IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 25 April 2024, accepted 2 June 2024, date of publication 7 June 2024, date of current version 18 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3411070

== RESEARCH ARTICLE

A Simulation Framework for Prototyping Intelligent
Vehicle-to-Infrastructure Applications: A Case
Study on RSU-Based Intersection Movement

Assist for Connected Autonomous Vehicles

CHUN-TING WU, SHAO-HUA WANG *, AND CHIA-HENG TU", (Member, IEEE)

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Corresponding author: Chia-Heng Tu (chiaheng @ncku.edu.tw)

ABSTRACT A cooperative intelligent transport system (C-ITS) enables information sharing among ITS
subsystems, such as vehicle and roadside infrastructure, with vehicle-to-everything (V2X) communications.
Novel C-ITS applications aim to reduce traffic congestion and improve road safety. For example, a roadside
unit (RSU) can sense the traffic status of an intersection and share the information to nearby vehicles
to prevent potential collision, i.e., the intersection movement assist (IMA) scenario. Typically, C-ITS
applications are developed in a simulated world to mitigate the high costs and safety hazards associated with
the real-world counterpart. Unfortunately, existing simulation tools focus primarily on modeling vehicle-
to-vehicle (V2V) communications, rather than the vehicle-to-infrastructure (V2I) communications involved
in the above example. This poses a great challenge for developing V2I-based applications, especially for
the application-level performance assessment on such systems. This work proposes a software framework
that enables the simulation of full software stacks for the ITS subsystems, i.e., vehicle and RSU. This
full-stack simulation capability enables hardware-in-the-loop simulations, evaluating the application-level
performance and relative cost in the early stage of system development. This can shorten the time to market
for C-ITS applications. We believe that this framework paves the way toward the development of novel V2I
applications.

INDEX TERMS C-ITS, V2I communications, 3D simulation, image-based vehicle detection, design space
exploration.

I. INTRODUCTION

With the advances of vehicle-to-everything communication
technologies [1] and information technology, cooperative
intelligent transport systems which involve the collaboration
of ITS subsystems (e.g., pedestrian, vehicle, and roadway
infrastructure) to enable ITS applications become increas-
ingly important to improve road safety and traffic manage-
ment toward smart cities. Examples of C-ITS applications [2],
[3] include traffic jam warning, intersection collision warn-
ing, and traffic signal preemption. These applications rely on
the exchange of environmental status data using cooperative

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiayi Zhang

V2X communications, such as the speed, driving direction,
and position, to supply the data required by a specific C-ITS
application. Furthermore, standards and/or protocols have
been defined by international organizations, such as Euro-
pean Telecommunications Standards Institute (ETSI) [4],
and Society of Automotive Engineers (SAE) International,
to facilitate the development of C-ITS applications.
Simulation tools are often adopted during the early stage
for the system development of C-ITS applications to test and
validate the correctness and efficiency of novel ideas without
considering the cost and safety issues that are arisen when
the development is done in a physical world. Popular choices
for evaluating the efficiency of traffic flow and management
include PTV Vissim [5], SUMO [6], and TRANSIMS [7].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

82584 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0007-6445-6866
https://orcid.org/0000-0003-1961-4304
https://orcid.org/0000-0001-8967-1385
https://orcid.org/0000-0003-2434-4329

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

These traffic flow simulators can be further integrated
with network simulators for building the applications with
V2X communications, where VEINS [8] is such an example.
VEINS uses SUMO to generate road traffic and OMNet++ (a
network simulator) to handle the vehicle-to-vehicle commu-
nications, where the movement of car is simulated by SUMO
and the corresponding communications among the cars are
reflected in the simulation of vehicular communications
by OMNeT++. It is interesting to note that VEINS can
be further extended to model the vehicle-to-infrastructure
communications between vehicles and a roadside unit.

