
Received 22 May 2024, accepted 4 June 2024, date of publication 7 June 2024, date of current version 19 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3411089

Enhancement in Process Mining Model by
Repairing Noisy Behavior in Event Log
SHABNAM SHAHZADI 1, WALID EMAM 2, USMAN SHAHZAD 3,4,
SOOFIA IFTIKHAR 5, ISHFAQ AHMAD 4, AND GAURAV SHARMA 6
1Department of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 230001, China
2Department of Statistics and Operations Research, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
3Department of Statistics, PMAS-Arid Agriculture University at Rawalpindi, Rawalpindi 46300, Pakistan
4Department of Mathematics and Statistics, International Islamic University at Islamabad, Islamabad 44000, Pakistan
5Department of Statistics, Shaheed Benazir Bhutto Women University, Peshawar 00384, Pakistan
6Department of Computer Science and Engineering, Seth Jai Parkash Mukand Lal Institute of Engineering and Technology, Haryana 135133, India

Corresponding author: Shabnam Shahzadi (shabnamsarwar2@gmail.com)

This work was supported by King Saud University, Riyadh, Saudi Arabia, through the Researchers Supporting Project under Grant
RSPD2024R749.

ABSTRACT Companies and organizations aim to improve the performance of their business processes to
stay competitive. Recently, researchers have shown significant interest in process mining, particularly its
ability to extract accurate information from process-related data. Process enhancement is a crucial aspect
of process mining, involving the extraction of information from the actual process event log to extend or
improve existing processes. Enhancement can be classified into two types: extension and repair. This paper
specifically focuses on the repair type of enhancement. Information systems commonly encounter logging
errors or exhibit special behaviors that introduce noise into the event log. In this research, we investigate the
process mining model in the presence of noise in the event log. We propose a method for repairing event
logs by decomposing them into sub-logs and eliminating the noisy behavior within these sub-logs using
covering probability. The repaired sub-logs are then integrated into the original event log at the appropriate
location. Additionally, we propose a probabilistic method that considers the frequency of occurrence for
activities in a given situation. This method allows for the removal of noisy and abnormal behavior from the
event log, providing an overall perspective on the process. To validate our approach, we generate artificial
event logs with the presence of noisy behavior using the ProM framework. By using the RapidMiner-based
ProM Extension, we generate a test set to illustrate how various types of noisy behavior in an event log
can be identified and repaired. Our findings clearly demonstrate that repairing the event log improves the
performance of a process mining model.

INDEX TERMS Covering probability, enhancement, outliers, process mining, repaired event log.

I. INTRODUCTION
Process mining is a data analysis method related to data
mining in business process management. It combines knowl-
edge from information systems and management to improve
process models. The objective of process mining is to extract
process-related information from an event log to enhance the
model [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

There are three types of process mining models: process
discovery, conformance checking, and enhancement. Process
discovery determines the actual process from the event log,
conformance checking checks if the process model is con-
sistent with the event log, and enhancement improves the
process mining model based on the event logs.

Process mining methods assume that the behavior of the
basic process is accurately recorded in the event log and
that the log captures the complete behavior of the process.
However, in reality, event data often contains noise, outliers,
and infrequent behaviors. These can lead to complex and

82938

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3763-3755
https://orcid.org/0000-0002-6810-6640
https://orcid.org/0000-0002-0178-5298
https://orcid.org/0000-0002-4390-2907
https://orcid.org/0000-0002-1124-7485
https://orcid.org/0000-0002-9306-4227
https://orcid.org/0000-0002-8887-4321

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

inaccurate results in process mining algorithms. Examples of
noise and infrequent behaviors in event logs include:

A. NOISY BEHAVIOR
i. Outliers: It is an incident that noticeably departs from
the general trends throughout the process. These anomalies
may be the result of mistakes, malfunctions in the system,
or specific circumstances.
ii. Incomplete or Incorrect Data: Event data that is erro-

neous or missing can introduce noise. This could occur
because of system failures, human error in event logging,
or technological problems during data gathering.
iii. Duplicate Events: Repeated or duplicate events

recorded in the dataset, which could skew the results of the
process flow analysis and interpretation.

B. INFREQUENT BEHAVIOR
i. Rare Paths: It is a series of occurrences that are rare
in relation to many process instances. These unusual routes
could be exceptional instances, departures from the standard,
or different process flows.
ii. Uncommon Activities: Rarely occurring actions within

the process instances. These actions may point to process
exceptions, edge cases, or unexpected behaviors.
iii. Unusual Timing: Events that, in contrast to the con-

ventional process flow, happen at odd timestamps or at odd
intervals. These variations in timing could be an indication of
process abnormalities or inefficiencies.

To address this issue, a process mining model is devel-
oped to include a pre-processing phase that aims to identify
and eliminate traces containing undesirable behavior. How-
ever, this manual process is expensive and time-consuming.
The presence of noisy, infrequent, and incomplete behav-
ior negatively impacts the process mining model. As a
result, researchers are working on automatically applying
data cleaning techniques to enhance the model’s perfor-
mance. A recent study attempted to filter out traces containing
outlier/noisy behavior in the event log [2], [3]. While both
approaches show improvements in the process mining model,
particularly in process detection, there is a risk of disregard-
ing traces that exhibit external behavior. This can distort the
normal distribution of behavioral processes and potentially
lead to negative or inaccurate process mining results.

The process mining model takes event logs as input, which
capture the smallest unit of data whenever an activity occurs
in a process. Traces are sequences of events. Our research
focuses on enhancement as one of the main types of process
mining. In this study, we specifically utilize enhancement
to improve the overall performance of the process mining
model, with a focus on the control-flow perspective. As the
term ‘enhance’ implies, it aims to improve the quality and
understandability of the process model. There are two main
types of enhancement: Repair and Extension. In our research,
we utilize a repair technique to enhance the model’s perfor-
mance and propose a method for repairing event logs that
contain outlier/noisy behavior.

