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ABSTRACT This article presents an innovative approach that harnesses neural networks (NN) to eliminate
non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR).
Current mainstream methods, such as those relying on memory polynomial or Volterra models, face chal-
lenges in effectively addressing the demand for LNA linearization modeling, particularly in scenarios with
high fractional bandwidth and stochastic inputs. The proposed method incorporates two key technologies to
support NN. First, using input signals with specific frequency properties to derive ground truth values by
isolating distortion components from the LNA output signals in the frequency domain, simplifies the process
of acquiring training samples and enhances accuracy. Additionally, by utilizing mathematical characteristics
of LNAoutput signals, such as instantaneous rate of change, magnitude, and non-uniformly sampledmemory
points, it performs feature engineering to simultaneously reduce the complexity of the NN and enhance its
generalization capabilities. Evaluation with the LNA (ZFL-500LN+) demonstrates outstanding performance
in suppressing multiple harmonics and inter-modulation components, which approaches the quantization
noise floor of the analog-to-digital converter, especially harmonic reduction of up to 46 dB in the worst
distorted channel. These results show the potential of this method to enhance the performance of MDSR.

INDEX TERMS LNA, NN, non-linear distortion, multiband receivers, high fractional bandwidth, distortion
elimination.

I. INTRODUCTION
In numerous communication systems, there is a need to
employ a receiving system that can simultaneously capture
multiple channels of radio signals. For instance, in the field
of shortwave communication applications, it is feasible to
utilize a single analog-to-digital converter (ADC) to directly
acquire all the channels within the entire 30MHz communi-
cation bandwidth. Direct RF-sampling receivers are receiver
architectures that directly sample the RF signal without the
need for intermediate frequency (IF) or base-band convert-
ers. This architecture offers a higher level of integration
by reducing active signal chain components and supporting
elements such as different local oscillators and intermediate
frequency band-pass filters. As the communications industry
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shifts towardsmulti-bandmulti-channel radios, the direct RF-
sampling architecture is gaining even more support, as it
enables the transition from one heterodyne receiver per band
to one RF-sampling ADC per radio [1]. LNAs play a critical
role in radio receiver performance. The success of a receiver’s
design is measured in various dimensions, including receiver
sensitivity and selectivity. RF design engineers work to opti-
mize the receiver’s front-end performance, with a particular
focus on the first active component [2].

Fractional bandwidth (FBW) is a term used in commu-
nication engineering to describe the bandwidth of a signal
relative to its center frequency. It is a measure of the range
of frequencies that a signal occupies in relation to its cen-
ter frequency. FBW is an important parameter for a variety
of applications in communication systems, In practice, the
nonlinear characteristics of the amplifier are directly related
to the FBW. When the FBW is low, amplifier can simply
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consider the nonlinear static characteristics. As the FBW
increases, the memory effect of the amplifier becomes more
pronounced. Specifically, when the FBW exceeds 100%,
nonlinearity primarily induced by memory effects due to
frequency selectivity becomes significantly noticeable after
approximately one octave. In multi-band receivers such as
shortwave full-band (3∼30MHz) direct acquisition applica-
tions, LNA needs to face a large FBW close to 160%, which
is a great challenge for its linearization.

When direct RF-sampling receivers operate in multi-
channel mode, such as when receiving the entire HF signal
frequency range (3∼30 MHz), they allow for the simulta-
neous reception of multiple channels with different signal
modulation and power levels. However, this application
inevitably presents certain challenges. As the total RF signal
power from the antenna approaches the gain compression
point of the LNA, it ceases to operate in the linear region and
enters the non-linear region. The LNA saturates and partially
works in the non-linear regime, resulting in the generation
of non-linear distortions in high-energy channels [3], [4],
[5]. These distortions not only degrade the signal quality
of nearby channels but also interfere with and drown out
weak signals by harmonics and intermodulation components
of strong signals. While this problem can be addressed
in traditional single-channel reception by using pre-select
band-pass filters, it becomes challenging in multi-channel
or full-frequency-range reception scenarios. Therefore, it is
imperative to employ appropriate and effective compensation
methods to address this issue.

To address the impact of LNA nonlinearity, numerous
studies have been conducted. One common approach is the
nonlinear segmented calibration approach, which divides
uncalibrated data into different segments and applies lin-
earization to each segment to enhance calibration accuracy.
Previous studies [6], [7] have utilized this method because of
its potential for achieving high accuracy, although it heavily
relies on the expertise of the calibrator. Another method
proposed by Zhou et al. [8] involves using Discrete Fourier
Transform (DFT) to determine these segments. However,
this approach requires substantial effort in segmenting data
and primarily focuses on single-channel input measurements
rather than simultaneous multi-channel input calibration.
A receiver distortion suppression method is proposed in
the literature [9], which addresses the joint mitigation of
nonlinear RF and baseband distortions in the RF front-
end of Direct-Conversion Receivers (DCR). The article uses
multi-level memoryless polynomials for effective mitigation.
In order to avoid the nonlinearity caused by the in-band radio
frequency simulation part of a single frequency band, the arti-
cle proposes a method of using multiple sets of coefficients
(called AF) when changing the center frequency to support
frequency-selective nature (memory) of associated nonlinear-
ities when changing the center frequency. From the methods
and test parameters used in the article, it can be analyzed
that the paper targets signals with low FBW (<13%), so that