While the above simulation tools are good for the
development V2V-based communications (e.g., they put an
emphasis on the simulation of traffic flows, which enable
the modelling of the V2X communications for simulated
vehicles), they are not suitable for the system prototyping for
V2I-based C-ITS applications since they do not support the
simulation of the full software stacks of an RSU and a vehicle
(for an autonomous vehicle), respectively. In such a case,
the application-level performance of a V2I C-ITS application
is hard to be estimated during the system development
stage with the simulations. Taking a V2I-based intersection
movement assist (IMA) application for autonomous vehicles
illustrated in Figure 1 as an example, a connected autonomous
vehicle! obtains traffic information (i.e., the ambulance from
the side) that is detected and broadcasted by an RSU (the
roadway infrastructure) to avoid potential side collision, and
unfortunately, the existing simulation tools cannot be used to
estimate the end to end latency from the sensing done by the
RSU to the reaction taken by the autonomous vehicle after
receiving the traffic information. Therefore, critical design
decisions cannot be made without the application-level
performance information.

This work aims to provide a software platform to
enable the development of a V2I-based application using
a full-stack system simulation, where the software stack
of each participant (e.g., vehicle, pedestrian, and roadside
unit) can be run in the simulation system. The full-stack
simulation further enables a hardware-in-the-loop simulation
(i.e., the realistic computing hardware for each participant is
adopted in the simulation), and hence, the application-level
performance is able to be gauged during the simulations.
This software platform facilitates the system prototyping and
the performance measurement before the system is actually
deployed in the filed, shortening the time to market. The
contributions made by this work are summarized as follows.

« A simulation-based software framework is proposed and
developed to facilitate the development of a V2I-based
C-ITS application. This framework can be further used
for the hardware-in-the-loop simulation to assess the
delivered performance at the application level. To the
best of our knowledge, we are not aware of any other

'An autonomous driving vehicle that is equipped with a wireless
communication device for V2X communications, as will be introduced
in Section II-B.

VOLUME 12, 2024

.
30KM/hr ! ﬁ g E'EQ
v =

'
!
/
’

)

Green light

1ﬂr
' A ® [4
Lo 4

N

RSU w/ centralized
perception and
broadcasting

60KM/hr

1
'
'
\
\

2
m
(=3
=
m
=
-~

FIGURE 1. An example of utilizing RSU-centric traffic condition
perception and broadcast for the IMA application scenario, where the
RSU broadcasts the detected vehicle information (red ambulance) to the
connected autonomous vehicle (blue) for collision avoidance at the
intersection.

work that enables the full-stack system simulation for
C-ITS V2I-based application development.

« A case study of a real-world IMA application (defined in
SAE J2945/1) is conducted to evaluate the effectiveness
and the capability of the proposed framework. The
experimental results demonstrate the correctness of the
IMA application that is built with the CARLA [9]
simulator to provide a virtual world and the traffic
(the ambulance in Figure 1), the RSU for sensing the
simulated traffic and broadcasting the V2I messages,
and the connected autonomous vehicle that reacts to
avoid the traffic accident based on the perceived data.

o A hardware design exploration for the RSU (in Figure 1)
is performed as an example to further showcase the
advantage of the full software stack enabled simulation.
Three different computing hardware platforms are used
to evaluate different performance and cost alternatives
for the intelligent vehicle detection module of the RSU
for sensing the traffic information.

In the remainder of this paper, Section II provides the
background information and the related work for V2X
communications (and related international standards), appli-
cations, and simulations. The overview of the proposed
software framework is introduced in Section III. The case
study conducted in this work based on Figure 1 is described
in Section IV. The experimental results of the proposed
framework are given in Section V. Section VI concludes this
work.

Il. BACKGROUND AND RELATED WORK

This work provides a simulation platform for the development
of vehicle-to-infrastructure communications for the intersec-
tion movement assist application. To offer the background
information of this work, Section II-A gives an introduction
to vehicle-to-everything communications and standards.
The ITS applications built with the vehicle-to-everything
communication support are introduced in Section II-B. The

82585

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

existing simulation tools that are used for the development of
ITS applications are described in Section II-C.

