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ABSTRACT Precise fruit recognition is crucial for the automated picking of peaches. However, practical
implementation encounters challenges, including high costs and low efficiency, which hinder the commer-
cialization of picking robots. To tackle these challenges, this study establishes a synthetic peach dataset
and introduces PeachYOLO, an efficient and lightweight model for peach object detection in complex
orchard environments. Specifically, based on the lightweight object detection model You Only Look Once
version 8 (YOLOv8), this study first replaces traditional convolutions in the detection head structure with
Partial Convolution (PConv). This improvement reduces computational and memory requirements while
effectively extracting spatial features. Secondly, within the feature output of the neck network, Deformable
Convolutional Networks version 2 (DCNv2) is employed in place of traditional convolutions to improve
the recognition of irregular targets. Finally, Coordinate Attention (CA) is integrated into the head network to
focus precisely on essential image information. Experimental results demonstrate that PeachYOLO achieves
a mAP of 93.8%, surpassing the original model by 1.0%. Furthermore, PeachYOLO’s computation is
only 5.1 FLOPs (G), the number of parameters is 2.6M, and has an inference time of 1.9ms, which is a
reduction of 37.0%, 13.6%, and 5.6%, respectively, compared with the original YOLOv8n algorithm. These
results underscore the substantial improvements in detection speed, accuracy, and model size offered by
PeachYOLO. Moreover, its suitability for peach detection in intricate orchard settings lays the groundwork
for the realization of unmanned intelligent peach picking.

INDEX TERMS Deep learning, digital agriculture, lightweight, orchard environment, peach detection,
YOLOv8.

I. INTRODUCTION
As one of the oldest cultivated fruits in China, peaches are
an important economic pillar for improving farmers’ living
standards [1]. In recent years, the peach industry in China
has witnessed a significant expansion in planting area and
production, contributing to its overall development [2]. How-
ever, the issue of labor costs in the peach production process
is becoming increasingly prominent. Particularly during the
harvest season, the extensive work of peach picking is time-
consuming, labor-intensive and inefficient [3]. Furthermore,
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with consumers’ increasing demand for the appearance and
taste of peaches, the industry’s requirements for picking
techniques have also increased, which further increases the
difficulty and complexity of picking work [4]. With the rapid
development of smart agriculture, the emergence of picking
robots has effectively addressed the issues of labor shortages,
high manual picking costs, and low efficiency.

Accurately detecting peach fruit is crucial for automated
picking. However, the biggest challenges in commercializ-
ing picking robots are cost and efficiency. Three significant
conditions need to be met for the commercialization of agri-
cultural robots: high detection accuracy, fast model inference,
and lightweight deployment of models [5]. Consequently,
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conducting extensive research on peach fruit detection tech-
nology is imperative. This will significantly enhance the
development of the peach industry, ensure the timely harvest-
ing of ripe fruits, and boost peach market competitiveness.

Orchards present a complex environment due to changes
in lighting conditions and fruit overlapping on branches and
leaves. Consequently, encountering problems such as missed
and false detections in fruit detection tasks is highly prob-
able [6]. Furthermore, the model’s size not only tests the
configuration and computing power of hardware devices but
also influences the model’s deployment cost and the effi-
ciency of picking robots [7]. Therefore, the challenge and
focus of research lie in achieving lightweight models and
improving detection speed while maintaining accurate peach
detection.

To tackle these challenges, this study presents a novel
approach to peach fruit recognition utilizing the YOLOv8 [8]
model, termed the PeachYOLOmodel. In this study, the main
innovations and contributions are as follows:

1) Establish a database of peaches under different light-
ing and viewing conditions. Diversify the image
dataset through data enhancement, which enhances the
anti-interference ability under complex conditions.

2) DCNv2 replaces the traditional convolution and
improves the ability to recognize targets with different
scales and irregularities. The inclusion of CA in the
original YOLOv8n network enhances the model’s pre-
cision in accurately detecting and identifying densely
populated peaches.

