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ABSTRACT In today’s world, there has been a significant increase in the diversity of data sources and
the volume of data. This situation especially necessitates the use of technologies such as deep learning in
data processing. This study thoroughly examines the processing of computed tomography (CT) images with
deep learning models and their role in the diagnosis of brain hemorrhages, proposing an innovative deep
learning-based model for accurately detecting and segmenting brain hemorrhages. This model combines the
architectures of Mask Scoring R-CNN and EfficientNet-B2, offering an effective approach for the detection
and classification of brain hemorrhages. MS R-CNN is used to detect potential hemorrhage areas in CT
images, while the EfficientNet-B2 architecture serves a classification function to determine whether these
areas indeed contain hemorrhages. Thus, the model offers a two-stage verification process that enhances
accuracy and precision. The performance of the model has been evaluated under patient-based and random
partitioning techniques using by employing two distinct datasets: an open-access and a private. In patient-
based evaluation, the proposed model has an accuracy of %91.59 on open dataset and an accuracy of
%90.46 on private dataset for SDH hemorrhages. In the random partitioning method, the model’s accuracy
rate has risen to %94.30 on open dataset and %97.33 on private dataset. Compared with similar studies in
the literature, these results demonstrate that the model has a high level of accuracy and reliability. This study
highlights the potential and importance of Al-supported methods in the detection of brain hemorrhages and
provides a solid foundation for future work in this area. Additionally, the results obtained from an open
dataset by the proposed model offer a realistic and comparable reference for future work in this field. The
results obtained from a second data set also clearly demonstrate the validity of the model.

INDEX TERMS Deep learning, head CT scan, segmentation, subdural hemorrhage.

I. INTRODUCTION Deep learning techniques have become especially popular

With the development of technology and the use of the
internet, data sources have diversified and the amount of
data has increased significantly. The increased size and
diversity of data have made the use of new techniques and
infrastructures a necessity to process and store. In addition
to all these, the increase in size and type of data to be stored
makes it difficult to discover meaningful information in it.
At this point, new techniques and tools have been developed
to process data and use different types of data as input.
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in obtaining meaningful information from large-scale data.
Another reason why these techniques have become popular is
that they can take and process different types of data (audio,
image, etc.) as input. In particular, the ability to process and
interpret image data has enabled these techniques to be used
in many areas where artificial intelligence techniques were
not effective before.

One of the most critical areas where image data interpreta-
tion is essential is in healthcare. A key diagnostic technique
in this field is Computerized Tomography (CT). CT scans
are particularly preferred in the initial diagnosis phase due
to their rapid acquisition and widespread availability. They
are crucial, especially in detecting life-threatening conditions
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like internal hemorrhage, which are not visible to the naked
eye or detectable through manual examination. 3D images
produced by CT scans can quickly and easily identify
such conditions. A prime example is brain hemorrhage,
where early detection is vital for both patient survival
and the preservation of their current health status. With
advancements in deep learning, there has been a surge in
research aimed at developing models that assist physicians in
interpreting CT images of brain hemorrhages. These studies
generally fall into two categories: hemorrhage detection and
hemorrhage segmentation. Hemorrhage detection involves a
binary classification problem, determining whether a brain
hemorrhage is present or absent. In contrast, segmentation
involves identifying and marking the specific area of the
hemorrhage on the CT image.

Current studies on brain hemorrhage detection predom-
inantly propose models based on deep learning; however,
the use of machine learning and image processing-based
methods is also common in this area. In this regard, it is
possible to categorize the research conducted in this field into
Convolutional Neural Networks (CNN) [1], [2], [3], [4], [5],
[6], hybrid models [7], [8], [9], deep neural networks [10],
[11], [12], machine learning [13], [14], and image processing
[15], [16] based approaches.

When examining deep learning-based methods used for
segmenting brain hemorrhages, it has been found that
especially CNN [17], [18], [19] and U-Net [20], [21] archi-
tectures are commonly used in this field. While CNN-based
methods are effective for the problem of segmenting brain
hemorrhages, there are alternative approaches. Clustering
and contour-based methods are an alternative approach for
the segmentation and analysis of intracranial hemorrhages.
Studies based on these methods have achieved effective
results on different datasets for segmenting intracerebral
hemorrhages. Examples of such studies can be found in [22],
[23], [24], and [25]. There are also studies [26] that perform
segmentation using classical image processing techniques.
In addition to all these studies, [27] has proposed a method
that, for the first time, incorporates hemorrhage expansion
into the segmentation architecture and effectively transmits
contextual information between slices.