A. V2X COMMUNICATIONS AND STANDARDS
The wireless communications that are used to exchange
information between vehicles (and their drivers) and other
roadway entities (such as roadway infrastructure, other vehi-
cles, and pedestrians) are called vehicle-to-everything com-
munications. V2X communications can be further catego-
rized into different types, such as vehicle-to-vehicle (V2V),
vehicle-to-pedestrian (V2P), and vehicle-to-infrastructure
(V2I) communications. For example, this work focuses on the
V2I communications that transfer the data between a vehicle
and a roadside unit. The V2X communications are enabled by
either the IEEE 802.11 standards or the LTE based standards
to physically transfer the data. The former standard uses the
communication technology called Dedicated Short-Range
Communications (DSRC) [10], whereas the latter uses the
Cellular vehicle-to-everything (C-V2X) technology [11].
International standards, such as ETSI ITS-G5 and SAE
J2735 [12], have been developed for vehicle communications
in cooperative intelligent transport systems. These standards
are constructed on top of the DSRC/C-V2X communication
technologies. The SAE J2735 standard defines message
formats, such as Basic Safety Message (BSM), Signal
Phase and Timing (SPaT), Map Data (MAP), Signal Status
Message (SSM), and Signal Request Message (SRM). These
message formats can be used in the ITS application scenarios
specified in the SAE J2945 standard [13]. For example, the
specification of SAE J2945/1 focuses on vehicle-to-vehicle
safety communications, where vehicles share their location
and other status information via the J2735 BSM format.
Particularly, the J2945/1 specification further defines a V2V
based application scenario, Intersection Movement Assist
(IMA) [14], preventing collisions between vehicles at the
intersections. This is done by exchanging BSMs frequently
via V2V communications to proactively avoid collisions. It is
important to note that this work follows the IMA scenario
with V2I communications (illustrated in Figure 1), instead
of the V2V communications, as will be introduced in the
following subsection.

B. V2X-BASED C-ITS APPLICATIONS

A considerable amount of efforts have been made for
building V2X applications to improve road safety. These
applications are developed from the perspective of vehicles
(through V2X communications) or from the view point of
roadside units (through V2I communications). The following
paragraphs introduce the existing works from the two
different perspectives.

V2X applications are built upon the communications
among different entities on roads, such as vehicles, pedes-
trians, and roadside units, where each entity is equipped
with a wireless communication device to transfer data. For
example, a vehicle using a DSRC or C-V2X device to transfer

82586

data is referred to as a connected vehicle. Considering
the coverage of wireless communications, a concept of
collaborative environmental perception system for connected
vehicles [15] is proposed to share perceived status (especially
for those non-connected vehicles) to other nearby connected
vehicles. Another similar work [16] is done by integrating
open-source software, Autoware [17] (self-driving software)
and OpenC2X (communication software), to share traffic
status among connected autonomous vehicles in the vicinity.
In addition to the V2V communications, the perceived traffic
status (collected by a connected vehicle) can be shared with
a roadside unit, which can further broadcast the related
information to other connected vehicles. The data format used
to record the traffic status follows the ETSI standard (i.e.,
Cooperative Awareness Messages, CAM).

V2I applications put an emphasis on the communications
between vehicles and roadside units. An RSU acts as a proxy
system [18] (for a connected vehicle) to sense surrounding
status (for the information of non-connected vehicles) and
to broadcast such information through V2V messages (i.e.,
CAMs). The detection of surrounding vehicles is done by a
stereo vision technology attached to the RSU.

A similar RSU-centric approach has been done in [19]
that implements a centralized perception and broadcast (CPS)
application in an RSU, where a vision-based vehicle detection
system is attached to the RSU that converts the information of
the detected vehicle into the J2735 BSM format and broad-
casts the information to the connected vehicles. This work
builds the CPS application by extending the work [20] that
focuses on the design of the control software for a roadside
unit to enable multiple applications running on top of the
roadside unit and different types of SAE J2735 messages
are used to communicate with connected vehicles in the
vicinity. Traffic signal preemption and priority applications,
such as emergency vehicle signal preemption (EVSP) and
transit signal priority (TSP), have been developed in the RSU
software in [20]. The scalability issue of the control software
of the RSU is further discussed in [19].

