. STRUCTURED PRUNING

Structured pruning [29], [30] [31], [32] refers to the removal
of entire structures, such as filters, channels, or layers, from
a neural network. This type of pruning maintains the overall
structure and shape of the network while reducing its size and
computational complexity. Structured pruning is particularly
effective for models with convolutional or recurrent layers.
Neural networks used in NLP, such as recurrent neural
networks (RNNs) or transformer models, often consist of
numerous parameters and layers, making them computation-
ally expensive and memory-intensive. Structured Pruning is
depicted in Fig 2.

Structure pruning aims to mitigate these issues by
identifying and removing unnecessary components of the
neural network while preserving its performance as much
as possible. This process typically involves eliminating

89421

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

Pruning

2 Y 2 v
Filter Channel Layer Movement
Pruning Pruning Pruning Pruning

Unstructured

Magnitute-i E : . E E Lottery |
based I{’\Irillllrl(l)in E E I;eraqve E E Ticket E
Pruning i E LTS | iHypothesis]

FIGURE 1. Hierarchical representation of various pruning approaches.

Pruned

=

Features

Features Filters

FIGURE 2. Typical structured pruning applies the criteria-based reduction
of filter blocks [29].

connections between neurons, removing entire neurons or
layers, or reducing the dimensionality of the network’s weight
matrices.

The goal of structure pruning is to obtain a more com-
pact and efficient model that requires fewer computational
resources for training and inference, while maintaining a
similar level of accuracy or performance. Pruning can help
the model operate more quickly, use less memory, and can
be deployed on systems with little computing power, such as
mobile phones or embedded systems.

Pruning techniques in NLP can be based on various crite-
ria, including the magnitude of weights, their importance to
the network’s performance, or their contribution to the overall
loss function. Several algorithms and heuristics have been
proposed for structure pruning, such as magnitude-based
pruning, iterative pruning, or group sparsity regularization.

Peng et al. [33] explore structured pruning techniques
in self-supervised pre-trained models specifically designed
for speech recognition and understanding. Self-supervised
learning refers to training models on unsupervised tasks using
the available data’s inherent structure, without relying on
manual annotations. Their objective was to reduce model
size by removing redundant parameters while preserving
speech recognition performance. The authors propose a
structured pruning method to lessen the size and complexity
of self-supervised pre-trained models while maintaining their

89422

performance on speech-related tasks. The key contributions
and findings of the paper include the following:

1) Pruning Strategy: The authors present a specific
pruning strategy tailored for self-supervised pre-trained
models in the speech domain. This strategy identifies
and removes less important structures or components,
such as layers or neurons, based on their significance
to the model’s overall performance.

2) Performance Analysis: The paper evaluates the impact
of structured pruning on speech recognition and
understanding tasks. It assesses the model’s accuracy
and efficiency before and after pruning, demonstrating
the potential benefits of structured pruning in reducing
model size and computational requirements while
preserving task performance.

3) Comparison with Baselines: The authors compare their
proposed structured pruning approach with other base-
line methods commonly used for model compressions,
such as unstructured pruning or weight quantiza-
tion. The comparison highlights the advantages and
effectiveness of structured pruning specifically for self-
supervised pre-trained models in the speech domain.

The results show significant compression and improved
accuracy compared to the original model, as validated by
experiments on LibriSpeech and SLURP datasets.

Ma et al. [29] proposes Large Language Model-Pruner
(LLM-Pruner), a task-agnostic compression method, aiming
to maintain the multi-task solving and language generation
abilities of the original LLM while minimizing reliance on
the extensive training dataset. LLM-Pruner adopts structural
pruning, removing non-critical coupled structures based
on gradient information to preserve most of the LLM’s
functionality. The pruned models can be efficiently recovered
through tuning techniques in a short time and with minimal
data. Experimental results on three LLMs, Large Language
Model Meta Al (LLaMA), Vicuna, and General Language
Model (ChatGLM), demonstrate that the compressed models
perform well in zero-shot classification and generation tasks.

McCarley et al. [30] investigate the utilization of struc-
tured pruning in a Bidirectional Encoder Representations

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

from Transformers (BERT)-based Question Answering (QA)
model. The primary objective is to reduce the model’s size
by removing redundant parameters while preserving its QA
performance. They present a novel approach to optimize the
computational efficiency of BERT-based question-answering
models through structured pruning. BERT is a popular
transformer-based approach for applications involving nat-
ural language processing. Deploying it on devices with
limited resources or in situations where real-time inference
is necessary, however, is difficult due to its vast size and
computing requirements. The proposed method focuses on
identifying and removing redundant parameters in BERT
by leveraging the structured sparsity pattern present in the
model’s attention heads. By pruning attention heads that
contribute minimally to the model’s performance, significant
model size reduction is achieved without sacrificing accuracy.
When compared to the original BERT model, the suggested
technique gains considerable pruning ratios while keeping
comparable performance, which is demonstrated by testing
on benchmarks for answering questions. This work con-
tributes to the development of more efficient and deployable
BERT-based question-answering systems.

Yang et al. [31] address the computational resource
limitations associated with pre-trained language models used
in NLP by introducing TextPruner which is a dedicated
open-source toolkit developed to facilitate model pruning,
aiming to enable efficient and straightforward compression
of models. It provides structured post-training pruning
techniques, such as vocabulary pruning and transformer
pruning, for streamlined implementation. These methods
enable the reduction of the model size without the need for
retraining, thus making the pruning process more efficient.
The toolkit is flexible and may be used for a variety of
applications including pre-trained language models and NLP
tasks. In addition to structured pruning, the authors propose a
self-supervised pruning technique that does not need any kind
of labeled data. This method allows for further reduction of
the model size by removing unnecessary parameters without
compromising performance. For the effective evaluation of
TextPruner, the authors conduct experiments on several NLP
tasks. The results demonstrate that TextPruner effectively
reduces the model size without retraining, thus addressing
the computational resource limitations. The toolkit proves to
be valuable in enabling the wider application of pre-trained
language models by making them more resource-efficient.

In their paper Wang et al. [32] explore the need for large
language models and proposes a structured pruning approach
to reduce their size without sacrificing performance. As lan-
guage models have become larger, their resource require-
ments and latency have also increased, leading to higher
costs. The authors address this issue by investigating model
compression techniques. Their purposed method focuses on
structured pruning, which entails parameterizing each weight
matrix with a low-rank factorization and deleting rank-1 com-
ponents selectively during training. By doing so, the authors
achieve significant compression levels while outperforming

VOLUME 12, 2024

unstructured and block-structured pruning techniques in
language modeling tasks. Moreover, their approach offers
notable speed improvements during both training and infer-
ence stages. The paper also highlights the applicability of
their method to other aspects of large language models.
They demonstrate its effectiveness in pruning adaptive word
embeddings, which are crucial for language understanding.
Furthermore, they apply their structured pruning approach
to the BERT model and evaluate its performance on various
downstream fine-tuning classification benchmarks.

1) FILTER PRUNING

Filter pruning is a method used in NLP to minimise DNN
computational complexity and memory needs. In NLP tasks,
like language translation or sentiment analysis, neural net-
works often consist of multiple layers with numerous filters
capturing different linguistic features. Filter pruning involves
accessing the value of each filter depending on criteria like
weights or activation’s and removing filters that contribute
minimally to the network’s performance. This process helps
in reducing the model size, accelerating computations, and
improving efficiency without significantly sacrificing the
network’s overall performance. By selectively removing
redundant or less informative filters, filter pruning enables
more streamlined and resource-efficient NLP models. Filter
Pruning is depicted in Fig. 3.

Li et al. [35] discuss the problem of shallow neural
networks being the preferable option for applications with
limited processing and memory resources,in spite of DNN
leading-edge capabilities. The research focuses specifically
on the one-convolutional-layer CNN, which is frequently
used for text categorization and other natural language pro-
cessing (NLP) applications. In spite of that, it has been noted
that CNNs may have trouble handling terms in the dataset
that are unrelated to the task at hand, leading to sub-optimal
performance. While integrating attention mechanisms into
CNNs can alleviate this problem, it also consumes limited
resources. To tackle this issue, the authors suggest a unique
method to deal with misfitting by pruning words from
the dataset that are redundant to the task. The suggested
technique assesses each convolutional filter’s performance
based on its ability to generate features at the pooling layer.
Subsequently, words identified by underperforming filters
are pruned, eliminating irrelevant information for the task
at hand. The experimental findings reveal that the proposed
model surpasses the baseline CNN model with significant
improvements. Furthermore, the proposed model achieves
comparable or even superior performance, while requiring
fewer parameters and floating-point operations (FLOPs).
These characteristics make it an appealing option for
scenarios with limited resources, such as mobile applications.

2) CHANNEL PRUNING
Channel pruning in natural language processing (NLP) refers
to a method for reducing the computational complexity and

89423

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

|f ' | i Filters Output \I
| a1 | | |
| 1179 ! ! |
| ® T w ! | ® |
| 9 | Three-stage | i
| 119 | Ppipeline | Hj 59 |
\ Select connections / b Learn new connections “‘*‘7
P ———— A e R e e i, .

|{ Filters
1 ' a1
I 11
| R CFED w»
|
| Emmn

\\‘ i Select connections

One-pruning
pipeline

FIGURE 3. Filter pruning removes the insignificant filters, and retraining the network [34].

memory requirements of neural models by eliminating excess
or redundant channels. In many tasks of NLP, like text
classification or sentiment analysis, neural networks often
employ convolutional layers to extract meaningful features
from textual data. These convolutional layers consist of
multiple channels, each responsible for detecting specific
patterns or linguistic features. However, not all channels
contribute equally to the network’s performance, and some
may even be redundant. Channel pruning aims to identify
and remove these redundant channels, thereby reducing the
model’s overall complexity without significantly sacrificing
accuracy. Channel pruning extends the idea of filter pruning
to the entire channels of convolutional layers. A channel in
a convolutional layer refers to the output of a single filter
applied to the entire input. Instead of pruning individual
filters, channel pruning prunes entire sets of filters (channels)
from the network, leading to a more significant reduction in
computational cost. In NLP models, channel pruning involves
removing entire sets of learned features. The process of
channel pruning is shown in Fig.4.

The process typically involves evaluating the importance
or contribution of each channel through methods like
magnitude-based pruning or sensitivity analysis. Pruned
models can generate significant computational reductions,
making them more effective for use in large-scale NLP
applications or on devices with limited resources.