3) Introducing PConv into the head structure enhances
spatial feature extraction efficiency. This reduces
redundant computations and memory accesses, achiev-
ing lightweight model enhancements. This saves equip-
ment resources and fulfills the peach object detection
needs during mechanized harvesting.

The study is systematically structured into six main sec-
tions. Section II reviews the related work. Section III outlines
the proposed approach. Section IV details the experimen-
tal setup, including dataset and implementation specifics.
Section V outlines results and discussion. Finally, Section VI
summarizes the research undertaken in this study.

II. RELATED WORK
In this section, the development of target detection networks
is initially reviewed, followed by a discussion on the devel-
opment of fruit and vegetable detection techniques.

A. DEVELOPMENT OF OBJECT DETECTION NETWORKS
The categorization of deep learning-based target detection
involves two primary groups: two-stage object detection
algorithms and one-stage object detection algorithms. In the
two-stage approach, the algorithm first generates candidate
object locations and then classifies these locations. Several
widely used two-stage detection algorithms include Faster
R-CNN [9], Mask R-CNN [10], and R-FCN [11] and so on.

Although two-stage object detection algorithms demonstrate
high accuracy and robust generalization, theymay fail tomeet
real-time requirements due to their slow execution speed and
large model size. Compared to two-stage object detection
methods, one-stage algorithms like SSD [12], YOLO [13],
and RetinaNet [14] offer faster execution speeds and stream-
lined architectures.

The YOLO series models, in particular, are popular for
their balance of speed and accuracy. The YOLOv1-v4 [13],
[15], [16], [17] models established the foundation of the
YOLO series. They established a single-stage detection
framework that includes a backbone network, neck, and head
components, and features that utilize multi-scale branching
to predict targets of different sizes. This framework enables
the YOLO series to pursue efficient and accurate target
detection by directly predicting the bounding box and tar-
get class through an end-to-end manner. The YOLOv5 [18]
algorithm improves performance and accuracy through the
application of optimization techniques and data enhance-
ment strategies. YOLOX [19] incorporates multiple positive
samples, eliminates anchors, and employs a decoupled head
structure into the model structure, thereby establishing a new
paradigm in model design for the YOLO series. YOLOv6
[20] represents a further advancement in the YOLO series,
building upon the strengths of its predecessors and enhanc-
ing performance through the use of larger models, more
intricate network architectures, and refined training method-
ologies. YOLOv7 [21] is constructed based on the foundation
of YOLOv6 and achieves enhanced detection accuracy and
accelerated detection speeds through further model architec-
ture optimization and training strategy adjustment. Launched
officially by Ultralytics in January 2023, YOLOv8 builds
upon the core competencies of its predecessors in the YOLO
lineage, introducing additional refinements to boost both per-
formance metrics and operational versatility. The backbone
and neck of the model use a C2f structure, and different
channel numbers have been adjusted for models of different
scales. The head section has been changed from a coupled
head to a decoupled head [19]. YOLOv9 [22] introduces
Programmable Gradient Information (PGI) to address the
issue of data loss during transmission. After comprehensively
considering the research object and the network’s detection
accuracy and lightweight requirements, the YOLOv8 net-
work was used as the benchmark model.

B. DEVELOPMENT OF FRUIT AND VEGETABLE DETECTION
In the conventional detection process, the identification of
fruits and vegetables is predominantly conducted through
manual sensory evaluation, resulting in significant discrep-
ancies in evaluation outcomes, being prone to subjective
influences, and necessitating the involvement of a consider-
able workforce. In contemporary agricultural research, the
methods employed for fruit detection have evolved from
initially relying on image processing techniques to the use
of deep learning-based approaches. The environment of fruit

VOLUME 12, 2024 96221



T. Li et al.: PeachYOLO: A Lightweight Algorithm for Peach Detection

and vegetable gardens is complex due to variations in light
conditions and the overlapping of fruits with branches and
leaves.

Deep learning algorithms are powerful in data characteri-
zation and feature extraction, making them an effective tool
for detecting fruits and vegetables in complex environments
such as plantations. The YOLO series, in particular, has
gained popularity for its ability to detect fruits and vegeta-
bles owing to its flexible structure and rapid and convenient
operation.