the memory effect of the device can be ignored. However,
for high FBW, nonlinearity is obviously affected by memory
application scenarios, this approach cannot meet the require-
ments. An alternative solution proposed in [10] is based on
Lookup Tables (LUT). It acquires the nonlinear parameters
of the LNA to determine the LUT parameters and corrects the
received data using the LUT during reception. However, this
solution assumes uniform characteristics of the LNA across
the entire operating frequency range, which is challenging
to ensure. It also overlooks the fact that the LNA functions
as a nonlinear dynamic system, and memoryless nonlinear
correction may only be suitable for narrowband signals [11].
The reference channel method, extensively researched in
numerous studies [5], [12], [13], [14], [15], involves using
a reference receiver (Rx_ref) auxiliary ADC to sample the
input signal before it reaches the LNA. By employing algo-
rithms to estimate distortion, the impact of LNA nonlinearity
can be reduced to some extent in the primary receiver chan-
nel. However, it is crucial to consider real-time variations
in calibration and correction parameters caused by strong
signals. Additionally, this solution requires the addition of
an extra ADC path, leading to increased equipment costs
and complexity. The statistical properties of the frequency
and total power level of received signals cannot be known or
predetermined in advance. Analyzing the nonlinear behavior
of LNA with multiple strong signals received in different
channels using traditional models like Volterra and Ham-
merstein, which are designed for analyzing single-channel
signals [16], becomes complex and challenging, especially
when considering the memory effect of LNA.

Backpropagation NN demonstrate efficacy in conducting
input-driven nonlinear modeling by leveraging multi-layered
architectures and the iterative optimization facilitated by the
backpropagation algorithm, allowing for the extraction of
intricate features and patterns from data. In the context of
applying NN to amplifier linearization, most studies [17],
[18], [19], [20], [21], [22] have primarily focused on using
Digital Predistortion (DPD) in power amplifiers. In the
application of DPD, the encountered signals exhibit stable
time-domain or frequency-domain statistical characteristics,
such as relatively fixed center frequencies, bandwidths, and
power levels. The correction is primarily targeted at signals
with a 1dB compression point level, addressing the condi-
tions of significant distortion. Moreover, there is a greater
focus on odd-order harmonics affecting the in-band perfor-
mance. Based on these premises, the DPD algorithm typically
perform statistical compensation for distortions where the
probability distribution is generally stationary. However, for
LNAs in multi-frequency band reception, both the frequency-
domain and time-domain inputs are stochastic. Signals and
interference with varying intensities amplitudes and band-
widths within the band exhibit unstable statistical probability
distributions. Additionally, not only odd-order but also even-
order harmonics are equally important to consider. The
superposition of these signals causing LNA distortion also
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lacks statistical significance. Therefore, it is necessary to find
a model that is dynamically correlated with the real-time state
of the input signals rather than statistically similar to address
this challenge.

In this paper, a NN-based method is proposed for elimi-
nating nonlinear components in LNA. Firstly, theoretical and
experimental research on the characteristics of LNAs was
conducted, and it was confirmed that LNA nonlinearity is not
only dependent on the total power level but also related to
its frequency distribution [23] and exhibits a certain memory
effect. To address these challenges, Significant effort was
invested in studying the input signal characteristics related to
the inherent properties of LNAs, and theoretical analysis and
experiments were conducted. The results were surprisingly
positive. A novel approach, focusing on input-driven models
to address the issue of LNA linearization, is presented as a
part of NN. This approach integrates real-time signal analy-
sis and various dimensions of LNA characteristics with the
implementation of a NN. It requires minimal computational
resources and achieves excellent distortion compensation
results. Ultimately, the harmonic components of the compen-
sated output samples are significantly reduced to the level
of background noise. Our contributions are summarized as
follows:

• Multiple sets of single-tone and two-tone signals with
varying frequencies and amplitudes were employed to
stimulate the LNA and collect distortion response sam-
ples. Subsequently, these samples were used to train a
NN for building an input-driven LNA distortion model.

• A Method for Acquiring Ground Truth is proposed:
An approach for obtaining ground truth was developed,
involving using the output of the LNAwhen excited with
known signals as training data and then reconstructing
the initial exciting signals as the ground truth. This
method eliminates the need to collect distortion-free
input signals as a reference, simplifying the process of
acquiring training samples.

A study was conducted to explore mathematical features
capturing the correlation between input signals and LNA
characteristics. These features were used as inputs for theNN,
thereby reducing the network’s complexity and enhancing the
model’s generalization capability.