The key contributions of our study are as follows.

i. In our research work, we first identify the outlier/noisy
behavior in the event log and then repair them to attain
more accurate results of the process mining model.

ii. In our study, outlier/noisy behavior is detected using a
probabilistic method according to the process context,
i.e., a small part of a sequence of activities that happen
before and after the outlier/noisy behavior.

iii. After their detection, the corresponding behavior is
exchanged with other fragments that are more likely to
occur within the context where the outlier/noisy behavior
occurs.

iv. We use a RapidMiner-based ProM extension [4], called
RapidMiner [5]. The accuracy of our proposed method
lies in identifying the outlier/noisy behavior in the event
log and then repairing them to improve the overall quality
and understandability of the process mining model.

v. Furthermore, we demonstrate that our proposed method
yields more accurate results than the filtering technique
in the process mining domain.

Our paper is organized as follows: related work is discussed
in section II. Literature Review, Preliminaries, and the pro-
posed technique are presented in section III. In section IV,
we evaluate the details and discuss the data source and data
processing. In conclusion, section V summarizes our paper.

II. RELATED STUDY
Many process mining algorithms address outlier and noisy
behavior [6], [7]. However, these methods often focus on
specific types of noise, such as incompleteness, and may not
be suitable for general event log cleaning. Our study proposes
a comprehensive repair method that considers various types
of noisy behaviors.

In ProM [8], there are basic filtering plug-ins that depend
on activity frequencies and user input. The discovery of exter-
nal temporary data is considered in many studies, such as [9],
where research on various techniques for detecting outlier and
noisy behavior in sequential data is discussed. These studies
also discuss related methods that are specifically designed
for the process mining domain. Researchers [10] and [11]
suggest filtering methods that use additional information like
training event data or a reference process model. However,
it is not always possible to have a set of training events or a
reference process model. Recently, many researchers in the
field of in-process mining have proposed common objectives
for filtering strategies.

In [3], an Anomaly Free Automaton (AFA) is built that
considers the entire event log and gives limited value to
non-filtering behavior with respect to AFA. In [4], a research
technique is proposed that detects outliers based on con-
ditional probabilities and sub-sequence potential activities.
In [12], a configurable online filtering method is proposed
that identifies outlier behavior in streaming event logs using
conditional probability. All of the methods mentioned above
focus on eliminating outlier and noisy behavior. However,

VOLUME 12, 2024 82939

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

repairing the outlier and noisy behavior in the event log is
more valuable than simply removing it.

In some studies [13] and [14], researchers propose repair
process models based on event logs. Similarly, in [15],
a researcher uses a processmodel to repair an event log. In our
study, we aim to design a repair technique, so we assume that
there is no process model available for the implementation of
our proposed algorithm.

III. PRELIMINARIES
A. NOTATIONS
Let x be a set, and m a multi-set over x defined as a
function m : x → n≥0 which count multiplicity of each
element in x. Therefore, we describe a multi-set m like m =
{ek11 , ek22 ,, eknn }, where 1 ≤ j ≤ n and having m

(
ej
)
=

kj with kj ∈ n≥0. If kj = 1, then remove the superscript,
and if for some e ∈ x then m (e) = 0, and eliminate it
from the multi-set notation. Whereas m = [∅] represents
an empty multi-set, as ∀e∈x , m (e) = 0. Hence by taking
m̄ = {e ∈ x/m(e) > 0}, whereas m̄ ⊆ x. In the end, set
of all possible multi-set of set x are represented as m(x).
By assuming x∗ as a set of all sequences of set x. Whereas

a finite sequence δ with length n over set x is a function
of δ = {1,, n} → x, alternatively describe as δ =

{x1, x2, , xn} where xj = δ(j) for all 1 ≤ j ≤ n. We can
write the empty sequence as ∈. Multiplication of sequences
δ and δ′ is written as δ.δ′. Having a function hd : x∗× n≥0x∗

representing the ‘‘head’’ of a sequence, as we have a sequence
δϵx∗ and k ≤ |δ|, then hd (δ, r) = (x1, x2, , xk) with
the sequence of first r elements of δ. At the point when
r = 0 then we have hd (δ, 0) =∈ which is symmetrical,
whereas, tl : x∗ × n≥0x∗ denotes the ‘‘tail’’ of a sequence
and is represented as tl (δ, k) = (xn−k+1, , xn) with the
sequence of last r elements of δ. Similarly, when we have k =
0 then tl (δ, 0) =∈. Whereas Sequence δ′ is a subsequence of
sequence δ, by denoting as δ ∈ δ′, if and only if ∃δ1δ2∈x∗
(δ = δ1.δ

′.δ2). Therefore, by assuming δ, δ′ ∈ x∗, we define
the occurrence as δ′inδ by freq : x∗ × x∗ → n≥0 where
freq

(
δ′, δ

)
=

∣∣∣{1 ≤ j ≤ |δ|/δ′1 = δi,δ
′

|δ′|
= δj+|δ′|}

∣∣∣.
Taking an example event log presented in table 3
freq ((b) , (a, b, b, c, d, e, f , h)) = 2 and freq ((b, d) ,

(a, b, d, c, e, g)) = 1 so on.