When the existing studies in the literature were examined,
it was determined that the studies were mostly carried
out on closed datasets specific to the study, since the CT
images containing brain hemorrhages were insufficient and
the existing images did not contain Ground Truth data. For
this reason, within the scope of the study, firstly, SDH subtype
[Acute (first 3 days), subacute (3-7 days), and chronic (after
7 days) subdural hemorrhage] was used for segmentation
from CT images in the CQ500 dataset, which is an open
dataset, labeled by a specialist physician. Then, a model
that will perform both binary classification (hemorrhage
detection) and segmentation operations together is proposed.
Furthermore, to ensure the proposed model works well not
just in theory but in real-world scenarios, we tested its
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accuracy on a new, carefully compiled, and labeled private
dataset aimed at identifying brain hemorrhages.

The proposed model uses Mask Scoring Region Based
Convolutional Neural Network (MS R-CNN), a deep
learning-based technique, in the segmentation phase. In the
binary classification stage, it uses EfficientNet-B2 architec-
ture. The MS R-CNN method identifies potential hemorrhage
areas in the tomography image. The EfficientNet-B2 model,
on the other hand, determines whether these regions really
contain hemorrhage through the regions determined by the
segmentation model. Thus, the proposed method offers a
two-level verification approach.

The contributions of the proposed model can be listed as
follows.

o The lack of a data set in the literature containing a
sufficient number of marked brain tomographies for the
purpose of segmenting subdural hemorrhage (SDH) is a
major deficiency in this field. This study filled this gap
by providing detailed marking of SDH-type hemorrhage
in the CQS500 dataset and our private dataset by an
expert.

o The results of the proposed hybrid model were obtained
with both patient-based and random segmentation
techniques. Thus, the generalization ability of the model
and how it responds to both segmentation techniques are
clearly expressed.

« When the studies carried out in this field were examined,
no study was encountered that carried out the classifica-
tion process over a two-stage segmented region.

o« When the performance of the hybrid model was
compared with similar studies in the literature, it was
determined that it was more successful than studies
performed on the same data set in terms of classification
success.

In the second section of the article, the data set utilized
and the algorithms that comprise the proposed model are
discussed. The third section, dedicated to experimental
studies, will provide a comprehensive presentation of the
results obtained. In the fourth chapter, these results are
compared with similar studies in existing literature, and
the contributions of this study to science and contemporary
technology are evaluated.

Il. METHOD
This section focuses on the details of the proposed model for

brain hemorrhage detection. Under the Dataset subheading,
the characteristics of the datasets used for analysis are
presented. In the Classification and Segmentation Techniques
section, the methodological approaches and techniques used
for the detection of brain hemorrhage are explained.

A. DATASET

The quality and coverage of the datasets used are vital for the
detection of cerebral hemorrhage and detailed segmentation
processes. The success of this process depends on the
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accessibility of large and detailed datasets. Unfortunately,
accessing high-quality datasets that clearly show the location
and characteristics of specific medical conditions such as
brain hemorrhage is a major challenge for researchers. One
of the most challenging aspects of this field is the limited
availability of data, especially labeled in detail. The labeling
process requires deep expertise and time investment, so it can
be difficult to find volunteer experts to assist in preparing
such data. Additionally, privacy and ethical concerns arising
from working on medical image data are also issues that need
to be addressed.

Within the scope of this study, two different datasets were
used to train and evaluate the proposed method. The first
one is the CQ500 [28] dataset. CQ500 dataset created in
2018, at the Centre for Advanced Research in Imaging,
Neurosciences and Genomics (CARING), New Delhi, India
and consists of brain tomography (CT) images. In this
dataset collected CT images were taken different devices as
GEBrightSpeed, GE Discovery CT750 HD, GE LightSpeed,
GE Optima CT660, Philips MX 16slice, Philips Access-
32 CT. The images in this dataset cover various brain
conditions such as cerebral hemorrhage, fracture, and midline
shift. This dataset, which includes approximately 200,000
slices from 491 different CT scans, provides a comprehensive
resource in the field of brain imaging. CQ500 dataset
consisted of two batches and these batches including 214
(mean age 43.40; %43.92 female) and 277 (mean age 51.70;
%30.31 female) scans respectively [28].