For instance, Lai et al. [23] developed a system for the
real-time detection of ripe fresh fruit bunches on oil palm
trees using Yolov4. In the test of oil palm orchards, the
system operated at a rate of approximately 21 frames per
second (FPS) in real-time and achieved a mAP of 87.9%.
An et al. [24] proposed a system based on the YOLOXmodel,
replacing the original CSP block in the backbone network
with a self-designed feature extraction module, the C3HB
block, to effectively address the issue of low accuracy in
monitoring the growth status of strawberry fruits in complex
environments. Sapkota et al. [25] proposed a green apple
detection scheme based on an enhanced YOLOv8 neural
network combined with a geometric shape fitting technique
on 3D point cloud data to detect green apples in commercial
orchards with an average accuracy of 0.94. Du et al. [26]
proposed the DSW-YOLO network model to improve feature
extraction from ground-grown strawberries with irregular
shapes by incorporating DCNv3. Tang et al. [27] introduced
YOLOv7-plum, a novel recognition method. They integrated
the Convolutional Block Attention Module (CBAM) into
YOLOv7, enhancing the model’s ability to focus on crucial
information related to plum fruits in complex backgrounds.
Zhang et al. [28] introduced a lightweight network based
on an improvement of YOLOv5, which reduces the com-
plexity of the model by incorporating a ghost module. This
improvement realizes the detection of dragon fruits in com-
plex orchard environments. The above methods presented
demonstrate their considerations regarding model accuracy,
inference speed, and lightweight, thereby offering valuable
references for this study.

III. PROPOSED APPROACH
A. PEACH YOLO
The architectural design of the PeachYOLO network pro-
posed in this study is seen in Figure 1. Firstly, to realize
the model’s lightweight, this study defines a new detection
head, Partial_C_Detect, and introduces PConv [29] into the
head structure to enhance spatial feature extraction efficiency
by reducing redundant computations and memory accesses.
Secondly, in order to capture the scale change of peaches
caused by the distance between peaches and the camera in the
orchard, and to extract irregular shape features caused by the
overlapping of branches and leaves, deformable convolution
is introduced to improve the feature extraction capability
of the backbone network. Specifically, all convolutions in

FIGURE 1. PeachYOLO’s network structure.

the C2f module of the YOLOv8 backbone network were
replaced by DCNv2 [30] to improve the model’s performance
in recognizing peaches in complex scenes. Finally, in order to
locate and identify peaches in dense scenes more accurately,
this study added CA [31] in the head network, effectively
improving the model detection capability and speed, and
reducing missed and wrong detection. These three modules
are explained in detail next.

1) PARTIAL_C_DETECT
The basic idea of Partial Convolution (PConv) [29] is to exe-
cute a regular convolution operation solely on a portion of the
channels in the input feature map for spatial feature extrac-
tion while maintaining the information in the other channels
unchanged [32]. Figure 2(a)(b) shows the structural dia-
grams of Partial Convolution and Conventional Convolution,
respectively. Compared to traditional convolution operations,
PConv can better capture partial features in an image, thus
enhancing the model’s ability to identify accurately.

Simultaneously, the model’s parameters can be signifi-
cantly reduced, making it more lightweight and suitable for
resource-constrained devices. The input and output feature
maps possess an equal number of channels, maintaining gen-
erality. The number of FLOPs for convolution using a kernel
size of k × k for a tensor with an input shape of h×w×cp can
be computed as follows:

h× w× k2×c2p (1)

For a typical value of r = 1/4, the number of FLOPs in
PConv is only 1/16 of that in regular Convolution. In addition,
PConv incurs lower memory access costs, it is only 1/4 of the
Conventional Convolution, therefore:

h× w×2cp + k2×c2p ≈ h× w×2cp (2)
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FIGURE 2. Partial_C_Detect structure diagram.