B. EVENT LOG
Many studies have shown that event logs are a basic require-
ment for process mining. According to Aalst [2], an event log
has data that relate to a single process with some assumptions,
such as: (i) cases exist in a process, (ii) every case has
an event, i.e., each event is linked with the previous case,
and (iii) events are in order within cases. In our study, let’s
assume that we have a set of activities represented as A.
As we know, event logs are the multi-set of sequence over
A, i.e., lϵM(A∗). By considering each δϵ l̄ we have a trace
variant. Whereas l(δ) define as traces of δ which are existing
inside the event log.

i. Petri Net: It is a mathematical model used to describe
the distributed systems. Here in this model the entities called
places are represented with states and events are repre-
sented by transitions. Places and transitions are connected
by directed arcs, which indicate the flow of the tokens. It is
basically used to analyze system behavior, deadlock etc.
ii. Alpha Miner: The identification of a process model is

linked to event logs or observable data via the Alpha Miner
(also known as the α-algorithm, α-miner). The data source
for the alpha miner algorithm is event logs. It begins by
converting the event logs into sequence, choice, parallel, and
direct-follows relations. A petri net describing the process
model is then constructed utilizing these connections. Put
simply, it produces a visualizable, timestamped flow of busi-
ness processes.
iii. Inductive Miner:Another popular process mining

approach for identifying process models from event logs is
the Inductive Miner. This method is based on the idea of
splitting event logs into smaller sub-logs, also known as splits
or cuts, and then identifying different cuts on the graph that
is directly formed from the event logs. The versatility and
scalability of the Inductive Miner is its key advantages. The
approach of finding different divisions in the directly-follows
graph and using the smaller components after division to
indicate the activities’ execution order is what makes Induc-
tive Miners distinctive. By iteratively exploring the space of
potential process models, the Inductive Miner algorithm may
identify a variety of process architectures, from simple linear
models to more intricate models with concurrency loops.

C. PROPOSED PROCESS MINING MODEL: CONTROL
FLOW REPAIRING EVENT LOGS
The methodology adopted for repairing the event logs shows
that we first identify the outlier/noisy behavior, and then we
repair the event log. Our study comprises two central control
flow-oriented concepts: firstly, repairing the event log and
then covering traces in the context surrounding the behavior
of the sequence activities. Traces and context covering repre-
sent the surrounding behavior of some sequence activities.

D. CONTEXT COVERING
Let δ, δ′ϵx∗ we define the context of δ′ concerning δ as
a function con : x∗ × x∗ × n≥0 → P(x∗ × x∗) where
con

(
δ′, δ, l, q

)
= {(δ1, δ2) ∈ x∗ × x∗

/
δ1.δ
′.δ2ϵδ

∧
|δ1| =

l
∧
|δ2| = q Furthermore, let δ′1, δ

′

2ϵx
∗, cov : x∗ × x∗ ×

x∗ :→ P(x∗) are the function returns all subsequences to
the traces happened in a given context, i.e., cov

(
δ, δ′1, δ

′

2

)
=

{δ′ϵx∗
∣∣(δ′1, δ′2) ϵcon(δ′, δ ∣∣δ′1∣∣ , ∣∣δ′2∣∣)∣∣.

Context covering distribute the given subsequences into
their two neighboring subsequences with length l and
q respectively, like δ′1 represent their left neighbor with
length l whereas, δ′2 represent right neighbor with length
q. By taking an example, if δ = (a, b, d, e, f , g) we have
con ((e) , δ, 1, 2) = ((b) , (d, e)). Remember that l and
q may differ, with ‘0’ value which shows a nearby sub-
sequences ϵ. Moreover, cov(δ, (a, b, d) , (e, f , g) = {c, h and

82940 VOLUME 12, 2024

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

cov (δ (b) , (d)) = {(c)}. Hence our main purpose is to find
out and replace the outlier/noisy behavior which depends on
probability of occurrence for a sub-sequence in the specific
context. In a case, if the proposed probability is lower than
the limited value, then we take the behavior as outlier/noisy,
to get their probabilities we describe the covering probability
in the following section.

IV. COVERING PROBABILITY
Let δ, δ′1, δ

′

2 ∈ x∗, maximum sub-sequences with length K
and a multi-set of sequences l ∈ M(x∗). We define c.p : x∗×
x∗× x∗× n≥0×M (x∗)→ [0, 1] as an empirical conditional
probability δ′ covered by δ1andδ2 in event log l, like:

c.p
(
δ′, δ′1, δ

′

2,K , l
)
=

∑

δ=1 (l (δ) frq(δ
′

1, δ
′, δ′2, δ)∑

δ=1 (l (δ)
∑
|δ′′|≤K frq(δ

′

1, δ
′′, δ′2, δ)

if ∃δϵl(cov(δ′, δ′1, δ
′

2) ̸= ∅
0 otherwise

The numerator of the covering probability is the number of
times the context (δ′1, δ

′

2) covers various substrings inside the
lower length that equalsK and the denominator is the number
of times the context (δ′1, δ

′

2), is encountered across the entire
event log. It is evident that the value obtained are real numbers
within the range [0, 1]. A subsequence δ′ among the range
context (δ′1, δ

′

2) is more likely to occur if the value is higher.
As a result, c.p

(
δ′, δ′1, δ

′

2,K , 1, l
)
= 1 means that if context

(δ′1, δ
′

2) exist, then sub-sequence δ′ also occur frequently
among them. According to the event log shown in table 1,
CP (ϵ, (b) , (c) , 1, l) = 7

12 and CP ((b) , (b) , (c) , 1, l) =
1
12 .

TABLE 1. Significant contexts and their probable subsequence for K=1.

The goal of our study is, firstly, to consider the covering
probability of sub-sequences within the noisy/outlier behav-

ior in an event log. Whereas their significant context is a
context that occurs significantly; therefore, the noisy/outlier
sub-sequence is replaced with other sub-sequences having a
higher covering probability between the given contexts.