Yu and Wu [37] introduces Unified Pruning Framework
for Vision Transformers (UP-ViTs), a unified pruning frame-
work for vision transformers, to address issues like large
model sizes, memory consumption, and computational costs.
Existing vision transformer pruning methods involve token
sampling, which hampers generalization and is challenging
to apply to NLP tasks. UP-ViTs prunes channels in a unified

89424

Pruned filters result in
pruned feature maps:

Pruned Filters: Pruned Channels

1
)
/ : 7il 7 |
. I 2
! [—
1 I
: (&7
—— !
1 I
Layer i Layer i+l

FIGURE 4. Channel pruning amputates the entire channel of filters [36].

manner, covering all transformer components. It evaluates
the importance scores of each filter in a pre-trained ViT
and removes redundant channels based on compression
goals. The approach maintains token representation con-
sistency, ensuring generalization to downstream tasks. UP-
ViTs outperform previous ViTs with higher throughput and
can be extended to transformers in NLP tasks, showing
improvements on language modeling benchmarks. The prun-
ing method involves evaluating performance changes after
removing channels in specific components. Experimental
results demonstrate the effectiveness of UP-ViTs in achieving
high accuracy with compressed models while significantly
reducing computational complexity for vision transformers.

Liu et al. [38] introduced TCAMixer, a lightweight
Mixer model designed for edge devices to classify texts.
It addresses the challenges posed by large-scale model sizes
and expensive computing costs in deploying large pre-trained
models. The TCAMixer incorporates a novel Triple Concepts
Attention Mechanism, which abstracts textual concepts in
a human-like manner. Comparing it to counterparts like
pNLP-Mixer and HyperMixer, which are projection-based
MLP-Mixer and hyper-network models, respectively, the

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

TCAMixer outperforms them significantly on several public
datasets. For instance, the TCAMixer achieves 3% higher
accuracy with a smaller model size of 0.177M. Additionally,
the TCAMixer performs at 85% to 98.7% of the large pre-
trained models’ performance but occupies only 1/3000 to
1/2000 of their size on most test datasets. The proposed
TCAMixer presents a promising solution for efficient text
classification on resource-constrained devices while main-
taining competitive accuracy compared to larger models.

3) LAYER PRUNING

Layer pruning involves removing entire layers from a neural
network. This approach may be used to minimise the size
and computing needs of various NLP models, such as RNNs
or transformer-based models [39]. Layer pruning can be
particularly effective when the network has multiple stacked
layers, allowing for removal of unnecessary layers without
significantly affecting performance.

Pruning criteria for layer pruning can be based on factors
such as layer importance or the layer’s impact on the
network’s output. For instance, layers with low contribution
to the model’s performance or minimal impact on the final
predictions can be pruned. By removing redundant layers,
the network can become more compact and computationally
efficient.

Jordao et al. [40] introduce a technique called Discrim-
inative Layer Pruning for Convolutional Neural Networks.
This approach involves assessing the discriminative power
of each layer in a CNN and subsequently removing the
least significant layers. The authors additionally show that
combining layer pruning with filter pruning in a cascading
manner can lead to enhanced utilization of memory, removes
36.70% of FLOP count, and faster predictions. Layer pruning
is one of the approaches used to decrease model complexity
and increase model performance.

Fan et al. [41] introduce a layer-wise model pruning
technique utilizing mutual information. The main motivation
behind this research is the desire to better the capability
of DNNs by reducing their computational complexity and
memory footprint without sacrificing performance. The
authors utilize mutual information as a measure to capture the
statistical dependency between layers and the target output.
By assessing the mutual information for each layer, they
can identify and prune layers with lower mutual informa-
tion, which indicates their potential redundancy or lesser
importance in the network. The proposed layer-wise model
pruning technique is conducted in a sequential manner, that
starts from the input layer and iteratively progresses towards
the output layer. At each iteration, the mutual information
between the current layer and the target output is estimated
and used as a criterion for pruning. The pruning process
involves removing the least informative layers, which helps
streamline the network and improve its efficiency. To evaluate
the effectiveness of their approach, the authors ran trials on a
variety of benchmark datasets, comparing the performance of
their pruned models to that of the original complete models.

VOLUME 12, 2024

The results of their experiments demonstrated that their
layer-wise model pruning technique effectively reduces the
computational complexity and memory requirements while
maintaining competitive accuracy levels. When compared to
the original models, the pruned models achieved considerable
reductions in the number of parameters and FLOPs, with
no appreciable deterioration in performance. Moreover, the
authors explored the impact of different pruning ratios on
the performance of the pruned models. They observed that
even with aggressive pruning ratios, the pruned models
maintained relatively high accuracy levels, indicating the
usefulness of the proposed approach in achieving significant
compression while preserving performance. The experiments
involve WMT14 En-Fr and WMT14 En-DE datasets and
include extra-large, large, base, and tiny models. The models
are trained on 16 V100 graphics processing units (GPUs)
with 32G memories, using Adam optimizer with specific
parameters. Beam search is employed for evaluation, and
BLEU scores, FLOPs, and practical speedup are reported for
single models without ensembling. The results demonstrate
that mutual information-based layer-wise model pruning
outperforms these strategies in terms of attaining larger
pruning ratios with equivalent or superior accuracy.

Peer et al. [42] introduce a method called Greedy-layer
pruning for shrinking transformer models in NLP tasks.
The authors aim to achieve a customizable tradeoff between
performance and speed without the need for additional
pre-training phases, unlike knowledge distillation methods.
Greedy-layer pruning operates through iterative layer pruning
using a greedy approach. The algorithm dynamically adjusts
the model size for specific downstream tasks, allowing
precise customization without sacrificing performance. The
method focuses on reducing computational costs while main-
taining high performance. Experimental results showcase
the effectiveness of Greedy-layer pruning. For BERT and
RoBERTa models, the approach achieves 95.3% and 95.4%
performance retention, respectively, while pruning 50% of
the layers. This demonstrates the ability of Greedy-layer
pruning to significantly reduce the computational require-
ments of transformer models while preserving a considerable
portion of their original performance. The paper highlights
the advantages of Greedy-layer pruning over distillation
methods. Unlike knowledge distillation, which typically
involves additional pre-training phases, Greedy-layer pruning
allows for dynamic adjustment of model size and perfor-
mance retention during the fine-tuning process itself. This
flexibility makes the method suitable for various NLP tasks
where computational efficiency is a crucial factor.

4) STRUCTURED WEIGHT PRUNING

Structured Weight pruning involves removing unimportant
weights from a neural network while preserving its structure.
This technique is widely used for model compression and
reducing computational requirements. In the field of NLP,
structured weight pruning has been applied to various tasks,
such as language modeling and sentiment analysis.

89425

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

Before Pruning

AfterPruning

FIGURE 5. Structured weight Pruning removes the weight
connections [31].

Weight pruning typically involves setting a threshold value
and then removing weights that fall below this threshold. The
threshold can be determined based on various criteria, such
as the weight magnitude, importance scores, or sensitivity
analysis.Once the threshold is set, any weights that fall below
it are pruned, and the related connections are deleted from the
network.

Pruning can be performed in an iterative manner, with
multiple pruning rounds. During each round, a certain
percentage or fixed number of the lowest magnitude or least
important weights are pruned. After pruning, the network
may undergo a retraining phase to fine-tune the remaining
weights and mitigate any performance degradation caused by
the pruning process.

Cho et al. [43] proposes Parameter-free Differentiable
Pruning (PDP), an efficient and effective train-time pruning
scheme for DNNs. PDP generates soft pruning masks
for weights during training without requiring additional
parameters, making it universal for various vision and
natural language tasks. It achieves state-of-the-art results in
model size, accuracy, and training cost. PDP outperforms
existing algorithms in random, structured, and channel
pruning tasks for vision and language models. For instance,
it achieves higher accuracy in ImageNetlk for MobileNet-
vl at 86.6% sparsity and in Multi-Genre Natural Language
Inference for BERT at 90% sparsity. Moreover, PDP can be
applied to structured pruning like N:M pruning and channel
pruning, outperforming state-of-the-art results in tasks such
as 1:4 structured pruning of ResNetl8 and channel pruning
of ResNet50. Overall, PDP provides a powerful and efficient
solution for model compression and optimization across a
wide range of DNN architectures and tasks.

The technique is shown in fig. 5. Weight pruning offers
several advantages. It minimises the memory footprint
of the model, making it more suited for deployment on
resource-constrained devices. Pruned models also require
fewer computations, resulting in faster inference times.
Moreover, weight pruning can enhance model interpretability
by exposing the most critical connections and features.

5) BLOCK PRUNING
Block pruning is a technique that expands structured methods
by taking into account blocks of any size and incorporates

89426

this structure into the movement pruning paradigm for fine-
tuning. Instead of removing individual weights or neurons,
the method entails identifying and removing whole blocks of
the model, such as attention heads. This strategy keeps the
model’s performance while enabling more effective pruning.
In Block pruning a large pre-trained transformer model is
trained on the given task before putting this strategy into
practice. Then, entire blocks of the model that are believed
to be unnecessary for the task at hand are identified and
eliminated using movement pruning algorithm.

Lagunas et al. [44] also introduce a brand-new metric
known as ““block importance’ to assess how much each block
contributes to the overall performance of the model. Then
after pruning, the authors fine-tuned the pruned model on
the same task, and compare its performance to the original,
un-pruned model. Experiments explore classification and
generation tasks, providing, among other things, a pruned
model that is 2.4x quicker, 74% smaller BERT on SQuAD
v1, with a 1% drop on F1, competitive in both speed and size
with distilled models.

Pheng et al. [45] explores the use of column-balanced
block-wise pruning to accelerate Transformer models on
field-programmable gate arrays (FPGAs). While weight
pruning has been studied for reducing model size on GPUs, its
application on FPGAs has not been investigated. The authors
create an FPGA acceleration engine for the Transformer’s
balanced block-wise matrix multiplication. The experimental
findings show that the FPGA implementation achieves a
latency of 10.35 ms for Transformer inference with a batch
size of 32, delivering a 10.96x speedup over the central
processing unit (CPU) platform and a 2.08x speedup over the
GPU platform.

Li et al. [46] uses a hardware-friendly block-structured
pruning method for efficient large-scale language represen-
tations based on Transformers. The need to increase the
efficiency of DNNs by decreasing their computational com-
plexity and memory footprint without losing performance is
the driving force behind this study.

A block-based pruning framework (BLCR) meant to speed
DNN execution on resource-limited computing platforms,
notably mobile devices, is introduced by Ma et al. [47].
To achieve high sparsity while exploiting on-device par-
allelism, BLCR combines a flexible structured pruning
approach with a reweighted regularisation method. It includes
both CNNs and RNNs, with computation-intensive layers like
convolutional and fully linked layers supported. Furthermore,
the system incorporates compiler-based code optimisation
to enable real-time DNN inference on mobile devices while
maintaining accuracy.