The CQ500 dataset is an openly accessible dataset
designed for the detection and analysis of specific conditions,
including cerebral hemorrhage. It contains a greater number
of scans covering all subtypes of hemorrhages than any
other open dataset in this field, giving it special significance.
However, a notable challenge is that most slices in this dataset
are not labeled as required for segmentation, presenting an
additional problem for researchers. In this study, one of the
key steps undertaken is the labeling of scans that exhibit
Subdural Hematoma (SDH). These scans have been carefully
marked by by Assistant Professor Ismail KAYA, a process
that is crucial for the training and validation of algorithms
aimed at the automatic detection and segmentation of
cerebral hemorrhage. This labeling significantly enhances the
dataset’s value. Examples of some labeled images from the
CQ500 dataset are depicted in Figure 1.

The second dataset used is a private dataset collected by
our team for the detection of SDH. The images in this dataset
were collected by Assistant Professor Dr. Ismail KAYA
at Nigde Omer Halisdemir University Faculty of Medicine
Neurosurgery Clinic and Cumhuriyet University Faculty of
Medicine Neurosurgery Clinic. The dataset includes 2434 CT
images obtained from a total of 26 patients. Patients ranging
from 3 to 85 years old, with a median age of 43 years for
female and a mean age of 40.5 years for male. Of the patients
included in the dataset, %27 were female and %73 were
male (7 females and 19 males). Among the 2434 CT scans,
831 images contained Acute Subdural Hematoma (ASDH),
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TABLE 1. General layer table for VGG network architecture [30].

Feature Extraction
Model

1. Block 2. Block 3. Block 4. Block 5. Block

VGGI1 Conv3-64  Conv3-128  Conv3-256  Conv3-512  Conv3-512
Conv3-256  Conv3-512  Conv3-512

Conv3-64  Conv3-128  Conv3-256  Conv3-512  Conv3-512

VGE-13 Conv3-64  Conv3-128  Conv3-256  Conv3-512  Conv3-512
Conv3-64  Conv3-128  Conv3-256  Conv3-512  Conv3-512

VGG-16 Conv3-64 Conv3-128  Conv3-256  Conv3-512  Conv3-512
Conv3-256  Conv3-512  Conv3-512

a subtype of SDH [34]. CT images were taken with 128-slice
CT devices (Magnetom Aera; Siemens, Erlanger; Germany),
(Aquilion cx edition 128 slice ct-scanner; Toshiba, Japan))in
DICOM format. The collected data were initially converted
to png format and anonymized. From the anonymized
images, those containing ASDH were marked to obtain
ground truth segmentation masks by Assistant Professor
Ismail KAYA using the CVAT (Computer Vision Annotation
Tool) software. During this process, the polygon marking
technique was utilized [34]. Examples of some labeled
images from this private dataset are depicted in Figure 2.

B. CLASSIFICATION ALGORITHMS

In this study, three different CNN architectures commonly
used in modern classification problems have been compared
in terms of classification success for brain hemorrhage
classification. These are VGG, ResNet, and EfficientNet
architectures. These architectures have shown successful
results in the field of large-scale image recognition and have
formed the basis of innovative object recognition models. The
most successful model as a result of this comparison has been
used in the classification stage of the proposed hybrid model.
The details of the compared architectures are given in the
subsections.

1) VGG (VISUAL GEOMETRY GROUP)
The VGG [29] architecture has been developed for effec-
tive image recognition operations especially in large-scale
datasets. This architecture is a standard CNN model with
many layers, and in our study, three different VGG architec-
tures have been used: VGG-11, VGG-13, and VGG-16 [30].
VGG-11 consists of 8 convolution layers and 3 fully
connected layers. It processes RGB images of 224 x 224x3
dimensions, extracting rich features with increasing numbers
of parameters in each layer of the architecture. In this
architecture, pooling layers are distributed to reduce the
number of parameters and lighten the computational load.
In the classification stage, a softmax classifier is used [30].
VGG-13 and VGG-16 architectures, while based on VGG-11,
differ with changes made in the convolution layers. VGG-13
contains extra convolution layers in the first two blocks
compared to VGG-11. VGG-16, starting from the third block,
increases the convolution layers in each block, extracting
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FIGURE 1. Labeled sample scan images from the CQ500 dataset.

TABLE 2. General layer table for ResNet network architecture [30].