In the context of our example, we take a trace
(a, b, b, e, f , g), by considering ((b) , (e)) as a frequent con-
text, and then replace the subsequence (b) with ∈, that is more
often to occur among the given context, after repairing we get
the trace (a, b, d, e, f , g), which have no outlier present in it.
In another example, considered trace δ = (a, b, d, e, f , h)
with the significant context ((a) , (b)), by considering the
entire event log, we assume ϵ occurs among them rather
than (e). After their replacement, we get the repaired trace
as (a, b, d, e, f , h). Likewise, for (a, c, d, e) by assuming
context (c, d) with their covering probabilities, we replace
∈ it with (e) and get (a, b, c, d, e) without any outlier.
The user determines which condition is significant by set-

ting the corresponding limit value. The context frequency
with the least number of traces in an event log and their
limited value is taken as a significant context. The user can
also specify themaximum length of covered subsequence (K)

and contexts subsequence (el) respectively. Remember that
the (cl) defines two values like the maximal length for δ′1, δ

′

2.
As our proposed study is based on the repairing method

of an event log ‘l’, context frequency with the limit value tc,
context sub-sequences length cL(l, q) and their upper bound
with length n of covered sub-sequence K . Initially, all the
traces are scanned to calculate their covering probabilities for
contexts and possible sub-sequences. After that, we calculate
their context frequency and covering probability (according
to tc) for all traces and sub-sequence present in it (with
length ≤ K). In a case, if context frequency is significant
and their covering probability is lower than we interchange
each sub-sequence with the best one based on the context
frequency. Otherwise, in a situation, if we have insignificant
context then it is impossible to use them for repairing noisy
behavior.

Table 1 provides a basic visual demonstration of the oper-
ation of the suggested technique. To repair an event log with
100 traces, we consider K = 1 as the maximum subsequence
length and context lengths equal to 1. Initially, important
contexts and their likely subsequences are identified by scan-
ning the event log. We identify a noisy/infrequent behavior if
the related context is significant, and the subsequence is not
likely for that context. For example, in the significant context
(⟨a⟩, ⟨b⟩), the occurrence of ⟨a⟩ is unlikely.

Repairing Event Logs 9, identifying anomalous behavior,
our goal is to substitute unlikely subsequences with more
likely ones. As we are looking for a subsequence that is as
close as possible in length to the outlier subsequence for
substitution. The subsequence with the highest probability
among all the candidate subsequences is the one we are inter-
ested in.We first look for a subsequence with the same length,
for instance, if the outlier subsequence has length 2.We try for
a subsequence δ′′ with length 1 or 3 if there isn’t a meaningful
subsequence with length 2 for that context. Next, we select

VOLUME 12, 2024 82941

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

the candidate subsequence with the highest probability in
that situation. Table 1 shows that there are two subsequences
that can be substituted with ⟨b⟩: i.e. ε and ⟨c⟩. We select ⟨c⟩
because its length is comparable to the outlier subsequence,
and the trace is modified to ⟨a, c, b⟩. It is more likely that
a occurs for the other outlier trace in this case, among the
context (ε, ⟨b⟩). It becomes ⟨a, b, c⟩. when ⟨a⟩ is substituted.
The initial point of the previous context’s right subsequence
will serve as the beginning point of the subsequent scanning
subsequence following each replacement to prevent infinitive
loops. For instance, we won’t verify subsequence ⟨a⟩ again
after by replacing ε with ⟨a⟩ in ⟨a, b, c⟩ and considering ⟨b⟩
to be the next subsequence.

After detecting the noisy behavior, we try to replace the
impossible sequence with the most likely ones. For substitu-
tion, we are looking for a sequence that is as close as possible
to the next outlier our interest is towards the highest prob-
ability. To avoid endless loops, after every change, we first
scanned the sequence with the right sequence of the previous
context.

A. EVALUATION OF THE PROCESS MINING MODEL:
REPAIRING NOISY/OUTLIER BEHAVIOR
Here, we discuss the important steps with their concise algo-
rithmic explanation of our control flow repairing event logs
by using context and covering probability in our study we
focus on the behavioral context to lower the computational
complexity with their sub-sequence maximum length that is
‘K ’ and ‘l’. By defining the behavioral context, we have.

BK ,l
L = {(δK , δl) ϵBL |1 ≤| δl | ≤ l ∧ 1 ≤ |δK | ≤ K

By keeping in mind that, do not take the context length of
sub-sequence ‘0’

Furthermore, we restrict the maximum length of the
sub-sequence to the limited value pl . After that, their relative
behavioral context frequency becomes as.

f K ,l
BL (δr , δl) =

∑
δϵL̄ (L(δ)×

∑
δ′∈A∗,δ′≤pl |δδK ,δ′,δl |)

|L|

whereas δK , δl, andBL are equals to B
r,l
L . Similarly, empirical

conditional covering probability is defined as.

c.p
(
δ′, δ′1, δ

′

2,K , l
)
=

∑

δ=1 (l (δ) frq(δ
′

1, δ
′, δ′2, δ)∑

δ=1 (l (δ)
∑
|δ′′|≤K frq(δ

′

1, δ
′′, δ′2, δ)

if ∃δϵl(cov(δ′, δ′1, δ
′

2) ̸= ∅
0 otherwise

For every trace, we begin from a sub-sequence length
0. Our main focus is to initiate from the longest
one that is equal to ‘1’. As we know, if context(
δln , δln−1 ,, δl1

)
,
(
δk1 ,, δkn

)
is frequent, then

the
(
δln−1,, δln

)
,
(
δr1 ,, δrn−1

)
is also frequent.

Our interest is in the longer context because they are more
interesting. On-Line 17th of algorithm 1, if the context is
insignificant w.r.t tc and the empirical conditional covering
probability of sub-sequence δ′ is not at their highest-level w.r.t

tc.p, so, replace themwith suitable sub-sequences. Remember
that, with every replacement, their index is high which makes
shower the end of the algorithm.

We cannot take ‘K ’ and ‘l’ equal to 0. To find out the
noisy/outlier behavior at the beginning and ending of the
trace, therefore, in every trace for an event log, we add an
artificially generating event.

