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ABSTRACT Wepropose a novel Tri-Path BackboneNetwork (TPB-Net) and train it end-to-end to effectively
detect multiple types of image manipulations. The key challenge for image manipulation localization
lies in the difficulty and diversity of extracting forgery features. To address this, we adopt a Triple-path
Interconnected Backbone (TIB) scheme as the feature extractor, which enables the strong feature detection
capabilities. Furthermore, we design and introduce the Dual-path Compressed Sensing Attention (DCSA)
module, that incorporates a dual-path attention mechanism. The DCSA module intelligently compresses
channels in the spatial path and spatial information in the channel path. These compression operations lead
to improved learning efficiency, enhanced representation effectiveness, and increased model robustness.
TPB-Net offers an end-to-end framework comprising trainable modules, facilitating joint optimization and
enabling the achievement of optimal performance. Through rigorous experiments conducted on four standard
image manipulation datasets, we demonstrate the superior performance of our method compared to previous
state-of-the-art approaches.

INDEX TERMS Image forensics, tampering localization, triple-path backbone, dual-path sensing attention.

I. INTRODUCTION
Digit images hold a wealth of valuable information and play
a pivotal role in numerous domains, encompassing media,
social networks, and criminal investigations. However, the
growing accessibility of tampering tools presents a significant
challenge to the authenticity of these images, leading to a
crisis of credibility. Accordingly, severe social consequences
have arisen, including the widespread circulation of seditious
rumors, telecom fraud, academic misconduct, and the use
of manipulated images to fabricate forensic evidence [1].
Among the assortment of image manipulation techniques,
three commonly employed methods are copy-move, splicing,
and inpainting, all of which directly modify the semantic
information within images [2], [3], [4], [5]. Copy-move
entails duplicating a patch from one area of an image and
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pasting it into another regionwithin the same image. Splicing,
on the other hand, involves copying a patch from one image
and pasting it onto a different image. Inpainting, also known
as removal, consists of replacing a selected region in an image
with pixel values predicted from the surrounding background,
resulting in the disappearance of specific image content.
These manipulation techniques are frequently exploited for
malicious purposes, emphasizing the urgent necessity for
research and development aimed at combating such practices
in image manipulation.

In practical scenarios, the process of manipulating images
often leaves behind discernible traces. Researchers have
developed specialized algorithms to detect these traces.
For example, specific algorithms have been designed to
identify resampling [6], [7], median filtering [8], [9],
contrast adjustment [10], [11], and double JPEG compression
[12], [13]. While these approaches have proven useful,
they are time-consuming and their accuracy cannot be
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guaranteed [14]. Since each algorithm focuses on detecting
a specific type of trace, a considerable number of tests
must be conducted to evaluate an image. Apart from being
inefficient, this complex operation is also prone to errors,
as different algorithmic errors can overlap. Furthermore,
the detection difficulty is exacerbated by the emergence
of novel editing techniques. Therefore, there is an urgent
need for the development of new techniques capable of
identifying manipulated images and even pinpointing the
tampered regions within them.

In recent years, deep learning technology has shown a
booming trend. Due to its excellent capabilities in the fields
of pattern recognition and computer vision, deep learning has
been widely employed in image forensic. Various models are
designed and good image manipulation localization perfor-
mance is achieved [15], [16], [17], [18], [19]. Among them,
the localization tasks which marked the tampered regions
attract much attention [15], [16], [17]. While appearing simi-
lar, the working principles of imagemanipulation localization
tasks (IMLTs) differ from the common image segmentation
tasks. The main difference is that IMLTs focus on the region
that does not originally belong to the image. So, in IMLTs,
the models pay more attention to the features that exhibit
discontinuities including edge inconsistencies [15], noise
pattern [20], color consistency [21], EXIF consistency [22],
etc. However, the common image segmentation tasks rely
on the semantic information and edges. Obviously, those
features that IMLTs need are more complex and diverse
which make them elusive.