Feature Extraction

Model
1. Block 2. Block 3. Block 4. Block 5. Block
3x3,
MaxPool,
Stride 2 1x1,512 1x 1,512 1x1,512
Resnet-50 3 x 3,512 X 3 3 x 3,512 X 3 3 x 3,512 x 3
1x1,512 [ 1><1,2048:| |:1><1,2048:| [ 1><1,2048:|
3% 3,512 x 3
X7, 1 x 1,2048
64,
Stride 2 3x3,
MaxPool,
Stride 2 1x 1,512 1x1,512 1x 1,512
Resnet-101 3 x 3,512 x 3 3 x 3,512 X 3 3 x 3,512 X 3
1x1,512 [ 1><1,2048:| |:1><1,2048:| [ 1><1,2048:|
3 x 3,512 X 3
1% 1,2048

more detailed features. In these architectures, small 3 x
3 filters are used in each block, allowing for a more detailed
handling of visual features. Additionally, 2 x 2 maximum
pooling layers are added to the end of each block, intensifying
the feature space. Table 1 lists the layers for different VGG
models [30].

2) ResNet

One of the biggest challenges in deep learning models today
is the difficulty in training and saturation as the depth of
the model increases. ResNet [31] is a specialized CNN
architecture designed to overcome this problem. ResNet
adopts the ‘“‘residual learning” approach to optimize the
training process of the model. This approach tries to model a
part or “residue” of the target function that the model needs
to learn.
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The fundamental idea of ResNet is to facilitate the learning
process by adding the input of layers to their output. This is
referred to as a ““shortcut” or ‘“‘residual connection.” These
connections enable the model to train rapidly and efficiently,
even as it becomes deeper. Residual connections particularly
help reduce the problem of vanishing gradients as the depth
of the network increases.

The ResNet architecture has many variations with different
depths, and in this study, the ResNet-50 and ResNet-101
architectures are considered. These architectures are known
for their ability to maintain the model’s performance even
in very deep networks. As the feature maps’ resolution and
depth decrease within the network, they have an average
pooling layer after the convolution filters and a fully
connected layer at the output of the network for making
predictions. Also, outputs outside of the model’s residual
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FIGURE 2. Labeled sample scan images from the private dataset.

networks and inputs of the residual convolution layers are
combined with a simple summation process.

The ResNet-50 and ResNet-101 architectures are specif-
ically designed for deeper and more complex tasks. Each
has a different number of convolution, normalization, and
activation layers. The detailed layer structure of the ResNet-
50 and ResNet-101 models is shown in Table 2.

3) EfficientNet
EfficientNet [32] is an innovative CNN architecture in the
field of deep learning that aims to establish a balanced
relationship between model complexity and computational
efficiency. The key feature of this architecture is its simul-
taneous optimization of model width, depth, and resolution
using a compound scaling method. Employing Mobile
Inverted Bottleneck Convolutions (MBConv), this architec-
ture significantly reduces computational load compared to
traditional layer structures. MBConv blocks use channel
expansion and squeezing processes together to minimize the
model’s computational cost while maximizing performance.

The EfficientNet series consists of seven different models
ranging from BO to B7. Each model differs in increasing
complexity and capacity. In our study, the first four models
of this series (B0-B4) have been evaluated. The model
structures include various MBConv blocks, and the number
of channels used in each block is increased with different
numbers of filters. The advantage of this structure is that
it expands the model’s feature extraction capability while
reducing computational costs.

The structural and performance differences between the
different models of the EfficientNet series have been
examined in detail in Table 3. In this table, significant features

VOLUME 12, 2024

TABLE 3. General feature table of EfficientNet models [30].

Model Layer Count  Input Resolution  Feature Vector Size
EfficientNet-B0 240 224x224 1280
EfficientNet-B1 342 240x240 1280
EfficientNet-B2 342 260x260 1408
EfficientNet-B3 387 300x300 1536
EfficientNet-B4 471 380x380 1792
EfficientNet-B5 579 456x456 2048
EfficientNet-B6 669 528x528 2304
EfficientNet-B7 816 600x600 2560

such as the number of layers, input resolution, and feature
vector size of each model are presented comparatively. The
model depth increases from BO to B7, with EfficientNet-B7
having approximately 3.5 times more depth than the BO
model. Due to the observed decrease in accuracy rates as the
complexity of the models used in our study increased, models
beyond B4 have been excluded from evaluation.