Algorithm 1 Repairing Noisy/Outlier Behavior in an Event
Log
1. Produce REPAIR (L,pl , r, l,tc.p, tc)
2. L ′← [] // empty multi-set
3. For each (δ ∈ L) do
4. Adding artificially generating beginning and termi-

nating activities δ

5. for(i← 0 topl)do //sub-sequence
6. for (j← lto 1)do // left context
7. for (k ← rto 1)do // right context

end for
8. ind← 0
9. (i+ j+ k + ind ≤ |δ|) then //context+sub-sequence

part of tracesδ
10. δl ←

(
δind ,, δind+j

)
11. δ′← δind+j+i,, δind+j+i)
12. δr ←

(
δind+j+i+1,, δind+j+i+k

)
13. if f r,lBL (δr , δl) ≥ tc ∧ γ

pl
L (δ′, δr , δl) ≥ tc.p then

14. Replace
(
δ′, (δr , δl)

)
end if

15. δ′′← replacement acc. strategy
16. Replaceδ′ andδ′′ inδ
17. ind← ind + |δ′′

18. ind← ind+1
19. Repaideventlog← add
20. Return

In algorithm 1 we have the pseudo-code for our proposed
repair method. Event log like ‘L’ start with the input of our
proposed method, sub-sequence with maximum length (pl ∈
z≥0), the maximum length of the right and left sub-sequence
context (n ∈ K , n ∈ l), least limited values length for the
relative behavioral context (tc ∈ z>0), empirical conditional
covering probability (0 ≤ tc.p ≤ 1), and L ′ returns the
repaired event log.

Real event logsmostly contain noisy/outlier behavior. Such
behavior can result in inaccurate process mining algorithms,
which can reduce the accuracy of our proposed process min-
ing model. Enhancement aims to improve the quality, value,
desirability, and attractiveness of a process mining model.
Therefore, repairing event logs from noisy behavior is essen-
tial. Repairing an event log in a process mining model is a
main challenge in process discovery [7].

Let’s consider an example of a hospital, where the event
logs contain noisy behavior, defining sequences of executed
business process activities, usually within the context of
cases, for example, a patient admitted to a hospital or case ID.

82942 VOLUME 12, 2024

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

Performance in that case context is referred to as an event, and
the sequence of specific cases refers to traces. It is possible
to define the same sequence of activities for multiple traces,
but for that, each event should be unique, whereas the traces
themselves have different events.

Hence, the receptionist identifies the patient, and after
their identification creates a new record, the clinician admits
the patient and takes vitals, by giving treatment to the
patient. After the physician evaluates the patient and gives no
lab/procedure, diagnosis of the disease, and give treatment
plan at the end accountant gives the patient billing and dis-
charge slip. Let’s suppose (a, c, b, d, e, f , g, h) which are the
shorthand activity names. In our study, formally we define
an event log as a multi-set of sequences for the activities.
In tables: 2 and [tab4]3, we take the example of event logs
with noisy behavior and their resources.

TABLE 2. List of activities and resources.

TABLE 3. Trace in the event log.

For example, consider an event log that relates an event to
case ID value 1. Hence, the receptionist identifies the patient,
and after identification, a new record is created. The clinician
admits the patient and takes vitals, giving treatment to the
patient. After the physician evaluates the patient and provides
no lab/procedure, a diagnosis of the disease is made, and a
treatment plan is provided. Finally, the accountant provides
the patient billing and a discharge slip. Let us suppose (a, c,
b, d, e, f, g, h) are shorthand activity names.

In our study, formally, an event log is defined as a multi-set
of sequences for the activities. In tables 1 and 2, examples

of event logs with noisy behavior and their resources are
provided.

Here, 74 events are considered, linked with 11 traces.
Each trace occurs once except the first one, which occurs
twice. As shown in Table 3, the first three traces have no
noisy/outlier behavior. However, in the 4th and 5th traces,
activities ‘g’ and ‘h’ are missing. The remaining seven traces,
including the first three, exhibit several types of noisy/outlier
behavior. In process discovery, the alpha miner [9] is more
sensitive to noisy/outlier behavior, resulting in an inaccu-
rate process mining model. On the other hand, the inductive
miner [10] implements a built-in filtering technique to over-
see such behaviors.

FIGURE 1. Alpha miner with noisy/outlier behavior.

FIGURE 2. Inductive miner with noisy/outlier behavior.

In figure 1, apply AlphaMiner with noisy /outlier behavior
and in Figure 2, we apply the inductive miner with noisy
behavior. The black box represents the immediate transition,
and the white box represents the transition after the immedi-
ate transition. Circles represent the places, with a dot inside
representing a token.

In this case, we first repair the event log and then apply
the alpha miner and inductive miner. The black box shows
the immediate transitions, and the white box shows the tran-
sitions after that. We attain an accurate and understandable
process mining model, as shown below.

FIGURE 3. Alpha miner after repairing event log.

In Figure 3, after repairing the event log, we apply the alpha
miner. Here, circles represent the places with a token inside,
and the box represents the transition.

In Figure 4, we apply the inductiveminer after repairing the
event log. The black box represents the immediate transition,
and the white box represents the flow of cases in the process.
Hence, we realize that instead of removing the event log with

VOLUME 12, 2024 82943

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

FIGURE 4. Inductive miner after repairing event log.

noisy/outlier behavior from the dataset, we repair them to
attain accurate results. The black box shows the immediate
transitions, and the white box shows the timed transitions.
Because event logs have significance in the process mining
algorithm, rather than removing them, we choose to repair
them. This enhances the performance and quality of the pro-
cess mining model.

B. SIMULATION SETUP
1) DATA SOURCES
To validate our proposed method, we conducted experiments
using the ProM framework on artificially generated datasets.
We created 10 distinct business process models and generated
100 log traces for each model. We introduced various types
of noise to assess the robustness of our repair technique.

The user begins by customizing a series of parameters to
generate a process model. These parameters determine the
size of the process model and the probability of different
structures appearing in the model (e.g., sequence, choice,
parallel, loop). These parameters ensure the creation of an
authentic business process model that accurately reflects real-
world scenarios.

For our experiment, we randomly generated 10 different
business process models. Once we obtained a process model,
we used the matching plug-in to generate 100 log traces for
each model. It is important to note that, at this stage, the
event log precisely conforms to the process model. We used
these conformance event logs to calculate the denominator of
the ‘covering probability.’ The workflow of the artificial data
generation algorithm is illustrated in Figure 5.

FIGURE 5. Artificial data generation algorithm.