II. AMPLIFIER DISTORTION ANALYSES
LNA typically operate in Class A, as illustrated in figure 1.
The bias point (Q) is strategically positioned near the center
of the device’s maximum current and voltage capabilities
to extend the linear working dynamic range. Distortion lev-
els are predominantly influenced by the operational range,
as depicted in the figure 1. The static operating point of a
Class A amplifier is carefully placed within the central region
to ensure linearity. Consequently, when the reception signal
is weak, the amplifier exhibits relatively low distortion and
accurately amplifies the signal. As the dynamic range of the
input signal gradually increases, along with the rise in signal

FIGURE 1. Ideal and distortion of amplifier. Magnetization as a function.

FIGURE 2. Experimental platform setups and block diagram.

amplitude, the positive half-cycle of the signal may enter the
amplifier’s saturation region, while the negative half-cycle
signal approaches the cutoff region, resulting in distortion
increase.

After experiments, it became evident that the distortion
characteristics of the positive half-cycle and the negative half-
cycle of the signal were not entirely consistent. This suggests
that when a larger signal passes through the LNA, the pos-
itive and negative half-cycles of the output signal become
unbalanced. Consequently, the use of the Volterra method is
not suitable [24]. In the following sections, The relationship
characteristics between the LNA’s distortion-free output (the
method for obtaining distortion-free signals will be provided
later) and the actual output signal (with distortion) will be
measured.

The experimental hardware platform system is illustrated
in figure 2. Three different experiments are accomplished
through configuration. During the testing of LNA charac-
teristics and the acquisition of NN training parameter sets,
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the switching between single-tone F1 or two-tone [F1, F2]
is achieved by controlling the enablement of the two signal
source outputs at the front end. To ensure ideal condi-
tions during the testing process, corresponding LC filters
at the respective frequencies are employed to filter the sig-
nals, ensuring that the harmonics of F1 and F2 are below
−100dBc. Without considering the passive intermodulation
(PIM) parameters of the power combiner, it is regarded as
a distortion-free two-tone signal. In the final system testing
phase, [F1, F2] represents analog distortion-free strong sig-
nals generated by the vector source, while RTS (receiving
target signal) simulates a weak target signal. Due to RTS
lower output amplitude, harmonic distortion issues of the
device were not considered. Please note that the typical gain
of the ZFL-500LN+ module within the 3-30MHz range is
27dB. However, during the testing process, it was noticed that
both the input and output impedances of the module deviated
from the desired 50�. To address this impedance mismatch,
resistive matching networks were applied at both the input
and output, resulting in a total loss of 6dB. Furthermore,
an output power splitter introduced an additional 3dB loss.
As a result, for the measurement platform, the effective front-
end gain was reduced to 18dB.

The test signal Xin after passing through the Bandpass
Filter (BPF) can be regarded as a composition of noise
nx(t) and an undistorted single-tone signal with amplitude A,
as illustrated in the following formula.

Xin(t) = A sinwt + nx(t) (1)

When Xin serves as the input to the LNA, it results in the
signal Y , which incorporates the amplified Xin by a factor of
a. The gain, denoted as a, introduces noise random variables
NF lna (t) generated by the LNA, along with harmonic distor-
tion components fdis(Xin).

Y (t) = a× A sinwt + a× nx(t) + NFlna(t) + fdis(Xin)

(2)

Y (t) is the out-sampling sequence for the ADC, Y = {y[t],
y[t-1], y[t-2], . . . y[t-k]}, where k is the maximum depth of
samples to be stored. In this context, fdis(Xin) represents the
harmonic components of the signal after passing through the
LNA, excluding the fundamental frequency. As the test signal
Xe is a known signal, it is easy to implement Fgt (), which
allows harmonic removal processing, resulting in Xe. This,
in turn, leads to the generation of Ground Truth (GT) sets
used for training, with the specific methodology detailed in
the subsequent subsection.

Xe(t) = Fgt(Y ) = a× A sinwt + a× nx(t) + NFlna(t)

(3)

Thus, the difference between the LNA output and the
ideal output is represented as the distortion component of the
amplifier.

D(t) = (Y − Xe) = fdis(Xin) (4)

FIGURE 3. Spectra of Xe (without harmonic distortion) and Y (with
harmonic distortion) for test.

FIGURE 4. Xe, Y and D time-domain waveform curve.

Utilizing the test system show in Figure 2, activate signal
source (1) while deactivating signal sources (2) and (3).
At this point,Xin is a single-tone signal. Under the assumption
that the LNA introduces only signal gain and distortion, con-
sider Xe as our desired ideal output. If the gain is normalized
to 1, It can utilize Xe as the input signal Xin, in conjunction
with Y , to study the characteristics of the amplifier. Subse-
quently, the distortion characteristics of the LNA are analyzed
using Xe and Y .