C. SEGMENTATION ALGORITHM

Image segmentation is a technique used to distinguish
specific targets or areas in digital images. Especially in
medical imaging, segmentation is critically important for
determining the precise boundaries of pathological changes
or specific structures. Segmentation techniques used for the
detection of brain hemorrhages are employed to highlight and
identify hemorrhage regions in the image. At this stage, it is
important to choose the most appropriate method specific
to the problem. Within the scope of the study, the Mask
Scoring R-CNN method, which has previously been proven
[34] successful in the segmentation of brain hemorrhages,
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was preferred. Below, the segmentation technique used in this
study is discussed.

1) MASK SCORING R-CNN

Mask Scoring R-CNN [33] is an advanced version of
the existing Mask R-CNN model and includes innovative
features to enhance segmentation performance. This model
is specifically designed to improve the accuracy of masking
operations. As an innovative approach, this method adds a
Mask IoU (Intersection Over Union) component to the output
of the network. This addition enables more accurate scoring
of the generated masks, thereby significantly improving the
quality of segmentation results.

The operation process of Mask Scoring R-CNN consists
of two main stages. The first stage focuses on creating masks
for accurate object instances. The second stage involves
generating MaskloU scores for background objects. This
model has a structure consisting of four main stages, and
the first three are the same as the original Mask R-CNN
model. Initially, an advanced feature extraction process is
carried out through a backbone architecture built using
ResNet-101+FPN. In the second stage, candidate Region Pro-
posals (ROIs) are determined as outputs of the RPN (Region
Proposal Network). In the third step, features are extracted
for each candidate ROI using RolAlign, and a segmentation
mask is created. In the fourth and final stage, a MaskloU
score is calculated between the predicted mask and the actual
mask.

Figure 3 visually explains the general architecture of Mask
Scoring R-CNN. In this architecture, the added MaskloU
header, which improves the accuracy of segmentation masks,
functions to assign a score to each mask during segmentation.
This scoring assesses the congruence between the mask and
the actual target, measuring the accuracy of the segmentation.
This additional evaluation stage is a significant factor
in increasing the accuracy of the model, especially for
applications such as medical imaging and complex object
recognition. The innovative structure of Mask Scoring
R-CNN sets new standards in advanced image analysis
applications by increasing the precision and reliability of
segmentation algorithms.

D. PROPOSED HYBRID MODEL
Hybrid methodologies, which integrate different approaches,
are techniques that often lead to more comprehensive and
accurate results. Preferring these methods while working
with complex situations and large datasets generally pro-
vides more efficient and successful outputs. Our study’s
proposed hybrid approach to brain hemorrhage detection
fundamentally consists of two main components: segmen-
tation and classification. This dual approach encompasses
both the detection and classification of brain hemor-
rhages. The developed methodology is visually presented in
Figure 4.

In the first stage, brain tomography scans stored in
DICOM format were converted to PNG format. Then, these
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scans were divided into two main categories: ‘healthy’ and
‘hemorrhagic’. Scans containing hemorrhages were split into
%80 for training and %20 for testing. The MS R-CNN
segmentation model was trained using the designated training
data. This model identifies images in the test dataset that
contain potential signs of brain hemorrhages and marks these
areas with a mask and bounding box. If the model does not
detect signs of hemorrhage in a scan, that scan is classified as
‘healthy’. However, the segmentation model can sometimes
mistakenly mark healthy areas as ‘hemorrhagic’. To reduce
such false positives, the EfficientNet-B2 classification model
is implemented as a second layer of security. This model
forms the second phase of the hybrid methodology, evaluating
the areas segmented in the first phase to determine whether
they truly contain brain hemorrhages.

During the training process of the EfficientNet-B2 model,
data from two different sources were used. The first input is
the bounding box information of ‘“healthy” brain scans that
have been incorrectly marked due to misleading symptoms by
our segmentation model. The second input is the part of brain
scans determined as “hemorrhagic” used in training. These
scans are also processed through the segmentation model.
The model analyzes the scans and marks hemorrhagic regions
with bounding boxes. These boxes represent areas with actual
hemorrhages, and this information is also included in the
training of the EfficientNet-B2 model. Both types of data are
used in the training process of the EfficientNet-B2 model.
False positives, where the model mistakenly marks healthy
brain areas as hemorrhagic, help prevent misclassification,
while bounding boxes indicating real hemorrhages improve
the model’s ability to correctly identify hemorrhages. This
dual approach enhances both the precision and accuracy of
the model.

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

A. SETUP AND PERFORMANCE METRICS

During the study, a server equipped with an Intel Xeon
2.2GHz processor, 28 GB RAM and 16 GB NVIDIA Tesla
P100 GPU was used. In the software development process,
Python programming language was preferred.