6) MOVEMENT PRUNING

Movement pruning is a first-order weight pruning method
which is mostly used to fine-tune the pertrained models.
Movement pruning iteratively prune the weights by using
least absolute movement which is the difference between

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

weights values in current and previous iterations. Movement
pruning produces a smoother distribution of residual weights
that spans the whole interval except for values near to zero.
Sanh et al. [48] exploit movement pruning to introduce
adaptive sparsity in neural networks which is achieved in two
steps. 1: in training of network separate mask is used for
each layer for determining the importance of each connection,
initially the values of mask are set to all ones then the values
of mask are updated based on gradients of loss function
to prune the unimportant connections. 2: to recover the
performance of the pruned network fine—tuning is performed.
For this perturbations to the pruned connections during
fine-tuning are introduced. These perturbations help the
network explore alternative paths and improve its ability to
recover from the pruned state. The authors undertake tests on
several deep learning architectures, including feed-forward
networks, convolutional neural networks, and recurrent
neural networks, to evaluate their technique. The results
reveal that Movement Pruning achieves substantial sparsity
while preserving or even boosting network performance
when compared to the original dense networks. The authors
also compare their method to current pruning strategies
and show that it outperforms them in terms of sparsity-
performance trade-off.

The framework proposed by Joniak and Aizawa [49]
focuses on identifying a subset of the model that exhibits
reduced gender bias. To achieve this, attention heads in the
transformer-based models are selectively pruned at either
the block or entire head level. By pruning specific attention
heads, the authors aim to mitigate the propagation of gender
bias within the model’s representations and predictions.
The effectiveness of the approach is demonstrated through
experimental evaluation. The authors evaluate the trimmed
models’ performance on gender bias-related tasks and bench-
marks. The results showcase the efficacy of the framework
in reducing gender bias, as the pruned models exhibit
improved fairness and reduced biases in their predictions.
Furthermore, the authors propose improvements to existing
debiasing techniques, highlighting the potential of movement
pruning as a valuable tool in mitigating bias. By selectively
removing attention heads associated with gender bias, the
framework provides a targeted approach to address and
rectify biases in pre-trained language models. One crucial
finding highlighted in the paper is the trade-off between bias
mitigation and model performance. The authors reveal that
higher model performance often correlates with increased
gender bias. This observation sheds light on the inherent
challenges in achieving both fairness and high accuracy
simultaneously. It encourages academics and practitioners
to carefully explore and balance these variables while
designing and using transformer-based language models. The
importance of this study rests in its investigation of gender
bias in pre-trained language models and the development of
a methodology that effectively tackles this prejudice through
movement trimming. By selectively pruning attention heads,
the authors demonstrate the potential to mitigate gender

VOLUME 12, 2024

bias and improve fairness in language models. The findings
contribute to ongoing discussions on bias in natural language
processing and highlight the importance of developing
debiasing techniques that go beyond post-hoc interventions.

B. UNSTRUCTURED PRUNING

Unstructured pruning is a NLP approach used to minimise
the size and complexity of neural networks used for
language modelling, text classification, machine translation,
and other NLP applications. This pruning technique involves
selectively removing individual weights or parameters from
the network, typically based on their magnitudes or impor-
tance scores. By eliminating redundant or less significant
parameters, unstructured pruning aims to achieve model com-
pression, improved efficiency, and reduced computational
requirements without significantly sacrificing performance.
The process of unstructured pruning involves two main
steps: identification and removal. In the identification step,
each weight or parameter in the network is evaluated based
on a predefined criterion, such as magnitude or sensitivity
analysis. Magnitude-based pruning, for example, ranks the
weights according to their absolute values, allowing the
removal of those with the smallest magnitudes. Depending
on the pruning approach, this rating can be done globally or
layer-by-layer. Once the weights or parameters are ranked,
the removal step involves discarding a certain percentage of
the least important ones. This removal can be performed by
setting the corresponding weights to zero or by completely
eliminating the associated connections. In some cases,
a threshold is applied to determine the cutoff point for
pruning, allowing finer control over the sparsity level of the
pruned model.

One of the primary advantages of unstructured pruning
is its flexibility in targeting specific weights or parameters,
making it suitable for reducing the model size while
preserving important network structures. However, this
flexibility comes at the cost of irregular sparsity patterns,
as individual weights are pruned independently. Conse-
quently, unstructured pruning can lead to inefficient memory
access and inefficient deployment on hardware accelerators
optimized for dense matrix operations. To address these
issues, additional techniques such as structured pruning
and weight sharing can be applied in conjunction with
unstructured pruning [7], [30], [50], [51], [52], [53].

In the context of NLP, unstructured pruning can be applied
to various components of neural network models, including
word embeddings, recurrent connections, and fully connected
layers. The main objective is to identify and eliminate
parameters that are deemed less important or redundant,
thereby reducing the model’s memory requirements and com-
putational demands while striving to maintain or minimize
the impact on performance.

Unstructured pruning in NLP seeks to establish a compro-
mise between model reduction and acceptable performance.
It allows for more aggressive parameter removal compared
to structured pruning methods but may also pose challenges

89427

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

Before Pruning

AfterPruning

FIGURE 6. Unstructured Pruning reduces the network by irregular
removal of neuron units [54].

such as potential accuracy loss or the need for careful
fine-tuning.

Unstructured Pruning is depicted in Fig 6. Li et al. [7]
present an unstructured weight pruning approach for CNNs.
The authors offer a metric for measuring the relevance of
filters and prune filters systematically depending on their
importance. The results show that unstructured pruning
can minimise the number of parameters while preserving
performance.

Narang et al. [50] investigate the use of unstructured
pruning in the context of recurrent neural networks (RNNs).
The authors want to know how weight pruning affects
RNNs and suggest a structured regularisation strategy to
encourage sparsity in these networks. By exploring the
potential of unstructured pruning, they aim to reduce the
number of parameters in RNNs while minimizing the impact
on performance. The study begins by highlighting the
significance of sparsity in deep learning models, especially
in scenarios where computational and memory resources are
limited. RNNSs, being widely used in various NLP tasks such
as language modeling and sequence generation, can benefit
from pruning techniques to alleviate the computational
burden and improve efficiency. However, the unique recurrent
structure of RNNs poses challenges in applying traditional
pruning methods effectively. To address these challenges,
Narang et al. propose a structured regularization technique
that encourages sparsity in RNNs. This regularization
technique introduces a penalty term based on the L1 norm
of the weights, encouraging a large number of them to be
set to zero. By incorporating this regularization term into
the training objective, the authors aim to promote sparsity
during the learning process. The experimental evaluation
conducted by the authors showcases the effectiveness of
unstructured pruning in reducing the number of parameters
in RNNs. By applying the proposed structured regularization
technique, they successfully induce sparsity in the RNNs
without a significant loss in performance. The experiments
demonstrate that the pruned RNNs achieve comparable or
even improved performance on tasks such as language model-
ing and speech recognition. Furthermore, the authors examine
how different sparsity levels affect the performance of pruned
RNNs. They discover that even at high sparsity levels,
trimmed models may outperform their dense counterparts.

89428

Before Pruning

AfterPruning

Pruning

FIGURE 7. Neuron Pruning removes the neurons form the network [53].

This discovery demonstrates the potential of unstructured
pruning to dramatically lower RNN memory and compute
needs while maintaining RNN efficacy in NLP workloads.

Chen et al. [51] addresses the challenges posed by
unstructured sparsity after pruning in the implementation
of deep learning models. The authors suggest a technique
of compression that combines unstructured pruning with a
unique weight permutation mechanism. The sparse weight
matrix is further compressed into a tiny and dense shape
by permuting it, maximising hardware resource utilisation.
When compared to state-of-the-art approaches, the suggested
method yields a 10.28x improvement in matrix compression
rate. As a result, throughput and energy efficiency are
increased by 2.12 and 1.57 times, respectively. The approach
is named ‘““Tight Compression” and offers a promising
solution for efficiently compressing CNN models.

1) NEURON PRUNING

Neuron pruning aims to remove unnecessary neurons or units
from neural network architectures. In the context of NLP,
this technique involves eliminating unimportant neurons in
language models. The process of neuron pruning typically
involves identifying and removing neurons based on their
importance or contribution to the overall network. Several
criteria can be used to determine the importance of a neuron,
such as its activation level, its impact on the network’s output,
or its connection weights. Neurons that are deemed less
important can be pruned, eliminating their connections and
reducing the overall complexity of the network. The process
of Neuron pruning is described in Fig 7.

The pruning process can be performed iteratively, where
pruning is done in multiple rounds. During each round,
a certain percentage or fixed number of neurons with the
lowest importance scores are pruned. After pruning, the
network may undergo a retraining or fine-tuning phase
to compensate for the removed neurons and regain its
performance.Neuron pruning can offer several benefits. It can
help reduce the memory footprint of the network, making
it more efficient for deployment on resource-constrained
devices. Additionally, pruning can lead to faster inference
times by reducing the number of computations required.
Pruned networks can also be more interpretable as the
removal of redundant neurons can reveal the important
connections and patterns in the model.

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

Hu et al. [52] propose a method called “Network
Trimming” to design efficient DNNs. The approach involves
iteratively pruning unimportant neurons based on their
outputs, specifically targeting zero activation neurons that
are deemed redundant. After pruning, the network is
retrained using the pre-pruning weights as initialization. This
pruning-retraining cycle is repeated to further reduce zero
activations. Experiment findings on LeNet and VGG-16 show
that the suggested technique achieves large compression
ratios without losing accuracy and, in some cases, improves
accuracy over the original network. Network Trimming is a
data-driven technique to building efficient deep architectures.

Yu et al. [53] propose a method called Neuron Importance
Score Propagation (NISP) for pruning deep CNNs. NISP
seeks to simultaneously prune neurons based on minimising
the reconstruction error of key responses in the final
response layer (FRL), which is the second-to-last layer
before classification, as opposed to previous approaches that
focus on individual layers or successive layers. The method
measures neuron relevance using feature ranking techniques,
formulates network pruning as a binary integer optimisation
problem, and develops a closed-form solution for pruning
neurons in earlier layers. When tested on numerous datasets
and CNN models, NISP achieves considerable acceleration
and compression with low accuracy loss.

In [55] the authors explore the application of regularization
in DNN pruning. They introduce a new scenario where
the regularization gradually increases in strength, addressing
two key problems in pruning: pruning schedule and weight
importance scoring. The authors propose an L2 regularization
variant with rising penalty factors, which leads to significant
accuracy gains compared to traditional one-shot pruning
methods. The growing penalty scheme also enables the
utilization of Hessian information for more accurate pruning
without the need for precise Hessian values.

2) MAGNITUDE BASED PRUNING

Magnitude-based pruning is the practise of pruning weights
based on their magnitudes, with lower magnitudes regarded
less relevant and trimmed. This strategy is based on the idea
that tiny weights contribute less to the overall performance of
the model. The model’s size and computational complexity
can be lowered by deleting these less significant weights.
Magnitude-based pruning has been used successfully in
NLP applications including machine translation and senti-
ment analysis.Magnitude-based pruning selectively removes
weights with the smallest magnitudes (i.e., absolute values).
See et al. [56] compress RNN models for NMT using
magnitude-based pruning combined with retraining. After
pruning, they further refine the pruned network through fine-
tuning, aiming to achieve improved performance.