In practical situations pertaining to the detection of peach,
it is frequently necessary for models to function on embedded
robotic devices that have limited resources. Therefore, the
development of lightweight models is of utmost importance
in order to attain efficient and real-time detection. In order
to maintain performance while decreasing the number of
parameters in the network model, this study defines a new
detection head, Partial_C_Detect, as depicted in Figure 2. The
decoupled head structure of YOLOv8 consists of two parallel
branches to extract categorical features and location features,
respectively, and then one layer of 1 × 1 convolution each to
accomplish the classification and localization tasks. The first
layer of 3×3 convolution kernels is replaced with PConv, and
then the first layer of 3× 3 convolution kernels is adjusted to
1 × 1 convolution kernels.

2) DCNV2
In traditional convolution, the kernel scans the input data
with a fixed step size and network architecture. Conven-
tional Convolution is suitable for detecting objects with clear
boundaries, but is less robust to unknown geometric transfor-
mations and has poor generalization ability [33]. In contrast,
Deformable Convolution [34] employs a learnable offset
(1pn) to dynamically adjust the position of the convolution
kernel, better matching the local features of the input data,
as illustrated in Figure 3. The equation representing the rela-
tionship is displayed below. Here, p0 denotes each position
of the input data, pn denotes a position in the sampling net-
work, and w represents the weight coefficients of the current
position, which collectively form the weight matrix of the

convolution kernel.

y (p0) =

∑
Pn∈R

w (pn) x (p0 + pn+1pn) (3)

DCNv2 [30] optimizes the learning offset and modulation
scalar based on DCN. Additionally, it introduces the offset
modulation mechanism 1mk to optimize the impact of the
offset on the model to some extent. For the points falling
outside the range, the algorithm gradually guides them back
towards the target object. This enhances the convolution ker-
nel’s capability to concentrate on discrete feature information
and reconstruct the features of targets affected by occlusion
and overlap. This process is calculated as follows:

y (p0) =

∑
Pn∈R

w (pn) x (p0 + pn+1pn) 1mk (4)

In the natural orchard scenes, the spatial position, shape,
and size of peaches frequently vary, influenced by various
factors like lighting conditions, occlusion, and overlapping
with both identical and different objects [35]. To tackle these
challenges, DCNv2 is used instead of the traditional convolu-
tion in the feature output of the neck network to improve the
feature extraction capability of the network for non-regular
targets. This approach can more effectively address accuracy
issues arising from shape variations due to fruit occlusion.
This allows the network model to be better suited for detect-
ing peach fruit in complex natural environments, thereby
enhancing its effectiveness in real-world picking operations.

3) COORDINATE ATTENTION
In the domain of deep learning, the deployment of attention
mechanisms empowers networks to prioritize and allocate
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FIGURE 3. DCN structure diagram.

resources to essential regions selectively. This tactic has
gained widespread acceptance for its efficacy in architec-
ture. However, the computational overhead of most attention
mechanisms is unaffordable due to the limitations of the
model size of lightweight networks and the parameters,
making the development of attention mechanisms lag in
lightweight networks.

Coordinate Attention (CA) [31] is a novel attention
mechan- ism designed for lightweight networks proposed by
Hou et al., where the model focuses on direction-aware and
position-aware information by embedding position informa-
tion into channel attention. Due to its simplicity, flexibility,
and efficiency, it is often inserted into classical lightweight
networks to improve the accuracy of the network with little
additional computational overhead [36]. Its specific structure
is shown in Figure 4.

Departing from the norm where channel attention typically
reduces multidimensional inputs to individual channel fea-
ture vectors via 2D global pooling, CA adopts a distinctive
approach. It fractionates the channel attention mechanism
into two 1D feature encoding processes that aggregate fea-
tures along different directions. This unique design empowers
CA to effectively discern long-range correlations along
a chosen spatial orientation while concurrently holding
onto the precise spatial positioning along the perpendicular
dimension.

Subsequently, the feature maps that have been generated
are encoded individually in order to create a set of feature
maps that are aware of direction and sensitive to position.
These feature maps can then be applied in conjunction
with the input feature map to improve the representation
of the object of interest. Here, zC is the output of the
c-th channel, and H and W denote the height and width
of the pooling kernel, respectively. The output of the c-th
channel with height h after horizontal decomposition is as
follows:

zhc (h) =
1
W

∑
0≤i≤W

xc (h, i) (5)

FIGURE 4. CA structure diagram.