V. RESULT AND DISCUSION
We conducted experiments using real and artificial event
data to assess the proposed method’s efficacy. We focused

only on context subsequences with a length of 1, simplifying
our process. In the ProM-framework, we used the Repair
Log plug-in (RL) as the repair method. This plug-in takes
an event log as input and produces a repaired event log
as output. Additionally, we selected the context CLs with
left and right sequence lengths, determined the maximum
subsequence length (K), and set the threshold (TC). We also
used the Repair Log plug-in in RapidProM, implementing
our proposed method across multiple event logs with vary-
ing thresholds and process mining algorithms with different
configurations. RapidProM is a RapidMiner module that
integrates various process mining algorithms with scientific
workflows.

A. EVALUATION MEASURES
Here, we implement the algorithms used in our research work
by using PM4py and ProM Framework which is evaluated by
the following perspectives. The Fitness, Precision, Accuracy
and F-Measure are used to compare the performance of each
classifier. Because of the data set’s asymmetry, overall accu-
racy may be misleading.
i. Fitness:: Assume that d is the total number of distinct

traces found in the combined log. For every log j(1 ≤
j ≤ d), the number of process instances that make up
the current trace is denoted by nj; the number of missing
tokens is indicated by mj; the number of tokens that
remain is indicated by rj; the number of consumed tokens
is indicated by cj; and the number of tokens produced
during log replay of the current trace is indicated by pj.
The following is the definition of the token-based fitness
metric:

fitness =
1
2

(
1−

∑d
j=1 njmj∑k
j=1 njcj

)
+

1
2

(
1−

∑d
j=1 njrj∑k
i=1 njpj

)
whereas, for all j, mj ≤ cj and rj ≤ pj, therefore 0 ≤
fitness ≤ 1.

ii. Precision: Let d represent how many distinct traces
there are in the combined log. Note that invisible tasks
may enable successive labeled tasks, but they are not
counted themselves. For each log trace j(1 ≤ j ≤ d),
nj is the number of process instances integrated into
the current trace, and yj is the mean number of enabled
transitions during log replay of the current trace. Addi-
tionally, the collection of visible tasks in the Petri net
model is denoted by tv. Here is how the precision metric
is defined:

precision =

∑d
j=1 ni (|tv| − yi)

(|tv| − yi) .
∑d

j=1 ni

iii. Accuracy: It’s the proportion of accurately predicted
samples relative to the total samples within the dataset
is called accuracy. It can be calculated as:

Accuracy =
Correct Predictions
Total Predictions

82944 VOLUME 12, 2024

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

We used fitness and precision to assess the discovered
process models. Fitness calculates the percentage of event
log behavior that a process model also describes. Precision,
on the other hand, estimates how much of the behavior that
a model predicts is recorded in an event log. Low precision
shows that a process model, compared to an event log, is more
significant. The tradeoff between these measures should be
noted. Sometimes, excluding a small portion of behavior
results in an insignificant reduction in fitness, though pre-
cision increases significantly. Consequently, the F-Measures
metric was employed, which combines fitness and precision,
to assess the identified process models.

2×Precision×Fitness
Precision+ Fitness

Note that fitness often plays a significant role in many
applications. As a result, the concept of conditional precision
is additionally employed, wherein only the precision values
of process models with fitness values lower than 0.95 are
considered. The Matrix Filter also performs well on event
logs with noise, which is another positive aspect.

TABLE 4. Real event logs use in our study.

In our experiment, we aimed to evaluate the performance
of our proposed approach on real event logs. Table 4 provides
the necessary details of the event logs used in our exper-
iments. We also introduced varying amounts of noise into
these event logs, which involved randomly adding, remov-
ing, and switching activities within the traces. For example,
‘Road − Fitness − 0.5’ was created by adding 5% of each
category of noise mentioned earlier. It is important to note
that modified, filtered, or repaired event logs were used to
discover process models for all tests. Real event logs without
noise were used to assess conformity and evaluate the quality
of the resulting process model.

Four different methods were employed to identify the best
process models for these event logs. The first method used
was N&IMi, where N represents an event log with modifica-
tions, and IMi [7] was applied to 51 different types of noise
filtering thresholds ranging from 0to1. The second method
employed was called M&IM , where M represents the event
log repaired with the filtered matrix. The inductive miner
was then implemented on the event log that had already
been repaired using the filtered matrix method. On event

logs that were already repaired using our proposed method,
the fundamental Inductive Miner was also applied, referred
to as R&IM . Finally, the repaired event logs (R&IMi) were
subjected to the inductive miner and four different types of
noise filtering thresholds (0.1 to 0.4).

Figures 6 and 7 illustrate the results obtained from applying
these proposed methods to the event logs and their corre-
sponding F-Measure. This data indicates that the Inductive
Miner (N&IMi) with noisy behavior does not yield a suitable
processmodel for the sixty-five event logs. On the other hand,
the inductive miner finds a process model with a suitable
F-measure that does not exhibit noisy behavior. It can be
observed that R&IM produces better results than M&IM
for most of the event logs. The output of M&IM at the
beginning of the experiment is relatively good for the hospital
billing event log due to the presence of numerous variants.
However, only 1% of these variants account for 94% of
the traces, making this type of event log ideal for filtering.
To achieve the best result, the inductive miner orM&IM can
be applied to the cleaned event logs. Additionally,M&IM and
the InductiveMiner typically sacrifice a significant amount of
fitness to produce the best possible process model according
to the F −Measure. Figures 8 and 9 present the results. The
aforementioned results demonstrate that the R&IM methods,
in combination with the inductive miner, yield the best pro-
cess model with high precision without considering fitness.
However, as observed, the Inductive Miner is unable to find a
process model with high fitness and precision simultaneously
for event logs with substantial noisy behavior.

FIGURE 6. BPIC event logs F- measure after implementing different
techniques.

FIGURE 7. Real event logs F-measures after implementing different
techniques.