Li et al. [57] propose Optimization-based Layer-wise
Magnitude-based Pruning (OLMP) as a unique strategy for
compressing DNNs in their paper. OLMP aims to achieve
effective model compression while controlling accuracy
loss by automatically modifying layer-specific criteria. The

VOLUME 12, 2024

method utilizes strong derivative-free optimization methods
to find optimal solutions for threshold tuning as a constrained
optimization problem. OLMP operates iteratively, pruning
the network to reduce its size while meeting accuracy
requirements and then fine-tuning the pruned model to
recover any potential accuracy loss. Experimental evaluations
on LeNet-style and AlexNet-style networks demonstrate that
OLMP outperforms state-of-the-art approaches in terms of
compression ratios while maintaining competitive accuracy
levels. OLMP offers automated threshold tuning, eliminating
the need for manual setting and leveraging powerful opti-
mization algorithms for efficient pruning configurations. The
layer-wise approach of OLMP contributes to more effective
DNN compression and improved overall efficiency, making
it a promising method for addressing the demand for efficient
DNNeE.

Lee et al. [58] introduce Layer-Adaptive Magnitude-based
Pruning (LAMP) to address the challenge of selecting layer-
wise sparsity in neural network pruning. They emphasize the
importance of optimal sparsity selection for reducing model
complexity and enhancing efficiency. Existing approaches
often use manual heuristics or computationally intensive
hyperparameter search. LAMP overcomes these issues by
proposing a data-driven solution. It introduces an importance
score that combines weight magnitudes and model-level
L2 distortion, aiming for an optimal balance between
sparsity and network performance. LAMP eliminates the
need for manual tuning and heavy computation, utilizing the
importance score to guide pruning automatically, reducing
complexity in the process.

Hong et al. [59] provide Multi-objective Magnitude-
based Latency-Aware Pruning (MMLAP), a new layer-wise
magnitude-based pruning strategy for compressing DNNs
that takes latency into account. MMLAP tries to minimise
DNN inference latency by reducing network connections.
Unlike previous methods, MMLAP directly captures latency
and employs a novel multi-objective evolutionary algorithm
to optimise both the accuracy and latency efficiency of
the compressed networks during the hyper-parameter tuning
of layer-wise magnitude-based pruning (LMP). The exper-
imental findings show that MMLAP is competitive with
known LMP approaches and that multi-objective optimisa-
tion is successful in generating Pareto-optimal compressed
networks in terms of accuracy and latency. Li et al. [60]
introduce a stage-wise magnitude-based pruning (SW-MBP)
technique tailored for RNNs in NLP tasks. The authors
recognize the unique characteristics of RNNs, which consist
of recurrent connections that play a crucial role in capturing
sequential dependencies in NLP tasks. In order to account for
this recurrent structure, SW-MBP groups connections based
on their intersection with recurrent neurons. This grouping
allows for a more accurate and targeted pruning approach,
as it considers the impact of pruning on both feedforward
and recurrent connections. The pruning process in SW-MBP
is conducted in stages. At each stage, connections within a
group are pruned based on their magnitude. Magnitude-based

89429

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

pruning identifies connections with low magnitudes that con-
tribute less to the overall network performance. By removing
these connections, the network’s complexity is significantly
reduced without sacrificing performance. To achieve the
best pruning results, an optimization-based pruning approach
is employed within each group. This approach enhances
the optimization of the connection selection process. The
optimization process ensures that the most redundant and
least informative connections are pruned, leading to a
more efficient and streamlined network. Experimental results
shows the supremacy of SW-MBP over conventional RNN
pruning methods. The proposed technique achieves impres-
sive connection pruning rates of up to 96.84%, indicating
a significant reduction in the number of connections while
maintaining high precision indicators on testing datasets.
This demonstrates how well SW-MBP works in lowering the
computational difficulty and memory requirements of RNNs
in NLP applications.

3) ITERATIVE PRUNING

Iterative pruning is a technique used in natural language
processing (NLP) to minimize the size and computing
demands of neural network models used for NLP applica-
tions. The process of iterative pruning involves a gradual
selection and removal of less important components, such
as channels, weights, or neurons, from the network. The
objective is to iteratively prune the model while minimizing
any negative impact on its performance. Iterative pruning
is often used in natural language processing (NLP) models
that use architectures such as convolutional neural networks
(CNNp5s) or recurrent neural networks (RNNs) for tasks such
as text classification, sentiment analysis, machine translation,
or natural language comprehension.

The iterative pruning procedure typically encompasses the

following steps:

1) Attempting: In this stage, a subset of components, such
as channels or neurons, is pruned from the network.
The effect of this pruning on the model’s performance
is evaluated to estimate the resulting accuracy decrease.

2) Selecting: A selection technique is used to determine
the layers, channels, or components that have the least
influence on the overall network performance. These
less important components are prioritized for further
trimming.

3) Pruning: The selected components are then removed
from the network, effectively reducing its size and
computational complexity. The pruning criteria may
involve factors like importance scores, activation
levels, or weight magnitudes.

Following the pruning stage, the network is typically
fine-tuned or retrained to restore its performance. This
fine-tuning process enables the network to adapt to the pruned
architecture and regain its accuracy.

Mallaya and Lazebnik [61] provide PackNet, a method

for incorporating several tasks into a single DNN without
encountering catastrophic forgetting. The method is inspired

89430

by network pruning techniques, which find and remove
redundancies in big networks to provide a place for new
tasks to be learned. The authors systematically integrate
several jobs into a single network via iterative pruning and
re-training, guaranteeing minimum performance degradation
and storage overhead. PackNet optimizes for each individual
job, as opposed to earlier approaches that rely on proxy losses
to retain accuracy on older tasks. Extensive testing on various
network designs and large-scale datasets shows that PackNet
is more resilient to catastrophic forgetting than previous
techniques. Notably, the scientists successfully combined
three fine-grained classification tasks into a single VGG-16
network trained on ImageNet, attaining accuracies equivalent
to individually trained networks for each job.

Rajaraman et al. [62] present a technique for identifying
COVID-19 pulmonary symptoms using chest X-rays using
iteratively trimmed deep learning model ensembles. The
investigation focuses on the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known
as the novel Coronavirus (2019-nCoV) that causes COVID-
19. On publically accessible chest X-ray datasets, the
researchers train and test a proprietary convolutional neural
network and pre-trained models to learn modality-specific
feature representations. They use and fine-tune their knowl-
edge to improve performance and generalization when
identifying chest X-rays as normal, indicating bacterial
pneumonia, or exhibiting COVID-19-related abnormalities.
The best-performing models undergo repeated pruning,
a technique of lowering network complexity by deleting less
relevant connections or parameters, to improve complexity
and memory efficiency. To improve classification perfor-
mance, the predictions of these trimmed models are pooled
using various ensemble procedures. Experiment results show
that the weighted average of the best-performing pruned
models enhances performance substantially, with an accuracy
of 99.01% and an area under the curve of 0.9972 in
identifying COVID-19 discoveries on chest X-rays.

4) LOTTERY TICKET HYPOTHESIS

A randomly initialized, dense neural network comprises a
subnetwork that is initialized in such a way that, when
trained in isolation, it can equal the original network’s test
accuracy after training for no more than the same number of
iterations. The Lottery Ticket Hypothesis in NLP proposes
that inside a large neural network, a sparse subnetwork
known as the “winning ticket” can achieve equivalent or
higher performance than the original dense network. This
hypothesis is based on the idea that during the network’s
initialization, only a small fraction of the connections and
weights are truly necessary for optimal performance. In the
context of NLP, the lottery ticket hypothesis has been
applied to transformer-based language models like BERT
and GPT. The process begins with the random initialization
of a large neural network. The network is then trained
on a specific NLP task using standard training procedures.
After training, a pruning algorithm is used to identify and

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

remove unimportant connections or weights based on certain
criteria, such as weight magnitude. The pruned network is
reinitialized, and a fine-tuning process is applied to recover
its performance.

Chen et al. [63] investigate the presence of trainable and
transferrable subnetworks within large pre-trained models
like BERT in the context of NLP. It highlights the emergence
of the lottery ticket hypothesis, which suggests that smaller
subnetworks within these models can achieve full accuracy
when trained in isolation and can be transferred to other
tasks. The authors want to integrate these two findings by
investigating if such trainable and transferable subnetworks
exist in pre-trained BERT models. They do a number of
tests on a variety of downstream tasks to find matched
subnetworks with sparsities ranging from 40% to 90%.
The study demonstrates that subnetworks discovered on the
masked language modeling task, which is also used to pre-
train BERT, have universal transferability. This means that
they can be effectively applied to different downstream tasks.
However, subnetworks found on other tasks show limited
transferability, or in some cases, no transferability at all. This
distinction suggests that the nature of the task plays a crucial
role in determining the transferability of the subnetworks
within the BERT architecture.

Behnke and Heafield [64] focus on the attention mecha-
nism in transformer architectures, crucial for natural language
processing tasks. Previous research reveals that certain
attention heads lack confidence in their judgments and can be
trimmed, but directly removing them leads to model quality
reduction. To address this, the research employs the lottery
ticket hypothesis, removing attention heads early in training.
This hypothesis suggests trainable subnetworks within large
networks can achieve similar performance. By leveraging
this idea, unnecessary attention heads in transformers are
identified and pruned. Experiments in machine translation,
like Turkish to English, show promise. The pruned model
demonstrates a slight -0.1 change in the BLEU score, a key
translation quality metric, indicating effective trimming.
Ding et al. [65] examine the use of the lottery ticket concept
to build lightweight voice recognition models. Rather than
creating these models from scratch, practitioners frequently
opt to condense big pre-trained speech models. According
to the lottery ticket theory, very sparse subnetworks inside
bigger models may be trained independently without losing
performance. The researchers undertook comprehensive tests
on several voice recognition models, including CNN-LSTM,
RNN-Transducer, and Transformer models. They confirmed
the existence of very sparse winning tickets, which are
subnetworks that function similarly to the full models. These
winning tickets weighed less than 20% of the complete
models, with the lightest ticket retaining just 4.4% of the
weights.

V. COMPARISON OF DIFFERENT PRUNING TECHNIQUES
The following discussion provides a comparison among some
recent trends in pruning in the field of natural language

VOLUME 12, 2024

processing. Table 1 summarizes this comparison including
the advantages and disadvantages of the pruning techniques.

Yoon et. al. [66] proposed the TextPruner, an open-source
toolkit for pruning Natural Language Processing related
pre-trained models. It offers a structural pruning that is
utilized for vocabulary and transform pruning. Vocabulary
pruning enhances efficiency and mitigates the network size
by removing the tokens in pre-trained models that are not
related to downstream tasks. In transform pruning, it removes
the attention heads and neurons in feed-forward units based
on the already computed importance score. On the Cross-
lingual Natural Language Inference (XNLI) corpus using the
XLM-RoBERTa model, the scheme achieves up to 41.3%
model size. The proposed technique achieves up to 1.90x
speed up which is almost a 50% increase in processing speed.
However, the technique is self-supervised lacks flexibility in
fine-grain pruning, and loses accuracy after pruning.