The output of the c-th channel with width W after vertical
decomposition is as follows:

zwc (w) =
1
H

∑
0≤j≤H

xc (j,w) (6)

CA was incorporated into the head of the YOLOv8 net-
work structure to better focus on the important information of
peach fruits within complex backgrounds, thereby improving
the model’s detection accuracy.

IV. EXPERIMENTAL SETUP
A. DATA ACQUISITION
A portion of the peach images utilized in this study were
gathered from June to August 2023 in several peach orchards
in Longquanyi District, Chengdu City, Sichuan Province,
China. The dataset comprises 1,300 images captured under
diverse weather conditions, including sunny and cloudy,
across three periods: morning, noon, and afternoon. Addition-
ally, images were acquired under various lighting conditions,
including downlight, sidelight, and backlight. During the
shooting process, simulations of robot operations for pick-
ing were conducted. The shooting angle and distance were
consistently varied to capture images featuring diverse colors,
sizes, lighting conditions, backgrounds, and fruit overlaps
and blockages. A set of images of peaches in a typical
complex environment is shown in Figure 5. Given that the
collected peach images mainly consisted of pippin peach and
honey peach, considering the versatility of the vision system,
additional images depicting various peach varieties (nec-
tarine, flat peach, Eagle’s BeakHoney Peach, etc.) in complex
environments of other orchards were collected through the
Internet. A total of 2116 peach images were obtained through
screening.
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FIGURE 5. Peach images in complex scenes.

TABLE 1. The division of the dataset.

B. DATASET PRODUCTION
In this study, the LabelImg [37] software was utilized to
manually label a rectangular box around the region containing
the target fruit in each image, with the label set to ‘peach’. The
rectangular boxwas closely adhered to the fruit’s contour dur-
ing labeling. In the case of other peach fruits that overlapped
and were obscured by branches and leaves, only the visible
part was annotated.

To achieve a balanced dataset distribution, 2116 images
of peaches, totaling 17823 fruits, are categorized into four
groups: A, B, C, and D. These categories are defined based
on the quantity of peaches in the images, as described below:

A: The count of peaches in one image is five or fewer,
totaling 989 instances;

B: The count of peaches in one image ranges from greater
than five to ten, totaling 561 instances;

C: The count of peaches in one image exceeds ten but is
fifteen or fewer, totaling 269 instances;

D: The count of peaches in one image surpasses fifteen,
totaling 297 instances.

Subsequently, the peach images were renamed, and the
dataset was partitioned according to a ratio of 7:1:2. Ulti-
mately, the training set consisted of 1481 images, the
validation set consisted of 212 images, and the test set con-
sisted of 423 images. The division of the datasets is presented
in Table 1.

C. DATA ENHANCEMENT
In practical agricultural contexts, the environment asso-
ciated with automated peach picking displays significant
variability and complexity. For our model to simulate and
account for this diversity, data augmentation is considered
an effective method. Augmented, diverse training instances

FIGURE 6. Illustration of data augmentation. (a)The initial image;
(b) Images after data augmentation.

are generated by applying transformative operations to the
current dataset without necessitating its expansion. Imple-
menting this approach can significantly mitigate the issue of
overfitting in the model, hence enhancing its robustness and
ability to generalize [38]. In this experiment, a random data
augmentation approachwas employed to process 900 training
images. This method includes random cropping, flipping,
rotating, erasing, adding noise, scaling, and adjusting con-
trast, aiming to simulate various scenarios that may occur
during peach picking. It was ensured that each enhanced
image underwent at least one type of processing. Figure 6
shows the effect of data augmentation, where Figure 6(a)
shows the initial image, while Figure 6(b) shows the image
after data augmentation process.