Efforts have been made to address the above issue.
A common approach is to design specific architectures
which can suppress the semantic information [15], [16],
[19], [23], [24]. For example, spatial pyramid attention
network (SAPN) is proposed to suppress the semantic
features in the model [19]. And Mvss-net utilizes the
Noise-Sensitive Branch and Edge-Supervised Branch to
learn the semantic-agnostic features to the greatest extent
possible [24]. Apart from the above methods, some works
modify the inputs and feed the concerned features to the
model. For instance, P. Zhou utilizes the SRM filter to extract
noise patterns as the input to a Faster R-CNN network [23].
And M. Kwon provides the model with the Discrete Cosine
Transform (DCT) features [24]. However, this type of
methods extract overly simplistic features while the forgery
features are characterized by their multifaceted nature [16].
In theory, depending exclusively on a single feature might
limit the improvement of performance. For instance, using
only noise analysis to detect images, which are manipulated
by copy-move, can be challenging. Since no new element was
introduced to the image and noise distribution in such images
is uniform. Hence many schemes adopt the two- or three-
streams structures [23], [24]. They simultaneously feed the
image and the extracted features to the model. It’s clear these
features pre-selection methods are kind of both inconvenient
and has the risk of being not sufficiently accurate. Therefore,
we come with the inspiration of enhancing the ability

to extract features from raw images. In conjunction with
suppressing semantic features in subsequent networks, our
solution is derived.

Based on the aforementioned opinion, we propose our
Tri-Path Backbone Network (TPB-Net) for the image manip-
ulation localization. We adopt a Triple-path Interconnected
Backbone (TIB) scheme to provide strong feature detection
capability. Then, the features pyramid obtained by this TIB is
fed to the subsequent networks for fusion and selection. One
critical work in the upcoming network is to effectively reduce
semantic information while preserving non-semantic ones.
As in the features pyramid, the high-level low-resolution
features generally contain more semantic information [24].
We used a Dual-path Compressed Sensing Attention (DCSA)
module in the fusion step. This DCSA adopts a dual-path
attention mechanism, incorporating both spatial and channel
attention. What sets it apart from Dual Attention Net-
work [25] is that DCSA compresses the channels in the
spatial path and compresses the spatial information in the
channel path. These compression operations not only enhance
learning and representation efficiency but also contribute to
improving the robustness of the model. The final decision is
made based on the above structure. Our TPB-Net offers a
comprehensive end-to-end framework comprising trainable
modules. It allows for joint optimization, enabling us to
achieve the highest level of performance. Our contributions
are as follows:

• We introduce an innovative TPB-Net designed specif-
ically for image manipulation localization, showing a
robust capability for extracting and selecting prominent
features. The structure of TPB-Net is illustrated in Fig. 1

• We developed a robust backbone network that excels
in feature mining, complemented by an attention
mechanism designed for effective feature filtering.

• Extensive experiment results conducted on public
datasets unequivocally demonstrate the remarkable
superiority of TPB-Net over the existing state-of-the-art
methods.

II. RELATED WORK
A. FEATURE EXTRACTOR FOR MANIPULATION DETECTION
Many studies aiming for IMLTs employ the encoder-
decoder structure [14], [16], [19], [23], [24], [26], [27].
Wherein the backbone serves as a critical component,
enabling the features extracting from the raw images, noise
pattern and other relevant elements. Some methods rely
on a single backbone [16], [19], while others employ
multiple independent backbones to extract features from
different sources [23]. The backbones that utilized are
generally pre-trained for the ImageNet classification task.
For example, in related works, pretrained backbones such
as VGG16 [19], ResNet50 [24], and ResNet101 [23] have
been employed to detect and analyze forgery features. Given
that these backbone networks were originally designed and
trained for image classification tasks, directly using them
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FIGURE 1. Scheme of our Tri-Path Backbone Network. We utilize a tri-path interconnected backbone to extract features from the raw image.
Subsequently, we employ a feature pyramid structure in conjunction with a dual-path compressed sensing attention mechanism to refine the features
for decision-making.

to extract forgery features for manipulation localization
might result in suboptimal performance. Hence, we try
to elevate the performance of the backbone network for
IMLTs. Since design and pretrain a whole new backbone
network requires considerable manpower and computational
resources, we get the inspiration from Composite Backbone
Network (CB-net) [28] and put forward a more cost-effective
and efficient approach to construct a potent backbone for
features extraction in IMLTs by integrating specifically
existing backbone networks.