C. ITS APPLICATION SIMULATIONS

Simulation tools that are used for the development of
intelligent transportation systems are introduced in the
following subsections. These tools can be divided into three
categories, each of which focuses on different perspectives.
The first category is for traffic simulations (Section II-C1)
that are often used to plan the transportation strategies in a
city. The second category is for autonomous vehicle simu-
lations (Section II-C2) that are used to develop autonomous
vehicles, especially for the self-driving software. The last
category is for vehicle-to-vehicle application simulations
(Section II-C3), where the applications can be built on top
of the simulations of multiple autonomous vehicles.

1) TRAFFIC SIMULATIONS
Simulation of Urban MObility (SUMO) [6] is an open-source
software that is widely-adopted for traffic simulations, e.g.,

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

to make traffic management plans for smart city. It is used
by transportation and urban planning research communities
for the simulation of traffic flows and the evaluation of traffic
control strategies. Users can create a realistic road network
by importing the road network from OpenStreetMap [21].
Novel traffic signal timing plans can be added into SUMO
and evaluate the performance of the plans under random
generated traffic.

One advantage of SUMO is the capability of simu-
lating a large road network and provide the intermodal
simulation with pedestrians and random vehicles. This
helps the performance analysis of complex traffic scenarios
involving different vehicles, such as cars, buses, bicycles, and
pedestrians. Additionally, SUMO provides a way to visualize
the simulations, which is useful for users to observe and
understand the simulation process and result. MATSim [22]
is another open-source tool that is developed for large-scale
scenarios, such as a city-wide or regional transportation plan.
It is specialized in simulating millions of agents on huge
networks rapidly, and is equipped with methods to analyze
the simulation outputs. For instance, MATSim can be built
for analyzing the impact of tolls on traffic, showing an
increase in traffic in the peak hours and a decrease in the
off-peak hours. TRANSIMS [7] is a free simulation tool
for a regional analysis of transportation systems. Similar
to SUMO, it supports traffic synthesis, activity generation,
and the microscopic traffic simulation. It is interesting to
note that TRANSIMS uses a different simulation model than
SUMO; that is, the former uses the space-discrete time-
discrete cellular automata simulation, and the latter adopts
the space-continuous time-discrete approach. In addition to
the open-source software for traffic simulations, there are
commercial solutions for such a purpose, such as PTV
Vissim [5]. They incline to provide the infrastructure for
virtual testing and traffic simulation to facilitate the product
development, e.g., shortening the time to market.

2) AUTONOMOUS VEHICLE SIMULATIONS
One of the popular, open-source software for autonomous
vehicle simulations is the CARLA simulation that is built
upon the famous game engine, Unreal Engine 4, for handling
the 3D simulation of real-world scenes, as well as the physic
effects of simulated objects. The major advantage of the
autonomous vehicle simulators is that it enables the full
stack simulation of autonomous driving software, as will be
introduced in the following paragraphs. Among other similar
projects, such as the LG SVL simulator [23] that is a no longer
updated project and AirSim by Microsoft Research [24],
CARLA has a broadened support for third-party software to
extend its capability. OpenCDA [25], as will be introduced in
the following subsection, is a good example that it includes a
traffic simulator and a networking simulator to facilitate the
vehicle to vehicle applications development.

A client-server architecture is adopted by CARLA for
the simulations, as depicted in Figure 2. The CARLA

VOLUME 12, 2024

CARLA Simulator CARLA Sim. Ctrl

Unreal Engine C++ Interfaces

CoriaPiign Pyton neraces
T TGP/IP | Sim. ctrl ‘
__interfaces

‘ Actors ‘ | Traffic manager ‘

FIGURE 2. The software organization of the simulations with CARLA.