D. IMPLEMENTATION DETAILS
The research was carried out at the Sichuan Key Labora-
tory of Agricultural Information Engineering on a Lenovo
Thinkstation P920. The specific experimental configuration
is shown in Table 2. This ensures efficient and accurate
training of the neural network models used in the study. The
chosen configuration facilitated the training of the neural net-
work models utilized in the study, resulting in both efficiency
and accuracy. It should be noted that the test environment is
identical to the training environment to ensure consistency
and reproducibility of the experimental results.

In this study’s experimental model, the relevant hyperpa-
rameters are set as follows: the model receives a uniform
input image with a resolution of 640 × 640 pixels, the initial
learning rate is 0.01, the learning rate momentum is 0.937, the
optimizer uses Adam, and the weight decay value is 0.0005.
The training batch size is set to 16, and the model under-
goes 200 rounds of training epochs. To ensure objectivity,
this study assesses the performance of the proposed method
by conducting a series of experimental trials with the same
hyperparameter settings.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EVALUATION INDEX
When assessing the computational complexity and effi-
ciency of peach fruit recognition algorithms, several vital
metrics are taken into account, including Frames Per Sec-
ond (FPS), model size (measured in terms of parameters),
and GFLOPs (Giga Floating Point Operations Per Sec-
ond). FPS quantifies the real-time performance potential
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TABLE 2. Experimental configurations were used in this study.

of the model by calculating how many frames it can pro-
cess each second. The number of model parameters is
an indicator of the model’s compactness, ewer parame-
ters typically imply better resource efficiency. Meanwhile,
GFLOPs represent the massive-scale computing capacity,
defining the number of billion floating-point operations that
a hardware platform can carry out in a single second, thus
serving as a standard benchmark for gauging computational
strength.

The evaluation metrics used to assess the accuracy of the
peach fruit recognition algorithm in this experiment were
precision (P), recall (R), the reconciled mean of P and R
(F1), average precision (AP), and mean average precision
(mAP). The research focuses on a single objective, resulting
in equal values for AP and mAP when only one class is
considered. The evaluation metrics that follow utilize mAP
values. TP (True Positive) is the number of correctly detected
peach fruits; TN (True Negative) is the number of correctly
detected non-peach objects; FP (False Positive) is the number
of non-peach objects detected as peach fruits; FN (False
Negative) is the number of missed peach fruits.

B. ABLATION EXPERIMENTS
To assess the effectiveness of the modules introduced in
this study, an ablation experiment was conducted using the
dataset constructed in this study, with P representing the Par-
tial_C_Detect module, D representing the DCNV2 module,
and C representing the CA module. Table 3 displays the
results of the ablation experiments, with ‘‘

√
’’ denoting the

utilization of this improved method. Eight experiments were
conducted, each with different modules added, and compared
with the original YOLOv8n model using F1, mAP, FPS,
Parameters, and GFLOPs as metrics.

As depicted in Table 3, incorporating the Partical_C-
_Detect module, DCNV2 module, and CA module into
YOLOv8 effectively enhances the detection accuracy of
the network, resulting in an improvement of 0.4%, 0.4%,
and 0.4%, respectively, compared to the YOLOv8n model.
In addition, it is observed that the parameters and the amount
of computation of YOLOv8 can be significantly reduced by
incorporating the Partial_C_Detect module into the network,
reaching 2.4M and 5.5 GFLOPs, which are 19.5% and 32.1%
lower than the original version. Replacing the original c2f
layer with the DCNV2 module in YOLOv8 allows better
adaptation to the geometrical transformations of the tar-
get, thereby improving accuracy. Furthermore, by combining

FIGURE 7. Accuracy variation of eight object detectors.