Peer et. al. [42] proposed the Greedy-layer pruning
method which removes the layers of the network based
on some predefined fine-grain performance criterion. The
technique is evaluated on the GLUE benchmark using BERT,
and RoBERTa transformer models. The method achieves
mitigation from 67 M to 82 M parameters as compared to
108M parameters with inference time from 70 to 73 seconds
on CPU. This speed-up is 1.7 seconds for GPUs.

Li et. al. [67] proposed a filter-pruning mechanism using
Convolution Neural Networks (CNNs). The approach is
applied to a text dataset of cancer pathology reports by cancer
type for text classification. Like other pruning techniques, the
method focuses on the importance of each filter for pruning
by associating a utility score with a filter. After activation of
a filter for a training set is passed through the max pooling
operation, variation in resultant values across all training sets
is used to calculate the utility score of each filter. The method
achieved a reduction of a third less network weight with 7%
enchantment in the micro-averaged F1-score and 22% in the
macro-averaged F1-score.

Xu and Hu [46] proposed block pruning for BERT,
RoBERTa4, and DistilBERT models. The method rearranged
the weight matrix into a row or column blocks format
and performed the pruning of blocks based on the lrnorm
value against a predefined value. This structure pruning
supports parallel processing. The technique achieves 5x
weight pruning with negligible accuracy degradation on the
GLUE benchmark. Additional 1.79x compression is achieved
using knowledge distillation for little accuracy loss.

Wang [68] explore the fairness of the Natural Language
Processing (NLP) model due to various compression meth-
ods. The considered compression methods are pruning and
knowledge distillation on the GPT2 model. The paper mainly
discussed the contradictory hypotheses of Memorization,
and Winer takes it all. Memorization deliberates the loss of
unwanted and biased traits of corpus due to compression
methods. Compression methods mitigate the standard model
into a smaller model introducing bias itself in the second
hypothesis. The results demonstrate the empirical evidence

89431

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

TABLE 1. Comparison of different pruning techniques.

Technique Definition Advantages Disadvantages Metrics and Bench- Performance values
marks
Structured Pruning [66] Removal of Preserves network Limited flexibility in Cross-lingual Natural — After pruning,
entire structured structure, and efficient fine-grained pruning, Language Inference the model size
components (filters, resource utilization. potential loss in accu- (XNLI) corpus as is decreased
channels, or layers) racy. the text classification by around 60%
to reduce model size dataset. while maintaining
and computational acceptable

complexity. performance.

Layer Pruning [42] Pruning entire layers Efficient reduction in ~ May lead to informa- BERT and RoBERTa The difference in

of a neural network to
reduce the model size
and computational

model size, simplified
network architecture.

tion loss and limited
flexibility in preserv-
ing fine-grained de-

performance value is
0.5 for pruning BERT
and 1.0 percentage

costs. tails. points for pruning
RoBERTa.
Filter Pruning [67] Pruning individual fil- Reduces parameter =~ May result in infor- Fl-score and Model The algorithm

ters within a layer

count, computational

mation loss, a poten-

size reduction.

resulted in a nearly

to reduce the model cost, and memory tial impact on perfor- 0.07 increase in the
size and improve effi- footprint. mance. micro-averaged FI-
ciency. score and reduced the
network weights by
33.33%.
Structured Weight Pruning [46] Removing specific ~ Preserves network Limited flexibility, —General Language Achieves up to 5.0x
weights in a structure, and efficient potential performance Understanding with zero or minor ac-
structured manner to resource utilization. impact. Evaluation (GLUE) curacy degradation.

reduce the model size
and computational
complexity.

benchmark tasks.

Block Pruning [68]

Pruning blocks of
connected weights
or neurons to reduce

Reduces model size
and computational
cost and preserves

May result in
information loss and
potential performance

Perplexity

As a result of the
pruning, computation
speed improves from

the model size local connectivity. degradation. 1.2x to 1.5x.
and computational
requirements.

Movement Pruning [49] Pruning filters or Efficient reduction in Limited flexibility, =~ GLUE, bias perfor- The better the model
channels based on model size, improved potential impact on mance. performs, the more
their movement computational performance. bias it contains.

statistics to reduce
the model size and
improve efficiency.

efficiency.

Unstructured Pruning [69] Removing individual Fine-grained Loss of original net- Speed 3.4x faster than the
weights or connec- reduction in model work structure, poten- same dense calcula-
tions without adhering size, improved tial for irregular con- tion at 90% sparsity
to any specific pattern ~ computational nectivity. and 5.4x faster at 95%
or structure. efficiency. sparsity.

Magnitude-based Pruning [60] ~ Pruning weights Simple to implement, Potential loss in accu- Precision. Up to 96.84% of con-

based on their
magnitudes, removing and
those with lower cost.
magnitudes.

reduced model size
computational

nections are trimmed
with little or no loss of
precision indicators.

racy, and sensitivity to
weight initialization.

about knowledge distillation being less biased and toxic while
model compression may be viewed as regularization.

Yang et al. [69] proposed the code generator (SparseRT)
for hardware implementation of unstructured pruning e.g.,
GPUs. Traditionally, structured pruning introduces more
loss of accuracy as par unstructured pruning. However,
their efficient hardware implementation remains a question.
The proposed technique attempted to take advantage of
unstructured sparsity to increase the efficiency of sparse
linear algebra operations for transformer using the WMT
English-to-German 2014 dataset BLEU score. The technique
achieved 95% sparsity with 6.6 points accuracy loss.

Joniak and Aizawa [49] proposed the debiasing of the
Language model using Movement Pruning for gender.
The pruning of Attention heads and entire square blocks
of the BERT model is utilized to reduce the bias by
finding the subset of the existing Language model. Sentence
Encoder Association Test (SEAT) and Stereotype Score
metric are used for measuring bias. The finding determined
the performance and bias trade-off. A model having high
performance also has a high gender bias.

Li et. al. [60] presented stage-wise pruning of recurrent
neural networks (RNN) for NLP. Based on the magnitude
pruning method, the feed-forward layers and RNN layers

89432

are removed to reduce the model size. The method enables
the network pruning of 96.84% connections without any
significant accuracy loss.

VI. CONCLUSION

Pruning techniques provide valuable solutions for improving
efficiency and performance in NLP tasks. The choice of
pruning technique depends on specific requirements and
trade-offs. Structured pruning techniques strike a balance
between efficiency and preservation of network structure,
while unstructured pruning techniques enable fine-grained
reduction but may require additional strategies for per-
formance preservation. Magnitude-based pruning offers
a simple approach with efficient results. By effectively
applying pruning techniques, NLP models can achieve
significant reduction in size and computational complexity
without compromising performance, thus paving the way
for more efficient NLP applications in resource-constrained
environments.

We have summarized some of the recent works on
pruning of Natural Language Processing—based deep learning
networks. This section provides more details about the
possible comparison of these pruning methods. In order to
provide the best pruning method is not simple. There is no

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

clear criterion to describe the best approach. However, their
applicability is application-dependent.

o Structural ways of pruning like filter, channel, and
weight pruning are more convenient for applications that
require a compact version of the pre-trained model.

o The applications that require stable accuracy and
reduced model size, structural pruning provides reason-
able mitigation in network size with minimal accuracy
degradation.

o Structural pruning is more hardware-friendly than other
pruning techniques. Organized network sparsity is easy
to exploit in memory and processing implementation.

o Unstructured pruning is reasonable where applica-
tions require acceleration and no compromise on
performance.

Although all the above-mentioned techniques are orthogonal
to each other, however, various pruning methods can be
combined to maximize the punning advantage with minimum
accuracy loss. In the case of Convolution Neural Networks
(CNNs) that combine the two dimension convolution for
feature extraction and fully connected layer for classification,
filter or layer pruning and weight pruning can be applied.

VII. FUTURE WORK
This section summarizes the techniques’ challenges and
possible directions for future work.

A. CONFIGURATION OF EXISTING MODELS

Most NLP-based tasks are implemented using well-defined
RNN, BERT, and LSTM models that imply these networks
have a fixed configuration like their architecture and
hyper-parameters. However, to handle more complex tasks,
plausible configurations for compressed models need to be
explored.

B. HYBRID PRUNING TECHNIQUES

Hybrid pruning techniques expand beyond a single pruning
strategy. They use several pruning techniques and may
merge them with additional compression approaches such as
quantization or knowledge distillation. This multi-pronged
approach intends to achieve greater levels of model
compression (lowering size and computing cost) while
limiting performance loss in NLP tasks.

Hybrid pruning can drastically reduce model size and com-
putational cost, making NLP models more suitable for use
on resource-constrained devices like smartphones. Hybrid
pruning can improve NLP task processing speed by lowering
model size and perhaps performing lower precision compu-
tations (quantization). Combining various pruning strategies
may raise the risk of performance degradation. Careful
examination and fine-tuning are essential to achieve the best
combination of compression and accuracy. Following are the
examples of hybrid pruning techniques employed for NLP:

1) Structured Pruning and Magnitude-based Pruning

This approach might first remove whole filters or
channels based on their low significance (structured

VOLUME 12, 2024

2)

3)

pruning). The remaining network might then be
pruned to remove individual weights with very low
magnitudes. This combination takes advantage of the
benefits of both methods: structured pruning for coarse-
grained reduction [70] and magnitude-based pruning
for finer-grained optimization [71]. Guo and Li [72]
introduces a hybrid pruning technique that combines
coarse- and fine-grained strategies to balance accuracy
and computational efficiency in neural networks.
Initially, coarse-grained pruning recognizes channels
for removal while maintaining an acceptable accuracy
decrease, followed by fine-grained pruning, which
deletes weights below predicted thresholds, lowering
network size and computational load. This hybrid
technique outperforms single pruning strategies in
models like as AlexNet and ResNet, reducing FLOPs
by 60% and parameter count by almost 80% on the
CIFAR-10 dataset.

Filter Pruning and Quantization

Filter pruning removes irrelevant filters, but quanti-
zation decreases the precision of remaining weights
(e.g., from 32 to 8 bits) [73]. Because of the lower
precision computations, this hybrid strategy has the
potential to reduce model size significantly and speed
up inference times. Liu et al. [74] introduced a
technique that uses dynamic and sparse graph (DSG)
structures in deep neural networks (DNNs) to achieve
compressive memory and faster execution in both
the training and inference stages. Unlike previous
studies, which primarily optimize for inference, this
method addresses the training challenge by selectively
activating a small number of neurons with high
selectivity using dimension-reduction search (DRS)
and ensuring batch normalization (BN) compatibility
via double-mask selection (DMS). The experimental
findings show considerable memory savings (1.7-4.5x)
and operation reductions (2.3-4.4x) with negligible
accuracy loss across several benchmarks.