PC1 PC2
(Simulation world) (Simulation env. ctrl.)

b : SetMap & \). CARLA Server, '
: CARLAServer || joaepcor | Cl !
o Map [Sim.ctl | |1
! ; 1 interfaces !
1 ! Traffic lightcontrol | !
! Actors ! . 1
! : Venicies control : Traffic manager | | |
| NPC |
[vehicles :

1

1 NPC !

: pedestrians i

'] | Tafficlights & | |

1

| 1

signals

FIGURE 3. A closer view of the client and the server in a CARLA
simulation.

PC1 PC4
(Smulation world) (Autonomous vehicle)
CARLA Server | ! (" Autonomous
1Send control parameter Driving SW
Map :‘—: Sensing
| Receivesensor |
' 2 I

1

1

1

'

1

! Actors —

'
|

I NPC ! .

1 ISend control commands Planning

| vehicles |

'

1

'

1

1

|

l =
| i1 [Actuation)
NPC VNS o

pedestrians

Traffic lights &

|
|
|
|
signals: I

FIGURE 4. The communications between CARLA and Autoware.

server is responsible for handling the simulation itself and
taking the requests (to control the simulation) from the
CARLA client, where the client-server communications are
established upon the TCP/IP connections. At the client side,
a set of programming interfaces (C++/Python) is exposed to
users to write the scripts to control the simulation parameters,
such as map, vehicles, pedestrians, and weather conditions.
Customized traffic scenarios can be created by the CARLA
APIs to control the objects in the simulated world, such
as vehicles and pedestrians that are referred to as actors
in CARLA. A more detailed view of the client-server
interactions is illustrated in Figure 3.

One of the key features of CARLA for the full (software)
stack simulation of an autonomous vehicle is that the
autonomous driving software is able to acquire the sensor
data in the virtual world as its inputs as if the entire
software system runs on a realistic autonomous vehicle.
These sensor data, such as Lidar, Radar, and GPS, are
transferred from the CARLA simulator to the autonomous
driving software through the Robotic Operating System
(ROS) bridge interface [26]. Particularly, a ROS message
topic is used to encapsulate the data of a senor. Therefore,
novel algorithms for autonomous driving can be developed
and trained in the simulated world.

Autoware [17] is a commercial-grade, open-source
software platform that is widely-adopted for building

82587

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

autonomous vehicles. It often runs on top of Linux systems
and is built with the ROS software framework for the
inter-software-module communications. Autoware has the
essential software implementation for the key functions for
autonomous driving, including sensing, perception, decision,
planning, and actuation. Users can develope novel algorithms
in Autoware and validate their designs by the co-simulation
of the CARLA simulation and Autoware, where there is
a customized ROS bridge dedicated for exchanging data
between CARLA (server) and Autoware (client). As shown
in Figure 4, the CARLA server feeds the sensor data to
Autoware that sends the control commands to the CARLA
server after making the control decision based on the received
sensor data, where the communications are done through
the ROS bridge. It is noteworthy that the simulated vehicle
controlled by the Autoware’s commands is called the ego
vehicle, which is different from those simulated vehicles
controlled by CARLA simulator.

It is important to note that in Figure 3 and Figure 4,
a machine is dedicated for the execution of the software
because we would like to put an emphasis on the full stack
simulation of an autonomous vehicle. For example, Autoware
could be run on PC 4, and the driving knowledge is able to
be trained in the setup illustrated in Figure 4. The advantage
of such an arrangement for system development is that PC 4
(the computing hardware for an autonomous driving) can
be plugged into a physical vehicle for autonomous driving.
In this case, the effort of migrating the developed software
system to a physical vehicle can be minimized. Furthermore,
such an arrangement helps the exploration of the hardware
specification of an autonomous driving vehicle at the system
development stage since the delivered performance of such
a computing hardware is able to be measured with the
simulations.