B. ATTENTION MECHANISM
Attention mechanism shows to be a promising approach for
improving deep Convolutional Neural Networks (CNNs).
Over time, research on attention mechanisms has evolved
with the aim of achieving two key functions: (1) enhancing
feature aggregation and (2) combining channel and spatial
attention. CBAM [29] and DAnet [25] independently pro-
posed structures that integrate both channel and spatial atten-
tion mechanisms. The main difference between these two
approaches is that CBAM computes spatial attention utilizing
a 2D convolution of kernel size k×k, then incorporate it
with channel attention in a sequential manner. On the other
hand, DAnet adopts a parallel structure, where both the
channel and spatial attention are calculated simultaneously
and then combined through summation or another fusion

operation. These approaches balance both channel and spatial
information, thereby achieving excellent results. While in our
view, the parallel structure of DAnet has the capability to
preserve a more comprehensive set of information. Besides,
considering features aggregation facilitates the extraction
of more abstract and holistic features, we introduce an
attention mechanism built upon feature aggregation and
parallel structure for feature selection in IMLTs.

III. PROPOSED MODEL
The main concept of our approach is centered around three
key steps: Initially, we construct a comprehensive feature
extractor designed to capture a diverse set of features from
the raw image, including but not limited to aspects such
as texture, color distribution, and geometric patterns. This
is crucial as it allows for a thorough analysis of various
image features. Next, we introduce amodule that refines these
features by selectively suppressing less relevant semantic
information, thereby enhancing the more critical features for
our analysis. Finally, the decision-making process is based on
these refined, high-quality features.

A. OVERVIEW
The schematic of our proposed model is depicted in Fig. 1.
In this study, we utilize only the raw image as the input
source, other than elements like noise patterns [23] and
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DCT [30]. Our rationale is that since noise and DCT
components are derived from the raw image, a well-designed,
robust feature extractor is capable of uncovering all essential
features inherent in the raw image, thereby enabling a
comprehensive analysis without the need for additional data
sources. Consequently, the raw image is fed into our specially
designed Triple-path Interconnected Backbone (TIB). The
TPB (Tri-Path Backbone) consists of three DenseNet169
networks. Within the TPB, feature maps are added between
the DenseNet169 after each block to acquire rich and
comprehensive features. Subsequently, a feature pyramid
structure is employed to integrate features from different
levels. In this integration process, it is crucial for the feature
pyramid to maintain less semantic information across all
scales. Acknowledging that high-level feature maps generally
contain richer semantic information, we introduce our DCSA
attention mechanism in the top-down pathway to facilitate
effective feature selection and aggregation. In the end, the
final decision is made based on the fused features.

In the following subsections, we will provide detailed
explanations of the following aspects: firstly, the func-
tioning of the TIB (Triple-Path Interconnected Backbone)
as an improved feature extractor; secondly, the rationale
behind adopting a feature pyramid scheme; and thirdly, the
architecture of the DCSA (Dual-Path Compressed Sensing
Attention).