Knowledge Distillation and Unstructured Pruning
Knowledge distillation is the process of moving
knowledge from a large, pre-trained teacher model to a
smaller student model. Following distillation, unstruc-
tured pruning might further compress the student
model without dramatically reducing performance.
The teacher model serves as a safety net for the
student, allowing for more severe pruning. Because
edge devices lack computing capacity for DNNs,
Kim et al. [75] introduced a unique compression
approach known as PQK. PQK uses pruning, quan-
tization, and knowledge distillation (KD) to produce
efficient models. Unlike standard techniques, PQK
constructs a teacher network using pruned weights in
order to develop a better student network without prior
training. This method, which includes iterative pruning
and quantization, followed by teacher-student training
within the same network, successfully tackles resource

89433

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

restrictions, as proven in keyword spotting (KWS) and
image recognition tasks.

Exploration of various pruning strategies for NLP-based
tasks according to applications and the study of their merging
effect with other compression techniques on the amount
of compression and performance of deep learning models
(e.g., combining the quantization, pruning, or knowledge
distillation) must be conducted. Investigating the synergistic
impact of these strategies might improve the efficiency and
performance of NLP models even more.

C. TRANSFERABILITY OF PRUNED MODELS

There are various pre-trained models available in the
literature that have been fine-tuned for NLP related tasks.
Some of them are discussed below:

1) BERT for Named Entity Recognition (NER) Bidi-
rectional Encoder Representations from Transformers
(BERT) models, which were previously trained for
tasks like as language modeling and sentence classifi-
cation, have been pruned and fine-tuned for NER tasks
[76]. They have obtained competitive performance
in identifying named items such as person names,
organization names, and places by removing specific
layers or parameters and fine-tuning the model using
NER datasets.

2) GPT for Text Summarization Generative Pre-trained
Transformers (GPT) models, which are recognized
for producing coherent text, have been pruned and
fine-tuned for text summarization tasks [77]. They
developed efficient models capable of producing short
summaries of larger texts by deleting extraneous
parameters and fine-tuning summarization datasets.

3) ALBERT for Sentiment Analysis A Lite BERT
(ALBERT) models are a more compact form of BERT
models produced by parameter reduction approaches,
have been used in applications such as sentiment
analysis [78]. Researchers have created algorithms that
can successfully assess the sentiment of a movie by
reducing ALBERT further or utilizing it as a starting
point for fine-tuning. Utilizing the Albert model trained
on Stanford’s ‘“movie review dataset,” [78] achieved
89.05% accuracy in sentiment analysis, outperforming
traditional LSTM and GRU models by 3%.

4) DistilBERT for Question Answering DistilBERT,
a distilled version of BERT, has been modified for
question-answering jobs [79]. Authors build models
ideal for tasks such as extracting responses from text
passages by pruning BERT and distilling its knowledge
into a smaller model such as DistilBERT, while
preserving competitive performance and decreasing
computing cost.

5) Transformer-Based Models for Machine Transla-
tion Machine translation tasks have been performed
using transformer-based models such as BERT or
GPT, following pruning and fine-tuning [80]. They
have produced encouraging results by customizing the

89434

models to translate text across different languages,
using the information gained during pre-training and
applying it to translation tasks.

Exploration of the transferability of pruned models across
different NLP tasks or domains must be performed. Under-
standing how pruning in one task can be leveraged to benefit
other related tasks or domains can lead to more efficient
model design and deployment.

D. ROBUSTNESS AND GENERALIZATION

Pruning may affect a model’s robustness and generalization
in a variety of ways, with empirical evidence indicating
both positive and negative impacts depending on the pruning
technique, task, and other factors. The positive impacts of
pruning are discussed below:

1) Pruning can serve as a type of regularization, lowering
model complexity and preventing overfitting. Pruning
might encourage the model to focus on the most
informative characteristics, resulting in better general-
ization [17].

2) Pruning can help the model learn simpler and more
interpretable representations of the input. Simplified
representations frequently result in greater general-
ization since the model is less likely to remember
noise or irrelevant features from the training data.
Han et al. presented the ‘“Deep Compression”
approach, which compresses neural networks using
pruning, quantization, and Huffman coding. They
showed that compressed models might achieve similar
or even higher accuracy than original models on a
variety of image classification tasks while being much
smaller and more computationally efficient [4].

3) Pruning decreases the size of the model, resulting
in greater computing efficiency. This efficiency may
result in speedier training and inference durations,
allowing the model to generalize more successfully
across diverse datasets or tasks [6].

The negative impacts of pruning are enumerated below:

1) Loss of Information: Pruning can remove connections
or parameters that are significant for the model’s per-
formance on unseen data. If pruning is too aggressive or
not done appropriately, it might result in the loss of crit-
ical information and diminished generalization [81].

2) Certain pruning approaches may produce models that
are sensitive to initial parameter values or pruning
thresholds. This sensitivity might make it difficult to
attain consistent performance across different runs or
datasets, reducing the model’s resilience [82].

3) The effect of pruning on resilience and generalization
varies depending on the task and dataset. A model that
performs well on one task after pruning may not gen-
eralize as well to another task or dataset, emphasizing
the significance of task-specific assessment [82].

The effects of pruning on model robustness and gen-

eralization capabilities must be explored as pruning may
introduce new challenges, such as sensitivity to adversarial

VOLUME 12, 2024

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

attacks or over-fitting to specific training data. Research
should focus on techniques that enhance model robustness
and generalization performance after pruning.

E. HARDWARE-FRIENDLY PRUNING

Pruning methods differ in their hardware compatibility, and
applying them on different devices might provide a variety of
issues. These are discussed below:

1) Structure Pruning: This strategy removes whole
layers or sub-networks from the model. It can be
possibly hardware-friendly because it simplifies the
overall design. However, changing hardware to remove
whole layers or sub-networks can be challenging,
especially with fixed-function hardware such as
Application-Specific Integrated Circuits (ASICs) or
FPGAs [83].

2) Filter Pruning: Filter pruning involves removing com-
plete filters (also known as kernels or channels) from
convolutional layers depending on their significance
ratings. This approach can minimize computational
complexity and the pruned networks can be imme-
diately installed on off-the-shield platforms without
the need for specialized hardware or libraries, this
technique is hardware-friendly [84].

3) Layer Pruning: Layer pruning removes entire layers
from the network based on their relevance. Hardware
compatibility is determined by the hardware’s ability
to accept various network depths dynamically. It could
be difficult on hardware with fixed architectures [85].

4) Channel Pruning: Channel pruning, like filter prun-
ing, removes all channels (or individual feature maps)
from convolutional layers. Hardware implementation
issues include maintaining irregular tensor forms and
effectively skipping channels during inference [86].

5) Movement Pruning: Movement pruning aims to
reduce the amount of connections that cause movement
in the activation region during training. Hardware
compatibility is dependent on the ability to efficiently
skip or decrease connections dynamically during
inference, which may need specific hardware support.
Movement-pruned models are quite sparse and make
for effective storage. In simple terms, sparse matrices
are matrices with a large number of zeros inside
without particular hardware enhancements. Hardware
manufacturers have recently released chips made
especially for sparse networks [48].

6) Unstructured Pruning: Unstructured pruning
removes individual weights or connections from the
network. While it can achieve high compression rates,
hardware support for unusual sparsity patterns may
be difficult, particularly with hardware designed for
regular tensor operations. As unstructured pruning
isolates software from hardware and ignores the
computing and continuous transmission properties of
data flow in hardware, it is not hardware-friendly [86].

VOLUME 12, 2024

7) Magnitude-based Pruning: This strategy removes
weights with small magnitudes, presuming they are
less essential. Magnitude-based pruning requires less
memory usage and reduce computation, it is thought
to be hardware-friendly and is appropriate for use
on edge devices with constrained resources. However,
for effective sparse matrix computations, specialist
hardware support might be needed [60].

8) Iterative Pruning: Iterative pruning involves repeat-
edly removing and fine-tuning the model. The irregular
sparsity patterns produced by the iterative pruning pro-
cess can result in inefficient memory access and com-
putation on hardware accelerators. Individual weights
are pruned by the algorithm, leading to non-structured
sparsity, which can be challenging for hardware to
optimize. Because the process is iterative, there are
less options for parallelization, which makes it less
appropriate for hardware acceleration. Nonetheless, the
approach can be modified to make use of methods like
sparse matrix compression and block-based pruning to
increase hardware efficiency [87].

9) Neuron Pruning: Neuron pruning involves removing
whole neurons from fully connected layers depending
on their value. Neuron pruning reduces network
parameters significantly speeds up processing and uses
less energy by removing entire neurons that are not
useful. Additionally, it minimizes weight matrices’
dimensions, making hardware implementation more
effective [88].

10) Lottery Ticket Hypothesis: The hypothesis proposes
that sparse, trainable sub-networks (winning tickets)
exist inside dense networks and may be identified
by pruning. Hardware compatibility relies on the
capacity to effectively identify and train sparse sub-
networks, which may need specific hardware support
for sparse tensor operations and dynamic network
reconfiguration [89].

Hardware implementation of NLP-based tasks in different
edge devices, mobiles, and robotics still has very stringent
constraints of limited memory and processing. How to
propose the pruning methods that fully exploit available
hardware is the crucial aspect that needs to be addressed.
Further, evaluating hardware constraints and designing prun-
ing techniques that align with specific hardware architectures
must be explored, as customizing the pruning strategies for
a particular hardware platform can maximize the efficiency
and performance gains by effectively leveraging the hardware
capabilities.

F. ADAPTIVE PRUNING FOR EVOLVING NLP HARDWARE

Future research on adaptable pruning methods should
concentrate on dynamically adjusting the pruning strategy
based on the hardware platform. For example, prioritizing
sparsity for CPUs, exploiting specific architectures like
tensor processing units (TPUs) and evolving characteristics
of NLP models, such as adapting to new architectures

89435

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

like transformers. This would guarantee the best model
compression and performance for both current and future
NLP hardware and model environments.

G. ETHICAL CONSIDERATIONS IN PRUNING FOR
SENSITIVE NLP APPLICATIONS

Pruning approaches must be ethically considered in sensitive
NLP applications such as healthcare and criminal justice.
Pruning techniques must be properly executed to prevent
exacerbating biases, compromising privacy, or producing
unfair results. Transparency, accountability, and thorough
review are required to ensure the proper use of pruned models,
to prevent unexpected results, and to maintain ethical norms
in sensitive domains.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. V. Naik, S. K. Majjigudda, S. Naik, S. M. Dandin, U. Kulkarni,
S. M. Meena, S. V. Gurlahosur, and P. Benagi, “Survey on comparative
study of pruning mechanism on MobileNetV3 model,” in Proc. Int. Conf.
Intell. Technol. (CONIT), Jun. 2021, pp. 1-8.

A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “GOBO: Quantizing
attention-based NLP models for low latency and energy efficient
inference,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2020, pp. 811-824.

G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring:
Training very sparse deep networks,” 2017, arXiv:1711.05136.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
2015, arXiv:1510.00149.