3) V2V APPLICATION SIMULATIONS

OpenCDA [25] is an open-source framework that incorpo-
rates different software, such as CARLA, SUMO, and NS-
3, for cooperative driving automation (SAE J3216), and
can be extended for different vehicle-to-vehicle applications.
Thanks to the support of multiple ego vehicles by CARLA,
it is easy to simulate multiple autonomous vehicles with
OpenCDA. In this case, multiple CARLA clients are present,
each serves as an ego vehicle and can receive sensor data from
the CARLA server for autonomous driving. The development
of novel algorithms for V2V application can be facilitated via
OpenCDA.

When integrated with SUMO, which is used to generate
the map and the traffic flows required by the simulation,
OpenCDA can run the simulation on the road network defined
by the map, with the generated traffic scenarios. The vehicle-
to-vehicle wireless communications may be adopted by the
network simulator, NS-3. For instance, the network simulator
can be added in OpenCDA to analyze if the simulated
conditions can affect the network performance, e.g., the
potential of massive packet drops.

82588

VEINS (Vehicles in Network Simulation) [8] is an
open-source software for V2V applications, where the V2V
communications are done on top of vehicle networks.
VEINS incorporates with existing software tools, SUMO
and OMNeT++, for modeling road networks and vehicle
networks, respectively. The road traffic simulation is handled
by SUMO, and the vehicle network simulation is performed
by OMNeT++. With the support from SUMO, VEINS is able
to simulate a larger-scale scenario, such as a metropolitan
area. Note that he physical layer modeling of vehicle
networks is possible by further leveraging MiXim toolkit to
take into account the effect of radio interference and obstacles
on the simulated road.

4) DISCUSSION

To distinguish our work from the existing efforts, we present
a summary of simulation tools that can be employed for the
development of ITS applications. These tools can be broadly
classified into two categories: traffic flow simulations and
autonomous driving simulations. The former focuses on the
aggregated behavior of traffic flow and evaluate the efficiency
of a transporation infrastructure on a given road network.
In contrast, the latter uses a detailed level modeling of an
autonomous driving vehicle, mimicking the behavior of the
self-driving logic with 3D simulations, which is useful for
evaluating the algorithms and functionality of an autonomous
driving vehicle. In between the two groups, there exists
research works that combines the efforts to provide various
V2X-oriented ITS applications. These research efforts are
described as follows.

o Traffic flow simulations are important for the design,
analysis, and evaluation of a transportation system. For
example, traffic simulations can incorporate various
traffic signal control strategies, such as fixed-time
and adaptive methods, to determine the efficiency of
these strategies on the road network of a urban area.
These simulator frameworks listed in the table adopt
the microscopic perspective for traffic simulations.
The microscopic-level simulations take into account
the interaction of individual vehicles (pedestrians)
while evaluating the delivered performance of the
transportation system. This is achieved by mimicking
the flow of individual vehicles through a target road
network, where different modeling techniques can be
used in the simulations, such as car-following and
lane changing mechanisms. Examples of traffic flow
simulators include MATSim [22], PTV Vissim [5],
SUMO [6], and TRANSIMS [7].

« Autonomous driving simulations aim to provide the dig-
ital version of a real driving environment for the design,
development, and test of autonomous driving control
systems by using difference driving scenarios. For exam-
ple, different weather conditions, roads/intersections,
and behaviors of moving objects, such as pedestrians
and vehicles, can be simulated to observe and evaluate

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

the reactions of the autonomous driving logics. The
level of detail for such simulations is at individual
autonomous vehicles, where each autonomous vehicle
can run in the simulated environment as if it is run
on real, physical environment. This is achieved by
the full-stack simulation of the autonomous driving
software. Examples of autonomous driving simulators
include CARLA [9] and LG SVL [23].

e V2V application simulations focus on exploring the
possibilities achieved by vehicular ad hoc networks for
ITS applications. A wireless ad hoc network can be
established by the connected vehicles on the roads,
and the traffic flow and safety could be improved
as these connected vehicles can exchange information
about their states, e.g., position, speed, and direction.
An interesting example is that by leveraging V2V
communications, connected autonomous vehicles can
share their perceived information about the environment,
and this cooperative perception is very useful for
challenging driving situations, such as sever occlusions.
Examples of V2V application simulation frameworks
include OpenCDA [25] and VEINS [8].