The next step test involves using a 7MHz sinusoidal test
input, with a power level of -21dBm. At this point, it close
to the 1dB input compression point (−19dBm) of the LNA
(ZFL-500LN+). From the spectrum of Y shown in Figure 3,
it shows that the LNA output has a component at 7MHz (plot-
ted as 6.99615) with a power level of −7.0dBm. The second
harmonic at 14MHz (plotted as 13.9999) has a power level
of −39.1dBm, and the third harmonic at 21MHz (plotted as
21.0114) has a power level of −51.3 dBm. Therefore, at this
point, the LNA’sHD2 is 32.1 dBc, andHD3 is 44.3 dBc. After
removing the harmonics, Xe is obtained, serving as the basis
for the following tests. The spectra of Xe and Y are shown in
the Figure 3.

A. TEST ONE
Xe and Y time-domain waveform testing. Along with the
display of their errors, as depicted in Figure 4. The red curve
represents Xe, while the black curve represents Y . When
normalized for gain, it is observed that the curves do not
coincide. This discrepancy is attributed to the presence of
distortion in the LNA output. The error term, denoted as D
in green, represents the distortion component (as a constant
amplification factor was applied for observation). From the
graph, it is evident that the amplifier’s distortion characteris-
tics are not symmetrical between the positive and negative
half-cycles (the distortion is not symmetric). Furthermore,
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FIGURE 5. AM-AM and AM-G curves.

it was observed that the distortion during the rising and falling
phases is also not strictly symmetrical.

B. TEST TWO
As shown in figure 5, The AM-AM curves of Xe and Y
were obtained after normalization. In the curve, the red por-
tion represents signal levels during the rising phase, while
the green portion represents signal levels during the falling
phase. From the AM-AM curve, it is evident that observing
distortion is challenging when absolute distortion is minimal.
Therefore, an alternative method was adopted, as illustrated
in figure 5. The AM-G curve represents the logarithmic
relationship between the amplifier’s operational level and
the amplifier gain. This method offers an intuitive means of
visualizing LNA distortion under low-distortion conditions.
In the ideal scenario of a distortion-free amplifier, the curve
should be a horizontal line. However, in practical situations,
LNA gain varies with changes in signal amplitude. It exhibits
higher gain in the middle (for lower power signals) compared
to the edges (for higher power signals). Additionally, under
the same signal intensity, differences in gain may arise due
to variations in signal frequency and the phase of the sig-
nal, which aligns with the conclusions drawn from the first
experiment.

C. TEST THREE
Tests were conducted at multiple frequencies (3MHz, 7MHz,
13MHz) at similar power levels to examine the AM-G curves
of the LNA, as shown in figure 6. It is evident that the
amplifier gain curves exhibit similar trends but are not identi-
cal. This reflects that the amplifier’s distortion characteristics
are not coincide when operating under different frequency.
This inconsistency cannot be overlooked, especially when
stringent distortion correction requirements are in place.

From the above experiments, conclusions about the ampli-
fier core and matching circuits can be drawn when the LNA
operates within a wide dynamic range, treating them as a
holistic ’black box’:

• The amplification distortion in the positive and negative
half-cycles of the output waveform is inconsistent.

• The gain characteristics of the amplifier during sig-
nal level transitions (rising and falling phases) are also
inconsistent.

• When operating at different frequencies, the gain char-
acteristics exhibit similar trends but with variations.

FIGURE 6. AM-G Curves at different frequencies.

Therefore, when considering distortion correction, the
above parameter characteristics need to be taken into account
as contributing factors to LNA distortion. Based on the exper-
imental results and discussions mentioned above, our future
work will focus on investigating methods to eliminate the
distortion introduced by the LNA.

III. GROUND TRUTH IMPLEMENTATION
During the training phase of the NNmodel using known
signals, to measure the distortion component of the amplifier
output fdis(Xin), it is essential to obtain the ground truth
sample Xe under the assumption of the amplifier’s ideal
conditions. The method for obtaining Xe is denoted as the
paradigmFgt ().In this section, wewill discuss two implemen-
tation methods for Fgt (), with the second method being the
latest proposition in this paper.

A. METHOD 1
The approach employed is in line with various pre-distortion-
related literature. It involves the synchronous collection of
signals Xin and output Y before entering the amplifier. Sub-
sequently, Xin and Y undergo delay and power alignment.
Power alignment includes adjusting Xin with a fixed gain (gr)
to ensure consistent power amplitudes between Xin and Y .

Fgt (Xin(t)) = Xe(t) = gr × Xin(t) (5)

D(t) = Y (t) − gr × Xin(t) (6)

The value of gr can be determined through various meth-
ods; for example, it employ power averaging as shown in
equation (7) of gr, while other methods are not discussed
here. In this case, the mean square error of the amplifier’s
distortion component D is Ed within one calculation cycle.
The parameter a(f ) in equation (7) denotes the practical gain
of the amplifier, and when the amplifier operates within a
broad bandwidth, it manifests as a variable value dependent
on the frequency rather than a constant.