B. TIB AS A POWERFUL FEATURE EXTRACTOR
TIB consists of 3 identical DenseNet169. The selection of
DenseNet169 is based on extensively comparative experi-
ments. As illustrated in Fig. 1, the backbone B1, B2 and
B3 constitute the TIB. Each backbone consists of four blocks,
with each block containing several convolutional layers that
produce feature maps of the same size. The Lth block of
the backbone performs a transformation denoted as FL . In a
single backbone, the Lth block takes the output (denoted as
x th) of the previous ((L − 1)th) block as its input. This can be
expressed as follows:

xL = FLk (x
L−1) (1)

In contrast to using separate backbone networks,
we employ three to obtain more diverse and comprehensive
features. The output features from the previous (Lth) block of
the three backbones (B1, B2, B3) are summed and passed to
Lth block of each backbone. This process can be formulated
as follows:

xL =

3∑
k=1

FLk (x
L−1
1 + xL−1

2 + xL−1
3 ) (2)

As a result, each individual backbone shares and col-
lectively contributes to the feature maps between blocks.
The obtained feature maps from different levels are fed
into the following network. Given that this composition
style utilizes three individual backbones and facilitates
internal interconnections among them, we refer to it as the

Triple-path interconnected backbone. Apart from the TIB,
there are various other combination structures of backbones.
Comparative experiments are conducted to demonstrate the
superiority of TIB. Several structures used for comparison are
introduced in the following.

Fig. 2 illustrates several alternative structures. Fig. 2(a)
represents our method TIB, while Fig. 2(b) shows a Series
Connection (SC) within the same level block of backbones.
In SC, B1 provides features to B2, and B2 supports B3 in
generating the feature maps. The operation of SC can be
formulated as follows:

xL = FL3 (x
L−1
1 + xL−1

2 + xL−1
3 ) + F l2(x

L−1
1 + xL−1

2 )

+ FLl (x
L−1
1 ) (3)

In SC, B1 and B2 perform the auxiliary roles. The feature
maps for the subsequent task are exclusively computed by B3.
Fig. 2(c) demonstrates another transform based on SC. In the
scheme depicted in Fig. 2(c), the output of the high-level
block of the previous backbone is fed into the succeeding
backbone. We refer to this operation as Descending-level
Series Connection (DSC) and it can be represented by the
following equation:

xL = FL3 (x
L−1
3 + xL2 + xL+1

1 ) + xL+1
2 + xL+2

2 (4)

Furthermore, another structure which feeds the output of
the low-level block of the previous backbone to the succeed-
ing backbone. We name this operation as Ascending-level
Series Connection (DSC) and it can be mathematically
expressed as follows:

xL = F l3(x
L−1
3 + xL−2

2 + xL−3
1 ) + xL−1

2 + xL−2
2 (5)

Among the SC, DSC and ASC methods, there is a
hierarchical relationship between the backbones, with the
auxiliary backbones providing supplementary features to the
primary backbone network. It is apparent that our method
stands out from others in one significant aspect: each
backbone works together without any primary or secondary
differentiation. The comparison results will be presented in
Section IV.

C. DCSA FOR FEATURE SELECTION
With the extraction of features at different stages, a fea-
ture pyramid is adopted, as illustrated in Fig. 1. This
feature pyramid enhances the model’s capability to capture
and represent information across various scales, leading
to improved performance. However, while leveraging the
advantages of it, we also need to address a significant
drawback associated with it, namely the presence of semanti-
cally strong information it brings along. Since the original
Feature Pyramid Networks utilize the top-down pathway
and lateral connections and the high-level feature maps are
semantically rich [31], there will be a large amount of
semantic information flowing into the lower levels. However,
semantic information is irrelevant to our task and provides
no benefit. To tackle this issue, we incorporated our own
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FIGURE 2. Four kinds of combination methods (a) Triple-Path Interconnected Backbone (TIB). (b) Series Connection (SC).
(c) Descending-level Series Connection (DSC). (d) Ascending-level Series Connection (ASC).

designed DCSA, specifically tailored to filter out irrelevant
information, including semantics.