The performance evaluation of the model was made
using accuracy, precision, recall, F1 score and AUC (Area
Under the Curve) metrics. Accuracy refers to the ratio
of how many of all the predictions the model makes are
actually correct. Precision indicates the ratio of correctly
identified hemorrhage images among all those predicted to
be hemorrhage.

Recall refers to the proportion of correctly detected
hemorrhage images out of all images that are actually
hemorrhage. The F1 score is the harmonic mean of precision
and precision and reflects the balanced performance of the
model. AUC is an indicator of how well the classifier can
distinguish classes; This is based on the relationship between
the false positive rate and the true positive rate. A high AUC
value indicates that the model can distinguish classes more
effectively. The formulas used to calculate these metrics are
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FIGURE 3. General architecture of mask scoring R-CNN [34].

included in equations 1, 2, 3 and 4 respectively.

Accuracy = (TP+TN)/(TP+TN +FP+FN) (1)

Precision = TP/(TP + FP) 2)

Recall = TP/(TP + FN) 3)
Precision * Recall

F1 Score =2 % — 4)
Precision + Recall

The terms used in these formulas are as follows: True
Positive (TP), which denotes the number of images that
the model correctly predicts as hemorrhagic; True Negative
(TN), which denotes the number of images that the model
correctly predicts as non-hemorrhagic; False Positive (FP),
which denotes the number of images that the model predicts
as hemorrhagic but are actually non-hemorrhagic; and False
Negative (FN), which denotes the number of images that
the model predicts as non-hemorrhagic but are actually
hemorrhagic.

In determining the accuracy of segmentation methods,
the overlap ratio (IoU - Intersection over Union) value
was used as a threshold. IoU measures how much the
predicted boundary (the object boundary determined by
the algorithm) overlaps the actual object boundary. This
measurement is calculated with equations 5. A and B in
the formula represent the outputs of the model’s prediction
and actual data, respectively. To evaluate the accuracy of
an image segmentation, the IoU intersection rate must be
above a specified threshold value. Typically, an IoU threshold
of 0.5 or higher is used to determine whether a prediction
is a true positive (true) or a false positive (false). In this
study, the IOU value was determined as 0.5 and detection
and segmentation accuracy rates were calculated based on
this value.

IOU=—— )

The mAP (mean average precision) criterion was used to
evaluate detection and segmentation accuracies. mAP is the
average of the precision and recall metrics calculated for
detected bounding boxes. First, the average precision (AP)
is calculated for each class (such as subdural hemorrhage
and background).Then, these average precisions are averaged
across classes to obtain mAP. In order for a detection to be
considered a true positive, the ToU of that detection must
be above a certain threshold. Once all images are examined
against this threshold value, precision and recall values can be
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Segmentation
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calculated. Precision represents the total number of correct
examples produced by the model and is calculated by the
following formula.

p— True positive ©)
~ True positive + False positive

The total number of positive predictions the model can
produce is measured by a recall calculated as follows:

R— True positive 7
 True positive 4+ False negative

The area under the PR curve is used to determine average
accuracy. Equations 8 shows the calculation of AP:

N
AP = >"[R(n) — R(n — 1)] - max P(n) )
n=1
N is the total number of PR points identified. mAP is
calculated using the following equation:

1 n

mAP = - >» AP; )
In addition to all these metrics, to evaluate the pro-
posed model Gradient-weighted Class Activation Mapping
(Grad-CAM) [44] visualization was used. Grad-CAM shows
which regions of the image the CNN-based methods focus
on during the decision-making phase. In order to obtain the
Grad-CAM map of a class c, the importance of each feature
map for class ¢ must first be obtained. This importance value

is given in equation 10.

1 ay°
c __
o= 22 (10
i J i

In equation 10, o express the ‘importance’ (contribution
of the k-th feature map to the gradients) of feature map k
for a class c. Af.‘. is the value of the k-th feature map in i,j
coordinates. The y symbol represents the output class and the
y¢ value is the ¢ value of the output class and Z is the term
used to normalize the gradient sum.

LGrag.cam = ReLU (Z a;iA") (11)

k

In equation 11, LG4 cap Tepresents the Grad-CAM map
of class c. The A* value in the formula refers the feature
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FIGURE 4. General architecture of the proposed system.

map of the k™ layer. The first stage of the proposed model
is the detection of the hemorragic area. Therefore, when
the class label of the hemorragic area is considered as c
and the Grad-CAM map is obtained, it will be visualized
which features are focused on to detect this hemorragic
area.