Ed =

n∑
t=1

((a(f ) − gr)A sinwt + (a(f ) − gr)nx(t)

+ NFlna(t))2

where

gr =

√∑
t

Y (t)2 ÷

∑
t

Xin(t)2 (7)
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B. METHOD 2
Since the test signals are simple and known (single-tone
or two-tone), reconstruction in the digital domain is pos-
sible. Literature sources [24] employed parameter fitting
methods, but these fitting techniques introduce additional
errors due to issues such as noise component estimation,
measurement interference, and errors in recovering carrier
frequency, amplitude, and phase. This paper proposes a novel
method with the fundamental idea of removing intermodu-
lation and harmonic components in the frequency domain.
Nonlinear distortion is more easily discernible in the fre-
quency domain. If signals with clear independent distribution
characteristics between signals and distortion in the fre-
quency domain are used as a training set (such as pure
tones or dual tones), it becomes easy to identify and separate
ideal signals from nonlinear distortion components in the
frequency domain using a simple algorithm, much like dis-
tinguishing black beans from white beans in a pile of beans.
The specific method Fgt () to get Xe from Y is outlined as
follows:

• Apply windowing to Y to obtain Yw = Y· W, where W
represents the window.

• Perform FFT transformation on Yw to obtain the fre-
quency domain Yf = FFT(Yw).

• Measure the horizontal index of the main frequency
component in Yf and calculate the indices of its har-
monic and intermodulation components. Replace the
components at the harmonic indices with the noise val-
ues of the surrounding n indices, resulting in Yfr =

RH(Yf).
• Apply IFFT to Yfr to obtain the time-domain waveform
Yr = IFFT(Yfr).

• Obtain Xe by dividing Yr by the window Xe = Yr /W.
This method aims to minimize the errors introduced by

parameter fitting by eliminating harmonic and inter modu-
lation components in the frequency domain.

By employing the methods described above to obtain Xe,
considering that the window function W has relatively small
amplitudes at the ends in the time domain (approaching zero),
data truncation is performed, removing the initial and final
data. Only the central section is utilized to enhance precision.

Error Analysis: From the above processes, it is evident
that applying windowing and de-windowing, as well as FFT
and IFFT operations (with a length of Nfft), introduce neg-
ligible computational errors. The primary source of error
in the entire process arises from RH() in step 3. However,
because replace the components at the harmonic indices
with the noise values of the surrounding n indices, the error
can be controlled within the level of the quantization noise
floor.

Ed =

n∑
t=1

(nx(t) + Flna(t))2 × ratio

where

ratio = (n/Nfft) < 1 (8)

FIGURE 7. Spectra of Xin, Y and Xe(method1), Xe (method2).

In the equation (8), represents the ratio of the total number
of points replaced, which accumulates around n indices at
the harmonic frequency points, relative to the total number
of FFT points. It can be observed from equations (5) and (6)
that Ed inMethod 2 is smaller than inMethod 1. Furthermore,
Method 2 eliminates the need to obtain Xin, simplifying
the process of acquiring training samples. In this paper, this
method is utilized to achieve the functionality of Fgt

IV. THE PROPOSED CALIBRATION SCHEME
In this section, a uniform generic regression neural network
is introduced to address the LNA distortion issues discussed
earlier. As mentioned in the previous section, when the LNA
amplification characteristics differ in different feature dimen-
sions of the input signal, this paper considers two dimensions:
power level and frequency. The system structure is shown in
figure 8, and the system operation primarily involves three
main components: feature engineering, NN network, and
training engine.

During the experimental process, challenges were encoun-
tered in using a single, simple NN structure to learn LNA
device distortion characteristics in the time domain across
different dimensions. After extensive research, it was decided
to address high-frequency distortion and low-frequency dis-
tortion separately by employing two simple NN in a cascaded
manner. The corresponding system structure, NN training,
and signal correction processes are divided into two parts:
P1 (Part 1) and P2 (Part 2). First, the distortion correction
for LNA harmonics and inter-modulation frequencies higher
than the fundamental

frequency is completed, corresponding to the training of
NNP1 Then, NNP1() is used to assist in the training of P2,
achieving distortion correction for LNA inter-modulation fre-
quencies lower than the fundamental frequency.

Although the NN training and signal correction processes
are split into two parts, each part has its own independent
NN that serves a slightly different function. However, the
structures of the two parts are similar, with differences in NN
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FIGURE 8. Distortion correction system principal diagram.

hyper-parameters and network parameters. This facilitates
module reuse during the development and implementation.

A. NN FEATURE ENGINEERING
In NN, the inputs are feature vectors. To achieve real-time
processing in an embedded manner (FPGA), it is essential
to use as few neurons as possible for computations. Shallow
NN typically have limited capacity, and therefore, feature
vectors need to adequately represent the key information in
the input data to minimize the complexity of the model.
Effective feature vectors can assist the model in better cap-
turing patterns and structures in the data, thereby enhancing
the model’s performance. If the feature vectors capture the
essential features of the data while keeping the model simple,
they can utilize the input data’s information fully, making it
easier for the model to learn and generalize.

In the preceding sections of this paper, the diverse char-
acteristics of LNA at different frequencies and power levels
were examined. In the subsequent sections, three main types
of feature data extracted from input waveforms are predomi-
nantly utilized. The specific feature vectors are derived from
current and delayed data, as well as current gradients and
gradient-delayed gradient data. The Feature Map module
selects these feature vectors, which are then fed into the input
layer of the NN.