o V2I application simulations put an emphasis on infor-
mation exchanging between connected vehicles and
road infrastructure. Possible applications include 1)
emgergency response, allowing connected vehicles to
clear the way for an emgergency vehicle to respond
to a situation, 2) optimized traffic signals, adjusting
traffic light timings based on real-time traffic flow to
reduce waiting times, 3) eco-friendly driving, providing
connected vehicles with information on fuel-efficient
routes, and 4) collision avoidance, warning connected
vehicles of hazards ahead or abnormal situations (e.g.,
an ambulance running a red light in our IMA applica-
tion) to avoid crashes. Our proposed framework falls in
this category.

Our proposed framework is very different from the
simulation tools of the first three categories, in terms of
functionality (V2I applications) and capability (hardware-in-
the-loop simulations). The framework proposes the method-
ology for designing a V2I application and provides the actual
hardware setup to realize the IMA application; this kind of
V2X applications is not seen in the literature. Moreover,
as CARLA supports the simulation of multiple ego vehicles,
the application scenario described in Figure 1 could be
changed to the EVSP application scenario. In this EVSP
application, the red ambulance is also a connected vehicle
making a signal preemption request to the RSU through the
SSM/SRM messages, and the autonomous connected vehicle
can respond to the situation after it receives the relevant
messages (SPaT for the traffic light information) from the
RSU.

Furthermore, our framework can be considered as a
complement to the existing efforts. That is, when system
designers want to augment the scope of a target application

VOLUME 12, 2024

system, the above tools can be added into our framework
to provide additional functionalities. For instance, a traffic
flow simulator, such as SUMO, can be integrated into
our framework (as done by OpenCDA) to run the IMA
application simulation covering a larger area of road network;
SUMO can simplify the procedures of setting traffic light
plans and arranging a road network. If the capability of V2X
communication is considered, a network simulation tool, such
as NS-3 or OMNeT++, can be added to further analyze the
impact the performance of the communication network on the
overall application performance.

lll. THE PROPOSED SOFTWARE FRAMEWORK

The proposed software that is able to be used for developing
V2I Cooperative ITS applications is introduced in this
section. In particular, the overall architecture of the proposed
framework is presented in Section III-A. The key concept
for building a V2I application with the framework, and the
example V2I applications that can be added into the simu-
lated system are elaborated in Section III-B. Section III-C
discusses the discrepancies between the simulated system
and the physical system, regarding the code porting and
performance issues. It is important to note that it is possible
to extend the CARLA-based software framework for V2V
and V2P (vehicle to pedestrian) applications via connecting
with the CARLA actors (i.e., non-player character vehicles
and pedestrians objects) to exchanging messages. It is worth
mentioned that the framework facilitates the development
of the system for the V2I applications, the performance
evaluation of the established system, and the exploration of
different design alternatives for computing HW of such a
system (Section V).

A. SOFTWARE ARCHITECTURE

The proposed framework is centered around the CARLA
simulator introduced in Section II-C2 for creating a virtual
environment modelling a real-world traffic condition with
realistic road layout, surrounding buildings, traffic signals,
moving vehicles, and pedestrians. The important components
can be attached to the CARLA simulator to extend the
capability and to interact with the virtual world. For
establishing a V2I application, the framework consists of
four software components, CARLA simulator, CARLA
simulation controller, RSU, and connected autonomous
vehicle, as illustrated in Figure 5. Each software component
is assumed to run on a standalone computer (i.e., PC 1 to
PC 4), enabling the hardware-in-the-loop simulation that can
better evaluate the HW performance requirement for each
component (for evaluating HW design alternatives). On the
other hand, some of the components can be co-located at
the same PC if the underlying hardware provides necessary
computing power. The four components are described as
follows.

o CARLA simulator (CARLA server) provides 3D
simulations for real-world scenes and traffic that are