The structure of DCSA is illustrated in Fig. 3. It consists of
two branches similar to DAnet [25]. To minimize information
loss as much as possible, we employed a dual-module
attention mechanism to model both channel and spatial
attention. The channel module adopts the structure of
Efficient Channel Attention (ECA) [32]. The features are first
aggregated by average pooling. Then, channel weights are
generated by applying a 1D convolution with a size of 5 and
a sigmoid activation function. The computation process can
be described by the following equation:

Xc = o(Con v5×1(MaxPool(Xinput ))) × Xinput (6)

where Xinput is the input and XC is the output of the
channel module. In this module, dimensionality reduction
and cross-channel interaction are applied. The space module
is demonstrated in the lower part of Fig. 3. The features
are first condensed using a 3×3 2D convolution, and spatial
weights are generated by applying a 3×3 2D convolution
with a softmax activation function. Similarly, the spatial

branch also incorporates channel dimensionality reduction
with cross-space interaction. The computation process of the
space module can be described by:

Xs = SoftMax(Conv3×3(Conv3×3(Xinput ))) × Xinput (7)

where Xs is the output of the space module. Hence the output
Xoutput of the DCSA equals:

Xout = Xc + Xs (8)

Dimensionality reduction and cross interaction techniques
are employed in both modules, resulting in a substan-
tial reduction in model complexity while maintaining
performance.

IV. EXPERIMENTS
In this section, we present experiments conducted on
four distinct image manipulation datasets to evaluate the
effectiveness of our TPB-Net. The obtained results are
compared against other state-of-the-art (SOTA) methods.
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FIGURE 3. The diagram of the Dual-Path Compressed Sensing Attention (DCSA). DCSA adopts a parallel structure, with the upper branch is
channel attention and the lower branch is spatial attention. The innovation of DA lies in the adoption of compression cross interaction in
both branches.

A. EXPERIMENTAL SETUP
1) DATASETS
Building upon the methodology presented in [2], we utilize
the synthetic dataset suggested in [2] for pretraining. And we
employ four well-known benchmarks, namely CASIA [33],
COVERAGE [34], Nist Nimble 2016 (NIST16),1 and
Columbia [35] datasets, to evaluate our approach against
state-of-the-art (SOTA) methods in manipulation detection.

• CASIA dataset comprises two versions, CASIAv1 and
CASIAv2, which offer a diverse range of spliced
and copy-moved images. The tampered regions within
these images are meticulously chosen, and additional
post-processing techniques such as filtering and blurring
are applied. The dataset includes binary ground-truth
masks for the tampered regions. Consistent with prior
studies [19], [23], [24], we adopt the common practice of
utilizing CASIA v2 for training purposes and CASIAv1
for testing in our experiments.

• Coverage is a small collection comprising only
100 images that have been generated using copy-move
method. Special care has been taken to meticulously
eliminate any visible traces of manipulation within the
images. Furthermore, binary ground-truth masks are
provided alongside the dataset.

• NIST16 encompasses all three tampering techniques.
The manipulations within this dataset have undergone
post-processing to hide the traces, thus posing a
significant challenge. Ground-truth tamperingmasks are
provided with the dataset to facilitate evaluation of the
detection methods.

• Columbia is a Splicing based dataset which focuses on
splicing based on uncompressed images. Ground-truth
masks are provided.

1https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation/

FIGURE 4. Comparison results by using different number of backbones in
TPB-Net.

TABLE 1. Training and testing splits, along with the corresponding
number of images, for the four standard datasets.

To ensure a fair and comprehensive comparison with
the current state-of-the-art (SOTA) methods, we follow
the widely adopted training-testing splitting configurations
[19], [23] on CASIA, NIST16, and Coverage datasets.
Regarding the Columbia dataset, we utilize the entire
dataset for validation purposes after training our models on
the synthetic dataset. For more detailed information about
training settings, please refer to Table 1.