1) FEATURE VECTOR A: SAMPLE POINTS
Directly sampled, the amplitude dimension information of the
current signal is represented by feature vector A. Its length
is DelayStep1N. Taking into account the memory effects dis-
played by the amplifier, in Part A of the NN section, the input
features for the NN consist of the five previously sampled
points before the current one. In Part B, DelayStep1N = 1 is
employed.

FIGURE 9. Model training performance for interval values of P1 and P2.

2) FEATURE VECTOR B: EXTRACTED SAMPLE POINTS
In this design, the ADC sampling rate is 125MHz, and the
target sampling frequency range is the shortwave frequency
range of 3∼30MHz, which falls into the oversampling state.
The objective is to provide the NN with an extended observa-
tion period while maintaining low complexity for increased
memory depth. In Part P1, a uniform sampling is conducted
at interval points between 5 sequentially sampled data points.
A total of Interval_N = 5 extracted sample points are used.
The selection of interval values, as depicted in figure 9, has
been determined through experimentation, with interval =

5 yielding the best model training convergence speed and
accuracy. Part P2 follows the same methodology to obtain the
optimal hyperparameters.

3) FEATURE VECTOR C: GRADIENT OF SAMPLE POINTS
Derivatives serve as a potent tool for elucidating the dynamic
attributes of signals, as they contain gradient value informa-
tion at sampled points, providing various insights into the
signal. First-order derivatives at each sample point reflect the
rate of change of the signal at that point. This implies that
instantaneous changes in the signal can be accurately cap-
tured, as the magnitude of the first derivative represents the
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slope or rate of change of the signal. When the magnitude of
the first derivative is substantial, it indicates that the signal has
undergone significant fluctuations in the vicinity of that point,
which is crucial for high-frequency signal analysis. Second-
order derivatives provide information about the curvature and
rate of change of the signal.

∂Xin(t)
∂t

= Aw× coswt +
∂nx(t)

∂t
∂2Xin(t)

∂2t
= Aw2

× sinwt +
∂2nx(t)

∂2t
(9)

From equations (9), it can be observed that computing
the first and second derivatives results in amplitude terms
in the expressions. This implies that by taking derivatives
of the signal, information related to the instantaneous fre-
quency dimension of the current signal is indirectly acquired.
In the implementation process, a structure similar to FIR
(Finite Impulse Response) is utilized to obtain the derivative
sequence of the input sequence [23]. In a physical sense, the
derivative at a particular point signifies the magnitude and
rate of change of the signal at that point. A larger absolute
value of the derivative indicates rapid and significant changes
at that point, which naturally corresponds to higher instanta-
neous frequencies and larger high-frequency components.

B. TRAINING AND INFERENCE
In this section, the work is divided into two phases,
as described earlier. The first phase of training primarily uses
feature signals to train the NN, enabling it to capture the
characteristics of the LNA. The second phase involves the
utilization of the learned LNA properties to process unknown
real-world signals and remove the inter-modulation and dis-
tortion introduced by the LNA. Below, a detailed overview of
the specific tasks in each of these phases is provided.

1) TRAINING PHASE
The training system employed is illustrated in figure 8.
Known single-tone and two-tone signals with different fre-
quencies and amplitudes generated by a signal source serve
as the training samples to train the NN. During the training
process, the NN learns the distortion characteristics of the
LNA under different signal dimensions, resulting in the corre-
sponding NN model for the LNA device. In the experiments,
addressing the distortion characteristics of the LNA device
using a simple NN proved to be challenging. Therefore,
the training process is divided into two stages to handle
the removal of high-frequency distortion and low-frequency
distortion. In the first stage (P1), the training of NN1(NNP1)
is conducted to correct distortion related to harmonics and
inter-modulation frequencies higher than the fundamental
frequency. Then, NNP1() is used to assist in the training of
NN2 (NNP2), which focuses on the correction of distortion
components with frequencies lower than the fundamental
frequency.

P1’s NN individual training utilizes single-tone signals,
and its characteristic is that all distortion signal frequency

components are higher than the fundamental component.
In the time domain, this is reflected as the distortion com-
ponent’s period being shorter than that of the fundamental
component, making it possible to generate fdis(Xin) with a
relatively short memory time length in the time domain
correction. The corresponding GT sample signal distortion
removal method for P1 mainly involves eliminating multiple
harmonics of single-tone signals, such as the 2nd, 3rd, 4th,
etc. Utilizing Y and the GT samples, the ultimate training of
the NN is denoted as NNP1.
P1’s NN undergoes independent training using single-tone

signals, with the characteristic that all distortion signal fre-
quency components are higher than the fundamental compo-
nent. In the time domain, this is manifested by the distortion
component having a shorter period than that of the funda-
mental component, enabling the generation of fdis(Xin) with
a relatively short memory time length in time domain correc-
tion. The corresponding GT distortion-free sample signal for
P1 is obtained using Fgt1(), following the method outlined in
Section III-B, where the distortion removal technique RH()
primarily involves eliminating multiple harmonics of single-
tone signals, such as the 2nd, 3rd, 4th, and so on. By utilizing
Y and GT samples, ultimate training of the NN is denoted
as NNP1. The ‘NN Engines’ of P1 in figure 8 represent the
training program modules used for training NNP1.