In figures 10, we have best discovered process models
on BPIC using RL, MF and NF methods in 10(a), 10(b),
and 10(c) with their fitness, precision and F-measure results.
Whereas, figure 12 and 11 shows synthetic event log F-
measures and conditional precision after applying different
methods on it. Finally, it should be noted that achieving the
best results often involves removing a significant amount of

VOLUME 12, 2024 82945

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

FIGURE 8. Conditional precision BPIC event after implementing various
methods.

FIGURE 9. Conditional precision for real event logs after implementing
different techniques.

FIGURE 10. The best discovered process models on BPIC using RL,
MF and NF methods in 10(a), (b)and (c) with their fitness, precision and
f-measure results.

event log behavior using filtering techniques. A list of trace
percentages is still present in each event log for the topM&IM
model. To attain the best process model, sometimes we need
to use 5% of the traces. Therefore, a substantial amount of
behavior needs to be deleted from the event log. In the repair
method, all traces are still present in an event log, although
they can be altered. It is important to note that in grid search
on various parameters, all methods displayed the best out-

FIGURE 11. F-measure for synthetic event logs after implementing
methods.

FIGURE 12. Synthetic event logs conditional precision after applying
different methods.

comes. Adjusting these thresholds, like with other innovative
process mining-specific data cleansing techniques, poses a
challenge for users.

TABLE 5. R and IM results.

TABLE 6. M and IM results.

TABLE 7. N and IMI results.

After obtaining the business process model and event logs,
we can simulate non-conformance in the event log from the
real world by extracting 10% of the event log from the full
conformance event log and adding noise to it is shown in
figure 13. In our study’s experiments, types of noise addi-
tion included missing, dislocated, and redundant logs. The
proportion of noise addition increased from 30% to 40% and
then 50% which is shown in figure [DCLfiglabel14]14 to 17,
resulting in 500 log traces with noise. Subsequently, based on
the method proposed in our paper, the event log after noise
addition was repaired, and the conformance log before noise

82946 VOLUME 12, 2024

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

FIGURE 13. Accuracy at 10% noise.

FIGURE 14. Accuracy at 20% noise.

FIGURE 15. Accuracy at 30% noise.

FIGURE 16. Accuracy at 40% noise.

addition was used as the standard to measure the repair result.
In other words, if two event logs were the same, the repair
accuracy was considered 100%. When the two event, logs
were not the same, the ‘difflib’ module in Python was utilized

FIGURE 17. Accuracy at 50% noise.

to automatically calculate the similarity between them. The
classes and methods provided by this module were used to
compare different sequences. It could also compare files and
generate different results. Finally, these similarities were used
as accuracy measures for the repair results.

VI. CONCLUSION
Process mining models are designed to operate with clean
event logs. However, event logs often contain outliers and
noisy behavior, which can lead to inaccurate process mining
outcomes. By addressing this issue and correcting the noisy
behavior in the event log, we can improve the performance of
the process mining model. In our study, we investigate a pro-
cess mining model that handles noisy behavior in event logs.
This is done by decomposing the event logs into sub-logs and
using the covering probability to eliminate the noisy behavior
in each sub-log. Once repaired, the sub-logs are reintegrated
into the original event log at their appropriate positions. Addi-
tionally, we propose a probabilistic method that relies on the
frequency of activity occurrences in specific situations. This
approach allows us to eliminate noisy and abnormal behavior
from the event log, providing a comprehensive view of the
process.

To evaluate the effectiveness of our proposed repair tech-
nique, we generate an artificial event log with simulated noisy
behavior using the ProM framework. Through this applica-
tion, we create a test set to demonstrate that our method can
identify and repair various types of noisy and outlier behavior
in event logs. In conclusion, our proposed method shows that
repairing event logs can greatly enhance the performance of
process mining models. Future research could explore the
application of this method to different types of processes and
further refine the probabilistic detection algorithm to handle
more complex noisy behaviors.

DISCLOSUER STATEMENT
No potential conflict of interest was reported by the authors.

REFERENCES
[1] W. M. P. van der Aalst, ‘‘Using process mining to bridge the gap between

BI and BPM,’’ Computer, vol. 44, no. 12, pp. 77–80, Dec. 2011.

VOLUME 12, 2024 82947

S. Shahzadi et al.: Enhancement in Process Mining Model by Repairing Noisy Behavior in Event Log

[2] W. M. P. van der Aalst, Process Mining—Data Science in Action. Berlin,
Germany: Springer, 2016.

[3] R. Conforti, M. L. Rosa, and A. H. M. T. Hofstede, ‘‘Filtering out infre-
quent behavior from business process event logs,’’ IEEE Trans. Knowl.
Data Eng., vol. 29, no. 2, pp. 300–314, Feb. 2017.

[4] M. F. Sani, S. J. Zelst, and W. M. van der Aalst, ‘‘Improving process
discovery results by filtering outliers using conditional behavioural prob-
abilities,’’ in Proc. Bus. Process Manag. Workshops, 2017.

[5] W. van der Aalst, B. F. van Dongen, C.W. Gunther, A. Rozinat, E. Verbeek,
and T. Weijters, ‘‘ProM: The process mining toolkit,’’ in Proc. BPM, 2009,
vol. 489, no. 31, pp. 1–4.

[6] W. M. P. van der Aalst, A. Bolt, and S. J. van Zelst, ‘‘RapidProM: Mine
your processes and not just your data,’’ 2017, arXiv:1703.03740.

[7] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, ‘‘Dis-
covering block-structured process models from event logs containing
infrequent behaviour,’’ in Proc. Bus. Process Management Workshops.
Cham, Switzerland: Springer, 2014, pp. 66–78.

[8] C. W. Gunther and W. M. P. van der Aalst, ‘‘Fuzzy mining—Adaptive
process simplification based on multi-perspective metrics,’’ in Business
Process Management (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 2007, pp. 328–343.

[9] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection for discrete
sequences: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 5,
pp. 823–839, May 2012.