2) EVALUATION METRIC
In our task, we are focused on binary segmentation, where
each pixel in the input image is assigned a label as either
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TABLE 2. Comparison of our method with four SOTA methods on CASIA,
NIST16, Columbia, and Coverage. We evaluated the AUC and F1 (%)
metrics to assess the effectiveness of our approach.

tampered (white) or authentic (black). This results in the
generation of 2-dimensional binary arrays that have the same
dimensions as the input image. To evaluate the performance
and make comparisons, we utilize two evaluation metrics:
pixel-level F1 score and Area Under the receiver operating
Characteristic Curve (AUC). It is worth noting that while
many previous studies optimize the decision threshold for F1
score based on the test set, we adopt a different approach.
Given that determining the optimal threshold for tampered
images in real-life scenarios is challenging, we employ a
fixed threshold of 0.5. This choice allows for a more objective
reflection of performance across different methods and
avoids potential bias introduced by threshold optimization.

3) IMPLEMENTATION
The proposed network is trained end-to-end, with the input
images resized to 512 × 512 pixels. The three DeseNet169
networks that constitute TIB are ImageNet pretrained. For
the remaining normal convolutional layers, the kernel weights
are initialized using He initialization [36], and the biases are
initialized to zero. We employ the Adam optimizer with a
fixed learning rate of 5× 10−5 [37]. Throughout the training
process, we monitor the validation loss at each epoch. If the
validation loss does not decrease for 10 consecutive epochs,
we halve the learning rate until it reaches a minimum value
of ×10−7. The model is trained for 100 epochs using a
batch size of 12. To address the data imbalance commonly
observed in forgery datasets [38], we utilize dice loss as the
loss function [39]. This loss function effectively handles the
imbalanced nature of the data. Our model is implemented
in PyTorch and trained on 2 NVIDIA RTX3090 GPUs.
To ensure a fair and impartial performance evaluation of
our model, we deliberately refrain from employing any data
augmentation techniques during the training process. This
decision ensures that our model’s performance is assessed
solely based on its inherent capabilities and avoids any
potential bias introduced by data augmentation.

B. RESULTS
1) COMPARISON WITH THE STATE-OF-THE-ART
In order to evaluate the effectiveness of our approach,
we conduct a comparative analysis of its performance
against baseline models including namely ManTra-Net [16],
SPAN [19], CAT-Net [30], and MVSS-Net [24]. The models

TABLE 3. Comprehensive Comparison of Various Backbone Structures
Utilizing TPB-Net and DenseNet169 as Reference Architectures. Initially,
each model is pretrained on synthetic dataset, followed by fine-tuning on
the CASIA dataset, following the procedure described earlier. The
backbone structures under evaluation include: ‘SD’ (Single DenseNet169
Connection), ‘SC’ (Series Connection), ‘DSC’ (Descending-level Series
Connection), and ‘ASC’ (Ascending-level Series Connection). Key metrics
for comparison encompass Area Under the Curve (AUC), computational
load (measured in Giga Multiply-Accumulate Operations, GMAC), the
number of parameters (Num parameters), and computational time (Time).

undergo a two-step training process, startingwith pre-training
on the synthetic dataset, followed by fine-tuning on
CASIA, COVERAGE, and NIST16, with the exception of
COLUMBIA, which was reserved exclusively for validation
purpose. The pixel-level localization performance of the
models is presented in Table 2. Our method demonstrates
obvious superiority over the other models and achieves
remarkable scores. The AUC scores of our work on all
four datasets demonstrate a notable improvement of approx-
imately 4-10, all exceeding 83%. Particularly impressive
are the results for Coverage, NIST16, and Columbia, where
the AUC scores exceed 89%. Our TPB-Net exhibits strong
feature extraction capabilities by leveraging the TIB, enabling
it to search for more diverse and richer features compared
to single backbone architecture. As a result, we achieve
enhanced localization accuracy. However, the AUC score for
CASIA, at 83.5%, is relatively lower compared to the other
datasets. This discrepancy may arise from the cross-dataset
training and validation between CASIAv1 and CASIAv2.
The F1 score shows a remarkable improvement of nearly 20,
surpassing the AUC increase. This enhancement can be
attributed to ourmethod’s ability to generate predictionmasks
with pixel values predominantly clustered around 0 or 255.
Consequently, our method produces less ambiguous deci-
sions, as illustrated in Fig. 6. Unlike other approaches [24],
our TPB-Net does not heavily rely on an optimal threshold to
achieve a high F1 score. We attribute this to the effectiveness
of the DCSA module incorporated within our model, which
helps in excluding interference information and providing
precise features that aid in making accurate decisions.