The final Inference output of P1 is denoted as Z1, as shown
in figure 8. Here, Yfv represents Y after feature extraction,
which is sent to the NN as the feature vector. P2 focuses on
correcting distortion with inter-modulation frequencies lower
than the fundamental frequency. In this section, NN training
employs two-tone signals [F1, F2]. The two-tone signals are
first Inference through NNP1 to obtain Z1, which, in turn,
serves as the input for P2 after feature extraction, resulting
in the feature vector Z1fv. Z1 is then processed to obtain the
corresponding training GT sample by Fgt2(), RH() mainly
involving the removal of lower-order inter-modulation com-
ponents within n×F1±m×F2, where n and m are integers
less than 2. Finally, NNP2 is trained using Z1fv and the GT
to represent the NN network for P2, denoted as NNP2. The
‘NN Engines’ of P2 in figure 8 represent the training program
modules used for training NNp2.

2) INFERENCE PHASE

Z2 = NNP1(Yfv)-NNP2(Y − NNP1(Yfv)) (10)

In the inference phase, the signal is passed through anADC
to acquire Y . Following a sequential process involving two
NN, the output is Z2, which serves as the ultimate corrected
output. This procedure enables real-time distortion correction
within the LNA amplifier.

C. TRAINING DATASET AND NN SYSTEM
HYPER-PARAMETERS
In this paper, all the training samples used need to be obtained
through the target LNA being tested, utilizing the testing
platform constructed as shown in figure 2.For single-tone
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TABLE 1. NN structure and hyper-parameters.

samples, signal source (1) was activated, while signal sources
(2) and (3) were deactivated. For dual-tone samples, signal
sources (1) and (2) were activated, while signal source (3)
was deactivated. The mixed signals, after passing through
the LNA, were collected to generate training samples. Sub-
sequently, the GT data was obtained using the Fgt () method
mentioned earlier. The ADC sampling rate in this project is
125MHz, and the target frequency range is the shortwave
band (3∼30MHz). Each sample consists of 16,384 sampling
points.

While having a large number of samples can improve accu-
racy, it should be noted that different LC harmonic filters need
to be replaced to suit different frequencies of Xin. This pro-
cess can be time-consuming and labor-intensive when dealing
with a large number of samples. To simplify the process of
acquiring training samples and reduce costs, the goal was
to obtain LNA distortion characteristics with as few training
samples as possible. To achieve this, a well-planned approach
for sample parameters was required. P1 and P2 have different
requirements for training samples. For P1, the training was
conducted in the frequency dimension, with one group of
samples obtained every 2MHz in the frequency range from
3MHz to 15MHz and every 5MHz in the range from 15MHz
to 30MHz. Each group of samples had four power levels for
LNA input: −40dBm, −30dBm, −20dBm, and −10dBm,
resulting in a total of 40 samples. On the other hand, P2 was
trained with dual-tone samples, and 15 different dual-tone
signals with equal amplitudewere randomly combinedwithin
the 3∼30MHz frequency range.

A shallow-layer BP neural network was used for the NN
in both P1 and P2. Below is the NN structure and system
parameters in table 1. MATLAB’s neural network toolbox
was used.

V. EVALUATION OF PROPOSED CALIBRATION
APPROACH
In this section, our proposed approach will be evaluation with
the test system. The training and test results are presented as
follows. The NN model employed was trained based on the
parameters listed in table 1 and the training dataset discussed

FIGURE 10. P1 (left)and P2(right) convergence curve of the training.

FIGURE 11. Spectra of Xin, Y, Z1 and Z2 with single and distortion (Dis).

in the preceding sections. As shown in figure 10, the conver-
gence performance curves for Part 1 and Part 2 are provided.

A. EVALUATION METHODS AND TESTING FOR THE
MODEL
Figure 2 illustrates the testing system, wherein signal sources
(1) and (2) are used to generate test signals, both wideband
and narrowband, identified as F1 and F2, for interference
purposes. Additionally, a low-power multi-tone test signal
known as RTS (Receive Target Signal) is produced by signal
source (3). These signals are described as follows:

• F1: A white noise signal with a center frequency
of 11 MHz and a bandwidth of 4 MHz

• F2: A single-tone strong signal with a center frequency
of 6 MHz

• RTS: A low-power multi-tone test signal with a center
frequency of 22 MHz and a bandwidth of 400 kHz.

F1, F2, and RTS signals are combined in Power Combiner
to create the test signal Xin. The test signal is routed directly
to the ADC, bypassing the LNA, to obtain Xin. The spectrum
of Xin is plotted in figure 11. Xin passes through the LNA and
is sampled by an ADC to obtain samples referred to as Y .
The spectrum of Y is plotted in figure 11. Subsequently, the
Y samples are processed by our proposed NN system to pro-
duce Z2 after eliminating distortions, as plotted in figure 11.
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TABLE 2. Test sample parameters.