modules in pairs, the combination of Partial_C_Detect +

DCNV2 module achieves parameters and GFLOPs metrics
of 2.6M and 5.1 GFLOPs, respectively, representing a reduc-
tion of 14.0% and 37.0% compared to the original version.
The combination of Partial_C_Detect + CA module can
significantly improve the inference speed of the model to
532.5 FPS, and the mAP of the model is 93.3%. Although
the combination of DCNV2 + CA module increases the
number of parameters and GFLOPs, the mAP is as high as
93.6%. Taking into account accuracy, number of parameters,
computational resources, and inference time, the combina-
tion of Partial_C_Detect, DCNV2, and CA modules (i.e.,
PeachYOLO) is ultimately selected. PeachYOLO requires
only 2.6M parameters, with an inference time of 1.9ms
for a single image and 3G fewer GFLOPs than the orig-
inal YOLOv8, which most hardware devices can accept.
This is due to the Partial_C_Detect and DCNV2 modules,
which bring lightweight and high-precision performance to
the model while adding the CA module, resulting in a
qualitative enhancement to its detection capabilities. In sum-
mary, while our approach sacrifices some inference speed,
it notably enhances accuracy, which constitutes a valuable
improvement.

C. COMPARISON EXPERIMENTS
To demonstrate the merits of the proposed algorithm,
this experiment compares the PeachYOLO model with
SSD, Faster R-CNN, YOLOv5n, YOLOv6n, YOLOv7-tiny,
YOLOv8n, and YOLOv9-gelan networks. The improved
model is compared with seven advanced object detectors,
and the results are illustrated with line plots indexed by
mAP. First, the eight curves with different colors in Figure 7
demonstrate the advantage of the YOLO series in peach
detection. The Faster R-CNN and SSDmodels convergemore
slowly, and the early training of the SSDmodel exhibits more
significant fluctuations.

Table 4 presents comparisons of F1, Recall, Precision,
mAP, FPS, parameters, and GFLOPs among different mod-
els. Although the accuracy of YOLOv9-gelan is as high as
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TABLE 3. Ablation experiment result.

TABLE 4. Comparison test table with other algorithms.

FIGURE 8. The visualization examples generated by GradCAM.(a)Original images;(b)YOLOv8n results;(c)PeachYOLO results.

95.1%, the number of parameters is up to 31.2M, which
is not suitable for practical application and will not be
discussed in the following. The mAP of the PeachYOLO
model is 12.4%, 20.9%, 2.1%, 3.1%, 2.3%, and 1.0% higher

than that achieved by the SSD, Faster R-CNN, YOLOv5n,
YOLOv6n, YOLOv7-tiny, and YOLOv8n models, respec-
tively. This indicates that the PeachYOLO algorithm achieves
high accuracy in recognizing peach fruits. The PeachYOLO
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model achieves the highest F1 score of 0.88. Given that
Faster R-CNN is a two-stage object detection model with
a lengthy average detection time per image, it will not
be further discussed. In terms of parameters and GFLOPs,
the YOLO family outperforms; however, despite YOLOV5n
having only 1.7M parameters, comprehensive consideration
must be given to accuracy. Overall, the PeachYOLO model
achieves a balance between accuracy and parameters, making
it more suitable for practical applications.

D. VISUALIZATION ANALYSIS
1) GRAD-CAM ANALYSIS
To further validate the performance of the improved
algorithm for detecting peach fruits in complex backgrounds,
the Gradient-weighted Class Activation Mapping(Grad-
CAM) [39] heat map visualization module was employed.
The red areas are the areas that the network model focuses
on, with darker colors indicating greater attention. The com-
parison of the heat map prior to and following algorithm
improvement is depicted in Figure 8. Observations reveal that
the improvement focuses more attention on the region where
the target is situated, concentrating computational resources
in its vicinity. This effectively suppresses non-target regions
from consuming computational resources, thereby verifying
the effectiveness of the improved model.

2) FRUIT OVERLAP AND BRANCH SHADDING
In natural environments, shading of fruits from each other
and shading of fruits from branches, leaves, and trunks occur
frequently. The absence of contour information for fruit
parts heightens the challenge of fruit detection. In cases of
heavy occlusion, where contour information is diminished,
detecting fruits becomes challenging. Therefore, this study
tested scenarios where the fruits overlapped and examined
different degrees of branch shading. The original YOLOv8
network exhibited issues of leakage and misdetection, as evi-
denced by the undetected fruits marked with blue circles
in Figure 9, as well as the fault detected fruits indi-
cated by yellow circles. When branches and leaves heavily
occlude the fruits, the prediction box size of the improved
PeachYOLO network is closer to the size of the actual
contour.