M. M. Islam and M. Alawad, “Stochastically pruning large language
models using sparsity regularization and compressive sensing,” in Proc.
Great Lakes Symp. VLSI, Jun. 2023, pp. 63-68.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” 2016,
arXiv:1611.06440.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Peter Graf, “Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” 2017, arXiv:1710.01878.

E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, ““Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be
pruned,” 2019, arXiv:1905.09418.

A. Onan, “GTR-GA: Harnessing the power of graph-based neural net-
works and genetic algorithms for text augmentation,” Expert Syst. Appl.,
vol. 232, Dec. 2023, Art. no. 120908, doi: 10.1016/j.eswa.2023.120908.
A. Onan and K. Filiz Balbal, “Improving Turkish text sentiment
classification through task-specific and universal transformations:
An ensemble data augmentation approach,” IEEE Access, vol. 12,
pp. 4413-4458, 2024.

A. Onan, “SRL-ACO: A text augmentation framework based on semantic
role labeling and ant colony optimization,” J. King Saud Univ. Comput.
Inf. Sci., vol. 35, no. 7, Jul. 2023, Art. no. 101611.

A. Onan, “Hierarchical graph-based text classification framework with
contextual node embedding and BERT-based dynamic fusion,” J. King
Saud Univ. Comput. Inf. Sci., vol. 35, no. 7, Jul. 2023, Art. no. 101610,
doi: 10.1016/j.jksuci.2023.101610.

A. Onan, “Bidirectional convolutional recurrent neural network archi-
tecture with group-wise enhancement mechanism for text sentiment
classification,” J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 5,
pp. 2098-2117, May 2022.

J.-M. Attendu and J.-P. Corbeil, “NLU on data diets: Dynamic data subset
selection for NLP classification tasks,” 2023, arXiv:2306.03208.

Z. Fan, Q. Zhang, P. Abillama, S. Shoouri, C. Lee, D. Blaauw,
H.-S. Kim, and D. Sylvester, “TaskFusion: An efficient transfer learning
architecture with dual delta sparsity for multi-task natural language
processing,” in Proc. 50th Annu. Int. Symp. Comput. Archit., Jun. 2023,
pp. 1-14.

89436

(17]
(18]

(19]

(20]

(21]

[22]
(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compres-
sion and acceleration for deep neural networks,” 2017, arXiv:1710.09282.
N. Rethmeier, “Efficient, adaptable and interpretable NLP,” Ph.D. thesis,
Univ. Copenhagen, Copenhagen, Denmark, 2023.

K. Ramesh, A. Chavan, S. Pandit, and S. Sitaram, “A comparative study
on the impact of model compression techniques on fairness in language
models,” in Proc. 61st Annu. Meeting Assoc. Comput. Linguistics, 2023,
pp. 15762-15782.

R. Yu, A. Li, C.-E. Chen, J.-H. Lai, V. 1. Morariu, X. Han, M. Gao,
C.-Y.Lin, and L. S. Davis, “Nisp: Pruning networks using neuron
importance score propagation,” in Proc. IEEE Conf. Comput. Vis. pattern
Recognit., Sep. 2018, pp. 9194-9203.

T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
“Born again neural networks,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1607-1616.

M. Omar, “Backdoor learning for NLP: Recent advances, challenges, and
future research directions,” 2023, arXiv:2302.06801.

C. Westbrook and S. Pasricha, ““Adversarial attacks on machine learning
in embedded and IoT platforms,” 2023, arXiv:2303.02214.

M. Du, S. Mukherjee, Y. Cheng, M. Shokouhi, X. Hu, and A. H. Awadallah,
“What do compressed large language models forget? Robustness chal-
lenges in model compression,” 2021, arXiv:2110.08419.

A.Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learn-
ing word vectors for sentiment analysis,” in Proc. 49th Annu. Meeting
Assoc. Comput. Linguistics, Hum. Lang. Technol., 2011, pp. 142-150.

O. Bojar et al., “Findings of the 2016 conference on machine translation,”
in Proc. 1st Conf. Mach. Translation, vol. 2, 2016, pp. 131-198.

R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. EMNLP, vol. 1631, Jan. 2013,
pp. 1631-1642.

M. Tkachenko and A. Simanovsky, “Named entity recognition: Exploring
features,” KONVENS, vol. 292, pp. 118-127, Sep. 2012.

X. Ma, G. Fang, and X. Wang, “LLM-pruner: On the structural pruning of
large language models,” 2023, arXiv:2305.11627.

J. S. McCarley, R. Chakravarti, and A. Sil, “Structured pruning of a BERT-
based question answering model,” 2019, arXiv:1910.06360.

Z. Yang, Y. Cui, and Z. Chen, “TextPruner: A model pruning toolkit for
pre-trained language models,” 2022, arXiv:2203.15996.

Z. Wang, J. Wohlwend, and T. Lei, “Structured pruning of large language
models,” 2019, arXiv:1910.04732.

Y. Peng, K. Kim, F. Wu, P. Sridhar, and S. Watanabe, “Structured
pruning of self-supervised pre-trained models for speech recognition and
understanding,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2023, pp. 1-5.

Y. Lian, P. Peng, and W. Xu, “Filter pruning via separation of sparsity
search and model training,” Neurocomputing, vol. 462, pp. 185-194,
Oct. 2021.

Q. Li, P. Li, K. Mao, and E. Y.-M. Lo, “Improving convolutional neural
network for text classification by recursive data pruning,” Neurocomput-
ing, vol. 414, pp. 143-152, Nov. 2020.

X. Ma, S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. Huat Tan, Z. Li,
D. Fan, X. Qian, X. Lin, K. Ma, and Y. Wang, “Non-structured DNN
weight pruning is it beneficial in any platform?”” 2019, arXiv:1907.02124.
H. Yu and J. Wu, “A unified pruning framework for vision transformers,”
Sci. China Inf. Sci., vol. 66, no. 7, pp. 1-2, Jul. 2023.

X. Liu, H. Tang, J. Zhao, Q. Dou, and M. Lu, “TCAMixer: A lightweight
mixer based on a novel triple concepts attention mechanism for NLP,” Eng.
Appl. Artif. Intell., vol. 123, Aug. 2023, Art. no. 106471.

H. Sajjad, F. Dalvi, N. Durrani, and P. Nakov, “On the effect of dropping
layers of pre-trained transformer models,” Comput. Speech Lang., vol. 77,
Jan. 2023, Art. no. 101429.

A. Jordao, M. Lie, and W. R. Schwartz, “Discriminative layer pruning
for convolutional neural networks,” IEEE J. Sel. Topics Signal Process.,
vol. 14, no. 4, pp. 828-837, May 2020.

C. Fan, J. Li, X. Ao, F. Wu, Y. Meng, and X. Sun, “Layer-wise model
pruning based on mutual information,” 2021, arXiv:2108.12594.

D. Peer, S. Stabinger, S. Engl, and A. Rodriguez-Sanchez, “Greedy-
layer pruning: Speeding up transformer models for natural language
processing,” Pattern Recognit. Lett., vol. 157, pp. 76-82, May 2022.

M. Cho, S. Adya, and D. Naik, “PDP: Parameter-free differentiable
pruning is all you need,” 2023, arXiv:2305.11203.

F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block pruning for
faster transformers,” 2021, arXiv:2109.04838.

VOLUME 12, 2024

http://dx.doi.org/10.1016/j.eswa.2023.120908
http://dx.doi.org/10.1016/j.jksuci.2023.101610

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

IEEE Access

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

H. Peng, S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, S. Wang, and
C. Ding, “Accelerating transformer-based deep learning models on FPGAs
using column balanced block pruning,” in Proc. 22nd Int. Symp. Quality
Electron. Design (ISQED), Apr. 2021, pp. 142-148.

B. Li, Z. Kong, T. Zhang, J. Li, Z. Li, H. Liu, and C. Ding, “Efficient
transformer-based large scale language representations using hardware-
friendly block structured pruning,” 2020, arXiv:2009.08065.

X.Ma, G. Yuan, Z. Li, Y. Gong, T. Zhang, W. Niu, Z. Zhan, P. Zhao, N. Liu,
J. Tang, X. Lin, B. Ren, and Y. Wang, “BLCR: Towards real-time DNN
execution with block-based reweighted pruning,” in Proc. 23rd Int. Symp.
Qual. Electron. Design, 2022, pp. 1-8.

V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity by
fine-tuning,” in Proc. Int. Conf. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 20378-20389.

P. Joniak and A. Aizawa, “Gender biases and where to find them:
Exploring gender bias in pre-trained transformer-based language models
using movement pruning,” 2022, arXiv:2207.02463.

S. Narang, E. Elsen, G. Diamos, and S. Sengupta, ‘“Exploring sparsity in
recurrent neural networks,” 2017, arXiv:1704.05119.

X. Chen, J. Zhu, J. Jiang, and C.-Y. Tsui, “Tight compression: Com-
pressing CNN model tightly through unstructured pruning and simulated
annealing based permutation,” in Proc. 57th ACM/IEEE Design Autom.
Conf. (DAC), Sep. 2020, pp. 1-6.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv:1607.03250.

R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, “NISP: Pruning networks using neuron
importance score propagation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jul. 2018, pp. 9194-9203.

S. Preite, “Deep question answering: A new teacher for distilBERT,”
M.S. thesis, Alma Mater Studiorum Universita di Bologna, Bologna, Italy,
2019.

H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing
regularization,” 2020, arXiv:2012.09243.

A. See, M.-T. Luong, and C. D. Manning, ““Compression of neural machine
translation models via pruning,” 2016, arXiv:1606.09274.

G. Li, C. Qian, C. Jiang, X. Lu, and K. Tang, “Optimization based layer-
wise magnitude-based pruning for DNN compression,” in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2383-2389.

J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for
the magnitude-based pruning,” 2020, arXiv:2010.07611.

W. Hong, P. Yang, Y. Wang, and K. Tang, “Multi-objective magnitude-
based pruning for latency-aware deep neural network compression,” in
Proc. 16th Int. Conf., 2020, pp. 470-483.

G. Li, P. Yang, C. Qian, R. Hong, and K. Tang, ‘“‘Stage-wise magnitude-
based pruning for recurrent neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 1, no. 1, pp. 1-15, May 2022.

A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single
network by iterative pruning,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7765-7773.

S. Rajaraman, J. Siegelman, P. O. Alderson, L. S. Folio, L. R. Folio,
and S. K. Antani, “Tteratively pruned deep learning ensembles
for COVID-19 detection in chest X-Rays,” IEEE Access, vol. 8,
pp. 115041-115050, 2020.

T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin,
“The lottery ticket hypothesis for pre-trained BERT networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, pp. 15834—15846.

M. Behnke and K. Heafield, “Losing heads in the lottery: Prun-
ing transformer attention in neural machine translation,” in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2020,
pp. 2664-2674.

S. Ding, T. Chen, and Z. Wang, “Audio lottery: Speech recognition
made ultra-lightweight, noise-robust, and transferable,” in Proc. Int. Conf.
Learn. Represent., 2021, pp. 1-18.