B. RESULTS

Within the scope of the study, a two-stage hybrid model
has been developed. To select the model to be used in the
classification stage, a comparison of VGG, ResNet, and
EfficientNet architectures was first conducted on the CQ500
dataset. The obtained results are comparatively presented in
Figure 5 and Figure 6. Evaluating these figures, it appears
that the EfficientNet-B2 model is the most suitable among the
evaluated models for the classification of brain hemorrhages
using CT images. Therefore, the EfficientNet-B2 model has
been used as the classifier in the hybrid model.
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FIGURE 6. F1 score results of classification algorithms.

To obtain the final results through the hybrid model, the
dataset must first be correctly partitioned. At this stage, two
different techniques, patient-based and random partitioning,
were used. In patient-based partitioning, all images of a
patient are included either in the training set or the test set,
completing the model’s training and testing process. The
main purpose of this approach is to prevent the model from
misleadingly showing high performance by seeing different
images of the same patient. Patient-based partitioning helps
us better understand how well the model can generalize in
real-world situations. In random partitioning, images in the
dataset are distributed randomly into training and test sets.
In this case, images of the same patient can be found in
both training and test sets. This method is generally preferred
as a faster way to assess the overall performance of the
model. However, the disadvantage of this approach is that
the model’s performance can be misleading due to images
of the same patient being in both training and test sets.
Studies [35], [36], [37], [38], [39], [40] that have performed
data partitioning with both approaches are present in the
literature.

Figure 7 shows the results obtained when only the classifier
model is used, i.e., when images are subjected to the clas-
sification algorithm without going through the segmentation
process on CQ500 dataset. In patient-based partitioning, the
model’s accuracy rate is measured at %88.79, precision at
%84.91, recall at %91.84, and F1 score at %88.24. These
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FIGURE 7. Results obtained with only classifier model (CQ500 Dataset).
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FIGURE 8. Results obtained with only classifier model (Private Dataset).

results indicate that the model generally performs well and
can make accurate predictions. In random partitioning, the
model’s performance further increases. The accuracy rate is
%91.71, precision is %88.17, recall is %94.25, and F1 score is
%91.11. Also results obtained from private dataset shown in
Figure 8. In patient-based partitioning, the model’s accuracy
rate is measured at %83.22, precision at %91.21, recall at
%86.88, and F1 score at %88.99. In random partitioning,
the model’s performance further increases as in the CQ500
dataset. The accuracy rate is %96.72, precision is %97.22,
recall is %97.83, and F1 score is %97.52.

In general, the model shows high performance in both
partitioning methods and effectively classifies brain hem-
orrhages. However, the model shows higher performance
in the randomly partitioned dataset. This suggests that
the model’s ability to generalize information learned from
specific patients may be somewhat limited in patient-based
partitioning.

Figure 9 shows the results of hybrid method using the
CQ500 dataset. In patient-based partitioning, the model’s
accuracy rate is %91.59, precision rate is %89.22, recall is
9%92.86, and F1 score is %91.00. In random partitioning,
the model’s performance has further increased. On CQ500
dataset, the accuracy rate is %94.30, precision rate is %90.43,
recall is %97.70, and F1 score is %93.92. Figure 10 shows
the results obtained from the developed hybrid method using
the private dataset. In patient-based partitioning, the model’s
accuracy rate is %90.46, precision rate is %95.49, recall is
%91.99, and F1 score is %93.70. On private dataset, the
accuracy rate is %97.33, precision rate is %96.91, recall is
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TABLE 4. Classification results obtained with the hybrid model.

Method Year Accuracy AUC Split Method

Hybrid Model (CQ500 Dataset) 2023 91.5888 92.9200 Patient Based
Hybrid Model (CQ500 Dataset) 2023 94.3005 96.9200 Random

[42] 2020 - 96.5400

[43] 2022 71.7000 90.9000 Patient Based

[28] 2018 94.0000

[45] 2023 - 90.0-92.0

[3]* 2023 96.2000

[17* 2021 99.8600 - Random

[41]* 2021 93.9000 Random

%99.05, and F1 score is %97.97. These results show that the
model displays a higher overall performance in a randomly
partitioned dataset. The closeness of the model’s recall
and accuracy rates indicates that it can accurately predict
both positive (hemorrhage) and negative (no hemorrhage)
examples.