3) FRUITS WITH DIFFERENT DENSITIES
In cases where the fruit size is large, the quantity is
low, and the target contour is distinct, training can yield
more valid data, resulting in effective detection. Conversely,
when the fruit size is small, and the quantity is large,
the available valid data decreases, leading to increased dif-
ficulty in recognition and a higher likelihood of missed
detections. Therefore, this study conducted a comparative
experiment on the detection effect of fruits with different
degrees of densification. The detection results are shown in
Figure 10.

FIGURE 9. Comparative experimental analysis of fruit overlap and branch
shading. (a1) YOLOv8 results with overlapping fruit; (a2) PeachYOLO
results with overlapping fruit; (b1) YOLOv8 results with branch and leaf
shade; (b2) PeachYOLO results with branch and leaf shade.

E. DISCUSSION
Fruit object detection in complex orchard environments is
highly susceptible to problems such as fruit occlusion and
overlap. Currently, there are relatively few studies on peach
detection in complex orchard environments, and there is an
imbalance between accuracy and speed. Meanwhile, the lack
of publicly available peach detection datasets is not conducive
to developing peach detection. Therefore, this study con-
structed a peach detection dataset in complex environments
containing multiple conditions. This study proposed PeachY-
OLO, a lightweight and efficient object detection model for
peaches, which achieved excellent detection capability in
complex orchard environments. The following sections will
explore the feasibility of our proposed method and discuss its
potential drawbacks.

1) Limitations of data collection: Although this study dis-
cussed peach data in the complex environment of the
orchard, it has some limitations. For instance, this study
did not collect data under extreme weather conditions
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FIGURE 10. Comparative experiments with fruits of different densities.
(a)YOLOv8n results;(b)PeachYOLO results.

like heavy fog and rain. Therefore, there is still room for
improvement in this study. To more comprehensively
consider the effects of various environmental condi-
tions on the algorithm’s performance, future research
can actively collect more diverse data, especially under
severe weather conditions, to improve the robustness
and generalization ability of the model.

2) Practical Challenges of Algorithm Deployment: At
present, fruit object detection generally stays in the
algorithmic stage, and there is still a big gap between
it and its deployment in real scenarios. Although our
algorithm performs well theoretically, its application
and deployment in natural orchards require further
research and exploration. Future efforts should con-
centrate on converting the algorithm into a practical
and deployable system, considering hardware platform
constraints, real-time demands, and integration with
existing orchard management systems to guarantee the
algorithm’s effectiveness and reliability in real-world
scenarios.

3) Detection accuracy and speed: The mAP of our pro-
posed PeachYOLO reaches 93.8%, with a detection
time of only 1.9ms per image, meeting the fundamental
requirements of industrial applications. Nevertheless,
there is still potential for enhancing the precision of
detection.

This study presents a novel solution for peach fruit detec-
tion in complex orchard environments. In the future, our goal
is to broaden the application of our model to other fruits and
further refine the algorithm to cater to practical application
scenarios.

VI. CONCLUSION
In response to the challenges of widely varying target scales,
irregular fruit shapes, and the imbalance between accuracy
and model size in peach fruit detection in complex orchard

environments, this study proposes a light-weight peach fruit
detection algorithm called PeachYOLO. The effectiveness
of these modules was verified through ablation experiments.
The experimental results show that the mAP of PeachYOLO
reaches 93.8%, which is 1.0% higher than that of the origi-
nal model; the computation amount is only 5.1GFLOPs. the
number of model parameters is 2.6M, and the inference time
of a single image is 1.9ms, which is suitable for deploy-
ment on Automatic picking robots, and lays the foundation
for realizing the unmanned intelligent picking of peaches.
The research in this study provides a technical reference for
detecting and localizing other fruits and vegetables. Future
research will focus on the use of computer vision techniques
for crop growthmonitoring, crop pest and diseasemonitoring,
and fruit and vegetable yield prediction, thereby advancing
the development of modern agricultural automation.
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