Z. Yang, Y. Cui, and Z. Chen, “Textpruner: A model pruning toolkit for
pre-trained language models,” 2022, arXiv:2203.159961.

H.-J. Yoon, S. Robinson, J. B. Christian, J. X. Qiu, and G. D. Tourassi,
“Filter pruning of convolutional neural networks for text classification:
A case study of cancer pathology report comprehension,” in Proc. IEEE
EMBS Int. Conf. Biomed. Health Informat., Jun. 2018, pp. 345-348.

G. Xu and Q. Hu, “Can model compression improve NLP fairness,” 2022,
arXiv:2201.08542.

VOLUME 12, 2024

[69]

[70]

(71]

(72]

(73]
(74]
[75]

[76]

(77

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

Z. Wang, “SparseRT: Accelerating unstructured sparsity on GPUs for deep
learning inference,” 2020, arXiv:2008.11849.

J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput. Vis.,
Feb. 2017, pp. 5058-5066.

W. He, M. Wu, M. Liang, and S.-K. Lam, “CAP: Context-aware pruning
for semantic segmentation,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Jan. 2021, pp. 959-968.

C. Guo and P. Li, “Hybrid pruning method based on convolutional neural
network sensitivity and statistical threshold,” J. Phys. Conf. Ser., vol. 2171,
no. 1, Jan. 2022, Art. no. 012055.

S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers in
deep neural networks,” 2018, arXiv:1802.04680.

L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie, “Dynamic
sparse graph for efficient deep learning,” 2018, arXiv:1810.00859.

J. Kim, S. Chang, and N. Kwak, “PQK: Model compression via pruning,
quantization, and knowledge distillation,” 2021, arXiv:2106.14681.

Y. Chang, L. Kong, K. Jia, and Q. Meng, “Chinese named entity
recognition method based on BERT,” in Proc. IEEE Int. Conf. Data Sci.
Comput. Appl. (ICDSCA), Oct. 2021, pp. 294-299.

N. Alexandr, O. Irina, K. Tatyana, K. Inessa, and P. Arina, “Fine-tuning
GPT-3 for Russian text summarization,” in Lecture Notes in Networks and
Systems. Cham, Switzerland: Springer, 2021, pp. 748-757.

Z. Ding, Y. Qi, and D. Lin, “Albert-based sentiment analysis of movie
review,” in Proc. 4th Int. Conf. Adv. Electron. Mater., Comput. Softw. Eng.
(AEMCSE), Mar. 2021, pp. 1243-1246.

O. Nordstrom, “Unstructured pruning of pre-trained language models
tuned for sentiment classification,” M.S. thesis, KTH, Math. Statist., 2022.
A. Raganato and J. Tiedemann, “An analysis of encoder representations
in transformer-based machine translation,” in Proc. EMNLP Workshop
BlackboxNLP: Analyzing Interpreting Neural Netw., 2018, pp. 287-297.
M. Mousa Pasandi, M. Hajabdollahi, N. Karimi, and S. Samavi, ““Modeling
of pruning techniques for deep neural networks simplification,” 2020,
arXiv:2001.04062.

X. Chen, J. Mao, and J. Xie, ““Comparison analysis for pruning algorithms
of neural networks,” in Proc. 2nd Int. Conf. Comput. Eng. Intell. Control,
2021, pp. 50-56.

Z. Liu, Q. Liu, S. Yan, and R. C. C. Cheung, “An efficient FPGA-
based depthwise separable convolutional neural network accelerator with
hardware pruning,” ACM Trans. Reconfigurable Technol. Syst., vol. 17,
no. 1, pp. 1-20, Mar. 2024.

F. Yu, C. Han, P. Wang, R. Huang, X. Huang, and L. Cui, “HFP: Hardware-
aware filter pruning for deep convolutional neural networks acceleration,”
in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 255-262.
H. Li and L. Meng, “Hardware-aware approach to deep neural network
optimization,” Neurocomputing, vol. 559, Nov. 2023, Art. no. 126808.

X. Sui, Q. Lv, L. Zhi, B. Zhu, Y. Yang, Y. Zhang, and Z. Tan, “A
hardware-friendly high-precision CNN pruning method and its FPGA
implementation,” Sensors, vol. 23, no. 2, p. 824, Jan. 2023.

G. Castellano, A. M. Fanelli, and M. Pelillo, “An iterative pruning
algorithm for feedforward neural networks,” IEEE Trans. Neural Netw.,
vol. 8, no. 3, pp. 519-531, May 1997.

W. Guo, H. E. Yantir, M. E. Fouda, A. M. Eltawil, and K. N. Salama,
“Towards efficient neuromorphic hardware: Unsupervised adaptive neu-
ron pruning,” Electronics, vol. 9, no. 7, p. 1059, Jun. 2020.

T. Chen, X. Chen, X. Ma, Y. Wang, and Z. Wang, “Coarsening the
granularity: Towards structurally sparse lottery tickets,” in Proc. Int. Conf.
Mach. Learn., 2022, pp. 3025-3039.

MARVA TOUHEED received the degree in com-
puter systems engineering from Mirpur University
of Science and Technology (MUST), Azad Kash-
mir. She is currently pursuing the M.S. degree in
computer engineering with COMSATS University
Islamabad. Her research interests include natural
language processing, deep learning, convolution
neural networks, generative adversarial networks,
super-resolution, and image processing.

89437

IEEE Access

M. Touheed et al.: Applications of Pruning Methods in Natural Language Processing

UROOJ ZUBAIR received the B.Sc. degree
in computer systems engineering from Mirpur
University of Science and Technology (MUST),
Azad Kashmir. She is currently pursuing the
Master of Science degree in computer engi-
neering with COMSATS University Islamabad.
Her research interests include natural language
processing, compressed sensing deep learning,
convolution neural networks, CUDA optimization,
super-resolution, and image processing.

DILSHAD SABIR received the degree in com-
puter engineering from COMSATS University
Islamabad (CUI), Islamabad, and the M.S. and
Ph.D. degrees in computer engineering from the
National University of Sciences and Technology,
Islamabad, in 2022. He is currently a Faculty
Member with CUIL His research interests include
the Internet of Things (IoT), machine learning,
deep learning, correlation pattern recognition, con-
volution neural networks, and network security.

ALI HASSAN received the B.E. and M.S. degrees
in computer engineering from the College of
Electrical and Mechanical Engineering, National
University of Sciences and Technology (NUST),
Pakistan, in 2004 and 2007, respectively, and
the Ph.D. degree in electrical engineering from
the University of Southampton, U.K., in 2012.
He is currently with the College of Electrical and
Mechanical Engineering, NUST, as a Professor,
and the Head of Department of the Department
of Computer and Software Engineering. His research interests include
the application of machine learning to speech and image processing in
the domains of speech, texture classification, and biomedical engineering.
He has established research linkages with several international partners and
is also one of the Heads of the Centre for Machine Learning and Biomedical
Engineering. These research linkages have resulted in several international
research funding for the faculty members and the students. He has over
100 international publications.

MUHAMMAD FASIH UDDIN BUTT (Member,
IEEE) received the B.E. degree from the National
University of Science and Technology (NUST),
Pakistan, in 1999, the M.Sc. degree in computer
engineering from the Center for Advanced Studies
in Engineering, University of Engineering and
Technology (UET), Taxila, Pakistan, in 2003,
with a focus on digital communication/computer
networks, and the Ph.D. degree in electronics and
electrical engineering from the Communications
Research Group, School of Electronics and Computer Science (ECS),
University of Southampton, U.K., in June 2010, a with focus on wireless
communication systems. In 2021, he was a Postdoctoral Researcher of
machine learning for the massive Internet of Things with the Next Research
Wireless Research Group, School of ECS, University of Southampton,
focusing on smart cities applications. He joined COMSATS University
Islamabad (CUI), Pakistan, in 2002, where he is currently a Tenured
Professor with the Department of Electrical and Computer Engineering and
the Head of the NGCRG Laboratory. He is an Innovative and Experienced
Researcher with a proven track record of prestigious peer-reviewed journals
and conferences. He has published over 50 research papers in various reputed
journals and conference proceedings. He has successfully supervised five
Ph.D. and 22 M.Sc. students in the field of telecommunications engineering.

89438

His research interests include radio over fiber technologies, physical-layer
security, channel coding, cooperative cognitive radio networks, applications
of machine learning and artificial intelligence in various fields, and efficient
hardware implementation of high throughput decoders.

FARHAN RIAZ received the B.E. degree from the
National University of Sciences and Technology
(NUST), Pakistan, the M.S. degree from the
Technical University of Munich, Germany, and
the Ph.D. degree from the University of Porto,
Portugal. He is currently a Senior Lecturer with
[the School of Computer Science, University of
Lincoln, U.K. He is also a Senior Consultant
3 of data science with Troon Technologies LLC.
e Prior to these engagements, he was an Associate
Professor with NUST. His research interests include biomedical signal and
image processing, applied machine learning, and computer vision.

WADOOD ABDUL received the Ph.D. degree in
signal and image processing from the University
of Poitiers, France, in 2011. Currently, he is
a Professor with the Department of Computer
Engineering, College of Computer and Informa-
tion Sciences, King Saud University. He devel-
oped the Communications Laboratory by Lucus
Nulle and the Biometrics Laboratory funded by
ZKTeco at King Saud University. His research

i interests include multimedia security, biometrics,
agriculture applications, privacy, medical image processing, and video
understanding, where he is working on several externally funded research
projects. He has published over 100 papers in well-reputed conferences and
journals. He received the Best Faculty Award from the College of Computer
and Information Sciences, King Saud University, in 2017.

RASHID AYUB received the double master’s
(M.C.A. and M.Sc.) degree in mathematics and
computer science, in 1996, and the Ph.D. degree
in computer science and applications. His Ph.D.
thesis entitled “Extension of Bounded Rational-
ity in Artificial Intelligence to Sensing Activity
Through Limited Resource Sensing Problem.”
He is currently a Researcher with the Science
Technology and Innovation Department, National
Plan for Science and Technology (NPST) Setup,
King Saud University, Riyadh, Saudi Arabia. He has more than two
decades of working experience both in industry and academia in India
and abroad. He was also a Trainer by United Nations Training Program
on “Integrated Management Information System (iMIS) Based on ERP,”
UNEP Office, Bangkok, Thailand. He was also an MIS Officer with the
Ministry of Environment and Forest, New Delhi, India, and developed “MIS
Vision Document for Compliance Era of 2004-2007” covering aspects,
such as e-based mechanisms for dissemination of information, knowledge
management, and technology transfer. He has published several research
papers in international journals and refereed conferences. His research
interests include the Internet of Things (IoT), deep learning, artificial
intelligence, machine learning, cloud computing, neural networks, and fuzzy
logic and their applications in the areas of e-healthcare, smart cities, and
bio-informatics.

VOLUME 12, 2024