In the proposed method, one of the most basic factors
affecting the final classification result is the segmentation
process performed in the first stage. Therefore, providing
segmentation results will also be useful in evaluating the
general model. When the IoU value is taken as 0.5, with
the MS R-CNN method, the mAP value was obtained as
0.8780 on the CQ500 dataset [34] and as 0.8980 on the private
dataset.These results demonstrate that the segmentation
process in the proposed method achieves high accuracy,
providing a solid foundation for the subsequent classification
stages.
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(a) (b)

FIGURE 11. Local explainability of proposed hybrid with Grad-CAM
(€CQ500 Dataset).

In addition to model accuracy evaluation, Grad-CAM
images were also obtained showing the areas on which the
proposed model focuses for the detection of SDH. With the
obtained Grad-CAMs, it is clearly shown where the important
features of the model are located. Figure 11 shows sample
Grad-CAM visualisations obtained from the CQ500 dataset,
and Figure 12 shows sample Grad-CAM visualisations
obtained from the private dataset.Visualizations obtained
from both datasets clearly show the success of the model.
When Figures 11 and 12 are compared, it is seen that the
model focuses better on the SDH area in the Grad-CAM
images obtained from the private dataset. The main factor
causing this situation is the difference in the devices used
to obtain CT images. Images with higher resolution and
more detail were obtained when shooting with devices with
higher slice values. This enabled the model to focus on more
accurate points.

Table 4 presents a comparison of the proposed method
with studies conducted on the CQ500 dataset in the literature.
There is no study in the literature performing the partitioning
of SDH hemorrhages on the CQ500 dataset. Therefore, the
comparison results in the table include the final classification
success of the proposed model. Looking at similar studies
in the literature, the study conducted by [1] achieved the
highest accuracy rate (%99.86). However, the dataset was
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FIGURE 12. Local explainability of proposed hybrid with Grad-CAM
(Private Dataset).

reduced for use in the study, which would influence the
accuracy value, making the results not entirely comparable
with the proposed model in our study. The studies by [3]
and [41] used the CQ500 dataset only for validation and
used different datasets in the training process. Despite being
trained with datasets containing more comprehensive and
higher-resolution samples, the study by [3] achieved a success
rate similar to our model (%96.2), while the study by [1]
showed lower performance (AUC value of 86) than our
model.

Some studies have evaluated their proposed models with
the help of the AUC metric. When compared with studies that
base their evaluations on the AUC metric, our model appears
to demonstrate superior performance.

IV. CONCLUSION
With the development of technology, applications supported
by artificial intelligence are being utilized in many different
areas. One of the most significant fields where these
applications have gained popularity is medicine. In this field,
where early diagnosis is crucial, the goal is to expedite the
diagnostic process using Al-supported applications and to
improve quality of life through early diagnosis and treatment.
In this direction, within the scope of the study, an artificial
intelligence-based two-level hybrid model was developed
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to support doctors in the detection and classification of
brain hemorrhages. At the first level, the MS R-CNN model
separates scan images into ‘“hemorrhage” and ‘‘healthy”.
Then, it marks the areas where images contain hemorrhage.
At this stage, some images that do not contain hemorrhage
can be labeled as “hemorrhagic” by the model. In order to
correct the error of the model in the first stage, two-level
verification is provided with the EfficientNet-B2 model in
the second stage. The proposed model has an accuracy value
of %91.59 on a patient basis and %94.30 on a random basis
for SDH on CQ500 dataset and has an accuracy value of
9%90.46 on a patient basis and %97.33 on a random basis
for SDH on private dataset. Although the model was trained
with a limited amount of data, it has higher accuracy and
AUC value than studies in the literature that trained using the
CQ500 dataset. The fact that the results obtained from the
private dataset used are compatible with the results obtained
from the open dataset showed the generalizability of the
proposed model. The proposed model clearly demonstrates
the contribution of artificial intelligence-based applications
to be developed in this field in supporting doctors.The fact
that the model obtained results on an open data set offers the
opportunity to make more realistic comparisons for studies in
this field.

In the study, model training was carried out by converting
DICOM data into images with. png extension. In future
studies, the model can be improved and its accuracy can be
increased by using metadata in DICOM. At the same time,
training can be performed on more comprehensive datasets
with data diversity to increase the overall performance and
applicability of the model. This will have a significant impact
on the generalization and success of the model.
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