In addition, the signal Z1 is derived after the NNP1 processing
phase, and its spectrum is plotted in figure 11.

Incorporating the system depicted in figure 2, a series of
tests were conducted on the well-trained model, employing
the previously mentioned testing methods. The test input
parameter of Xin list in table 2. After passing through the
LNA, the spectrum of the distorted signal Y and the spectrum
of the output Z2 after distortion mitigation by the model are
compared, as shown in figure 12.

B. ANALYSIS OF EXPERIMENTAL RESULTS
When directly sampling Xin as shown in figure 12, the spec-
trum does not exhibit significant distortion. However, this
setup results in a system with a higher noise figure, leading
to a relatively lower signal-to-noise ratio (SNR) for received
RST. This is the primary reason for the necessity of using
an LNA at the system’s front end. By incorporating an LNA
at the front end, the lower noise figure and higher gain of the
LNA significantly enhance the SNR of the SRT. However, the
mixed signal Xin, after passing through the LNA, manifests
noticeable harmonic and intermodulation distortions, as plot-
ted in figure 12 (labeled as Y ) and figure 12 (Tests, labeled
as Y ). The spectral components of the distortion affect a sub-
stantial portion of the frequency range. Although the intensity
of these distortion components is not high, it is sufficient to
overshadow the RST signal, despite being amplified by the
LNA.

Signal Y is fed into a well-trained NN for inference. Upon
completing the first part of the inference, Z1 is obtained,
as plotted in figure 12. As anticipated, the results align with
our expectations. Harmonic and intermodulation distortions
at frequencies higher than those of the F1 and F2 signals
are significantly eliminated. Importantly, the RST signal
remains unaffected, indicating that the NNP1 stage effectively
eliminates the high-frequency harmonic and intermodulation
distortions, rather than simply applying a low-pass filter. Z1
undergoes NNP2 inference, ultimately yielding Z2, as clearly
shown in figure 12. Z2 demonstrates the NNP2 successful
eliminate low-frequency distortion components.

From experimental of test1 to test4 show in figure 12,
it can be seen that when the input power is much lower
than the input 1dB compression point (−19dbm) of the LNA, FIGURE 12. Test results of spectra of Y and Z2 with single and distortion.
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TABLE 3. Comparison with prior works.

our proposed method reduces the distortion caused by input
signals to a level close to the quantization noise floor. In test
5 of figure 12, a relatively large single-tone input was utilized
to assess the boundary performance of the system. The input
brought the LNA close to the 1dB input compression point,
and it can be observed that the improvement of the second
harmonic distortion (HD2) is approximately 46dB, with the
suppression of the third harmonic distortion (HD3) approach-
ing 40dB.

Comparisons of several solutions with different methods
are made, with some additional details shown in table 3.
table 3 presents a comparison between the method proposed
in this article and previous solutions. This method provides
higher SFDR, improved SNR, and maximum distortion com-
ponent elimination. It is important to note that during the
testing process in this article, many distortion components
were reduced to the noise floor, making it impossible to pre-
cisely quantify the extent of improvement. Therefore, in test5
of figure 12, a single-tone signal with a larger amplitude was
used as the maximum capacity test, and the data obtained
represents the maximum values achieved in this experiment.
From figure 12 and table 3, it can be observed that the
recommended method effectively eliminates the nonlinear
distortions introduced by the RF front-end LNA without
relying on auxiliary channels and with a large FBW. In com-
parison to traditional polynomial and adaptive filter methods,
this approach demonstrates superior learning and approxima-
tion of the LNA’s nonlinear distortion characteristics across
a broader range. As a result, outstanding LNA linearization
performance is achieved under high FBW conditions.

VI. CONCLUSION
In this paper, A method is introduced for eliminating non-
linear distortion in the LNA across multi-frequency bands
using NN. The core concept of this method involves estab-
lishing an NN model to infer the non-linear distortion
components generated by LNA devices under different stim-
uli, including various statistical distributions of frequency,
power, and bandwidth. During the implementation of this
method, two critical technological innovations, which include
feature engineering based on the mathematical characteristics

of signal effects on LNAs and Ground truth sets are acquired
through a frequency-domain distortion separation method
based on specialized training signals, have significantly
reduced the complexity and training costs of the NN net-
work. To validate the proposed method, a hardware platform
was constructed, and tests were conducted using actual LNA
devices. The results demonstrate that this method effectively
eliminates intermodulation and harmonic distortion compo-
nents caused by strong signals in a wide-frequency band,
significantly enhancing the reception performance of high
FBW MDSR. It is worth noting that this approach can be
extended to applications in DPD, enabling an NN model of
an amplifier to be adaptable across high FBW and multiple
frequencies and power levels. This achievement holds signif-
icant potential for a wide range of applications.
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