2) COMPARISON WITH ALTERNATIVE BACKBONE
STRUCTURES
We conducted experiments to compare our proposed TIB
architecture with alternative structures, namely SC, DSC,
and ASC, as depicted in Fig. 2. For comparative analysis,
a single DenseNet169 structure was also evaluated. These
experiments utilized the TPB-Net architecture, with varia-
tions only in the backbone component. The pretraining on a
synthetic dataset and subsequent fine-tuning on the CASIA
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FIGURE 5. Visualization comparison of the features extracted by backbone when DSCA or add operation is employed. we visualize the feature
maps of 3rd and 4th block of the backbone. Notably, the feature maps exhibit more representational qualities when DSCA is employed,
as evidenced by their stronger activation values and clearer boundaries.

dataset were conducted following our previously described
methodology, with results presented in Table 3.

Regarding the Area Under the Curve (AUC) performance,
the SD configuration achieved 79.8%, while ASC recorded
the lowest at 76.2%. Our analysis suggests that lower-level
features, being closer to raw data, capture finer details,
whereas deeper features are more abstract. Consequently,
integrating lower-level features from a preceding backbone
directly into the higher-level of a subsequent backbone can
adversely affect the abstraction capacity of deep features.
DSC, on the other hand, scored an AUC of 81.1%, indicating
an improvement over ASC. In DSC, the deeper features
from one backbone are merged with the shallow features
of the next, enhancing the abstract information within deep
features. However, there remains a noticeable performance
gap between SC and our TIB approach. We infer that the
unidirectional feature transmission in SC does not effectively
foster inter-backbone collaboration. Our TIB scheme, with an
AUC of 83.5%, demonstrates superior performance, which
we attribute to its interconnected structure that efficiently
reduces parameter redundancy and fosters collaborative
functionality among backbones.

In terms of computational load, as measured by GMAC,
the SD configuration, with a value of 27.82, demonstrates
significantly lower complexity compared to the other struc-
tures, all of which incorporate three backbones. This lower
GMAC value for SD reflects its simpler, less computationally
intensive nature. In contrast, the GMAC values for ASC,
DSC, SC, and TIB are relatively similar, owing to their

utilization of three backbones. However, ASC and DSC
exhibit slightly higher values than SC and TIB. This is
attributed to their more complex interconnections between
backbones.

When examining the number of parameters, it’s noted that
all structures (SD, ASC, DSC, SC, TIB) maintain a compa-
rable level, with only marginal differences. This similarity
in parameter count indicates a balanced design approach
where the increase in model complexity is counterbalanced
by efficient architectural choices. The SD configuration, with
its single backbone, naturally presents a lower parameter
count, aligning with its lower computational load.

Regarding computational time, the efficiency of each
structure was monitored. All multi-backbone models, despite
their complexity, achieved computational times that were in
close range with each other, suggesting optimized processing
paths in their design. The SD model, with its streamlined
architecture, demonstrated a slightly quicker computational
time, reflecting its less complex characteristic. These obser-
vations highlight the trade-offs between model complexity
and efficiency, suggesting that while more complex models
like ASC, DSC, and TIB offer advanced feature processing,
they do so with an acceptable increase in computational
demands.