[10] J. Wang, S. Song, X. Lin, X. Zhu, and J. Pei, ‘‘Cleaning structured event
logs: A graph repair approach,’’ in Proc. IEEE 31st Int. Conf. Data Eng.,
Apr. 2015, pp. 30–41.

[11] H.-J. Cheng and A. Kumar, ‘‘Process mining on noisy logs—Can log
sanitization help to improve performance?’’ Decis. Support Syst., vol. 79,
pp. 138–149, Nov. 2015.

[12] S. J. van Zelst, M. F. Sani, A. Ostovar, R. Conforti, and M. La Rosa,
‘‘Filtering spurious events from event streams of business processes,’’
in Proc. CAISE, 2018.

[13] D. Fahland and W. M. P. van der Aalst, ‘‘Model repair—Aligning process
models to reality,’’ Inf. Syst., vol. 47, pp. 220–243, Jan. 2015.

[14] A. Armas-Cervantes, N. van Beest, M. La Rosa, M. Dumas, and
S. Raboczi, ‘‘Incremental and interactive business process model repair
in apromore,’’ in Proc. BPM Demos. Boca Raton, FL, USA: CRC Press,
2017.

[15] A. Rogge-Solti, R. S. Mans, W. M. P. van der Aalst, and M. Weske,
‘‘Improving documentation by repairing event logs,’’ in The Practice of
Enterprise Modeling (Lecture Notes in Business Information Processing),
vol. 165, J. Grabis, M. Kirikova, J. Zdravkovic, and J. Stirna, Eds. Berlin,
Germany: Springer, 2013, doi: 10.1007/978-3-642-41641-5_10.

SHABNAM SHAHZADI received the master’s
degree in statistics from Pir Mehr Ali Shah Arid
Agriculture University, Rawalpindi, Pakistan. She
is currently pursuing the Ph.D. degree with the
School of Mathematics and Big Data, Anhui
University of Science and Technology, China.
She was a Lecturer with Pir Mehr Ali Shah
Arid Agriculture University, Rawalpindi, and
the National University of Modern Languages
(NUML), Islamabad, Pakistan. She has authored

and coauthored research articles in various academic journals. Her research
interests include stochastic Petri nets, deep learning, machine learning, data
management, advanced statistics, complex designs, probability theory, and
statistical inference. She was a Manage Editor of Journal of Rawalpindi
Medical College (JRMC).

WALID EMAM received the B.S. degree in special
mathematics and the M.S. and Ph.D. degrees in
mathematical statistics from the Faculty of Sci-
ence, Al Azhar University, Egypt, in 2007, 2015,
and 2018, respectively. His research interests
include econometrics, multivariate analysis, data
mining, regression analysis, survival analysis, pub-
lic health, biostatistics, probability distributions,
statistical inference, environmental statistics, and
economic statistics.

USMAN SHAHZAD received the M.Sc. degree
in statistics from International Islamic University,
Islamabad, Pakistan, the M.Phil. degree in statis-
tics from Pir Mehr Ali Shah Arid Agriculture Uni-
versity, Rawalpindi, Pakistan, and the Ph.D. degree
in statistics from International Islamic Univer-
sity, Islamabad. He was a Lecturer with Pir Mehr
Ali Shah Arid Agriculture University, Rawalpindi.
He has published more than 60 research articles
in research journals. His research interests include

survey sampling, extreme value theory, stochastic process, probability, data
mining, and non-parametric statistics. He served as an Associate Editor for
the Heliyon journal and Mathematics section.

SOOFIA IFTIKHAR was born in Pakistan. She received the master’s degree
from the Department of Statistics, University of Peshawar, the M.Phil.
degree from the Department of Statistics, Shaheed Benazir Bhutto Women
University Peshawar (SBBWUP), and the Ph.D. degree in statistics from the
University of Peshawar, specializing in the field of sampling. Since August
2006, she has been an Assistant Professor with the Department of Statistics,
SBBWUP. She has authored and coauthored research articles in various
academic journals. Her research interests include statistical estimation and
survey sampling.

ISHFAQ AHMAD was born in Pakistan, in 1981.
He received the B.Sc. degree in statistics, physics,
and mathematics from Bahauddin Zakariya Uni-
versity, Multan, Pakistan, in 1999, the M.Sc. and
M.Phil. degrees in statistics from Quaid-i-Azam
University, Islamabad, Pakistan, in 2003 and 2005,
respectively, and the Ph.D. degree in probabil-
ity and mathematical statistics from the Institute
of Applied Mathematics, University of Chinese
Academy of Sciences (UCAS), Beijing, China,

in 2010. He is currently an Associate Professor of statistics with the Depart-
ment of Mathematics and Statistics, Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad, Pakistan. Before this, he was an
Assistant Professor with King Khalid University, Saudi Arabia. His main
research interests include extreme value theory, statistical inference, survey
sampling, optimization, bayesian analysis, and functional analysis. He has
published more than 65 articles in journals of international repute, such as
the International Journal of Climatology and Scientific Reports.

GAURAV SHARMA received the M.Tech. degree
from the Guru Jambheshwar University of Science
and Technology, Hisra, and the Ph.D. degree from
Punjabi University Patiala, India. He is currently
a Professor with the Department of Computer Sci-
ence and Engineering, Seth Jai Parkash Mukand
Lal Institute of Engineering and Technology,
Haryana, India. He has 20 years of teaching and
academic experience. He has published approx-
imately 44 research papers/chapters in various

SCI/ESCI/SCOPUS/WoS journals, book chapters, and conferences. He has
guided 12 M.Tech. candidates. His research interests include cloud com-
puting, fog computing, and WSN. He organized various national-level
seminars/conferences and faculty development programs. He also con-
ducted/organized various technical events/workshops for diploma-level stu-
dents at various institutes. He is a CSI member and reviewed various research
articles from reputed publication houses such as Springer/Elsevier/IEEE.

82948 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-642-41641-5_10