3) NUMBER OF BACKBONES IN INTERCONNECTED
BACKBONES
We conducted experiments to explore the relationship
between the performance and the number of backbones in
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FIGURE 6. Comparison of prediction results on CASIA, Coverage, NIST16, and Columbia datasets. From top to bottom: Manipulated Image,
Ground-truth mask, SFEN prediction, SPAN prediction, Mantra-Net prediction, CAT-Net prediction, MVSS prediction. The figure illustrates the visual
comparison of the prediction results obtained from the different approaches on the mentioned datasets.

the TIB structure. The dataset used and the training process
remainsconsistent with the previous experiments, and the
results are presented in Fig. 4.

We observed that the AUC score exhibits a steady increase
as the number of backbones grows, eventually reaching a
plateau when using three backbones. Based on these findings,
we adopted to utilize the Triple Backbone architecture as it
demonstrates the optimal performance in terms ofAUC score.

4) THE INFLUENCE OF DCSA
To investigate to what extent DCSA improves the final
performance, we conducted the ablation experiments about
with or without DCSA in our scheme. Element-wise add
is used for comparison. When using add, the AUC score
dropped by 2.4 compared to using DCSA.

For a more comprehensive understanding, we visually
analyze and compare the feature maps extracted by the
backbone when employing DCSA and the add operation.
Fig. 5 demonstrates cases with input images that contain a
single tampered region. It is evident from the visualization
that the feature maps exhibit stronger activation values within
the tampered region when DCSA is utilized, in contrast
to when the add operation is employed. This visualization
example highlights the beneficial role of DCSA in providing
more representative features for the given task.

5) ROBUSTNESS EVALUATION
In order to assess the robustness of TPB-Net, we conducted a
series of experiments. We tested various manipulation meth-
ods as listed in Table 4. These methods included resizing,
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TABLE 4. Robustness analysis of TPB-Net on NIST16. ↓ indicates the
decrease in AUC compared to the case when no manipulation is applied.

Gaussian blur, Gaussian noise, and JPEG compression, which
are applied to the NIST16 dataset to generate samples. The
implementation of these manipulation techniques was carried
out using OpenCV, a Python-based library for computer
vision.

We compared the performance of our model with the
SPAN [19] and PSCCNet [40] methods on the manipu-
lated dataset. The data used for these two models were
obtained from their original papers. Our experimental results
demonstrate that SFEN exhibits strong robustness across
the tested manipulation methods. In particular, our method
outperformed SPAN and PSCCNet in handling Gaussian blur
and noise. However, it was observed that SFEN is more
sensitive to resizing and JPEG compression.

6) QUALITATIVE RESULT
In Fig. 6, we present predicted results from different methods.
These results highlight three key advantages of our method
over others: 1)Stronger ability to accurately segment complex
tampered regions (indicated by red circles); 2)Capability
to differentiate forged regions within copy-move scenarios,
effectively avoiding interference from the original area
(indicated by green circles); 3)Provision of more precise and
clearer boundaries around tampered regions (indicated by
blue circles).

These advantages demonstrate the superior performance
and effectiveness of our method in tackling various types of
tampering scenarios.

V. CONCLUSION
In summary, we propose the Tri-Path Backbone Network
(TPB-Net) as an effective solution for image manipulation
localization. TPB-Net utilizes the Triple-path Interconnected
Backbone (TIB) scheme, enhancing feature detection
capabilities. Furthermore, we leverage a features pyramid
obtained from TIB, which is subsequently utilized for fusion
and selection in subsequent networks. A key aspect of our net-
work is the effective reduction of semantic information while
preserving non-semantic information. This is accomplished
through the incorporation of the Dual-path Compressed Sens-
ing Attention (DCSA) module, which integrates a dual-path
attention mechanism. The DCSA module compresses chan-
nels in the spatial path and compresses spatial information

in the channel path. These compression operations enhance
learning efficiency, improve representation effectiveness, and
enhance overall model robustness. The final decision is made
based on this proposed structure. TPB-Net provides an end-
to-end framework comprising trainablemodules, allowing for
joint optimization and achieving optimal performance. The
method demonstrates both accuracy and robustness in general
manipulation localization tasks.
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