82589

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

controlled by a CARLA client. The status of the
simulated objects (e.g., moving vehicles and traffic light
signals) can be retrieved by external software module
(e.g., our developed CARLA adaptor in RSU SW, such
as adjusting the traffic light signal to green light by the
traffic light control in RSU SW for a priority signal
application), and the status of the objects can be adjusted
by the adaptor on top of the CARLA client/server
communication protocol.

o CARLA simulation control (CARLA client) is respon-
sible to set up the simulation environment for the
simulation required by a target V2I ITS application.
It is assumed that the physical environment for the
application, such as road layout, buildings, trees, and
traffic light poles, is pre-built in the map, so that
this CARLA client can instruct the server to load the
map to run the simulation. The internal interactions
between the CARLA server and client are provided in
Section II-C2.

o RoadSide Unit plays an important role in a V2I ITS
application to communicate with connected vehicles
and to report/update the traffic conditions. Furthermore,
from the software perspective, the communications
between an RSU and a traffic light (simulated by
CARLA) are done by the CARLA adaptors (one for
retrieving status and the other for issuing commands
to adjust the traffic light signals of the intersection),
whereas the communications between an RSU and a
connected vehicle are done through the J2735 messages
and protocol for the target V2X application. The V2I
communications of the proposed framework are further
introduced in Section III-B. With the communication
facilities, the cooperative ITS applications are facilitated
by RSU, for example, EVSP for traffic signal pre-
emption for emergency vehicles, TSP for traffic signal
priority for public transit, and CPS for environmental
traffic sensing and broadcasting that are described in
[20]. Especially, CPS is essential for the V2I application
adopted in this work to collect runtime traffic status and
broadcast to connected vehicles. CPS will be introduced
in Section IV that gives a concrete example application
scenario as the case study in this work.

o Connected autonomous vehicle is able to do the V2I
communications with an RSU, and in the case study,
it is specifically used to perform the IMA application
that receives the runtime traffic status from an RSU and
reacts if necessary (e.g., to control vehicle speed to avoid
potential collision at the intersection, as will be further
introduced in Section IV). By default, this autonomous
vehicle is instructed to perform a designated self-driving
task in the simulated world (described in Section I1-C2),
and it can be participated in the V2I application by
further enhancements done on the autonomous driving
software, by adding the communication facilities (both
hardware and software part for V2X communications)
and by introducing the collected traffic status into the

82590

autonomous driving algorithm for collision avoidance,
which is further introduced in Section IV.

There are (logical) connections between the components
being omitted in Figure 5 to focus more on how the proposed
framework can be adopted for prototyping V2I applications.
The figure puts an emphasis on the connections among the
software components, and the physical communications of
the machines to run the software are done with Gigabit
Ethernet providing a baseline network performance. Such
an arrangement is good for the system prototyping for
validating application functionality correctness (e.g., which
can be evaluated by the visual output generated by the
CARLA simulator), and for providing a baseline performance
delivered by the physical machines. That is, designers are able
to evaluate the performance delivered by different hardware
platforms for design space exploration. It is important to
note that when V2X communication performance estimation
is desired, it is possible to model the network performance
with a mathematical model to enable a fast simulation
speed or with a network simulator (e.g., NS) to provide a
detailed network performance characteristics. Alternatively,
the physical computer networking can be done by mounting
physical V2X communication devices (for the hardware-in-
the-loop simulation) to better reflect an end-to-end latency
of certain operations; this is adopted in this work and is
elaborated in Section IV.

Another advantage of the proposed framework is that it is
able to develop a V2V application (on top of the V2I scheme
mentioned above) with multiple connected autonomous vehi-
cles. Thanks to the native support by CARLA simulator, it can
be achieved by introducing extra instances of autonomous
driving software (e.g., Autoware), each of which has its own
OBU software for V2X communications (i.e., V2I and V2V
communications in this context). In such a V2V application,
the physical networking between the CARLA server and the
connected autonomous vehicles should be a major concern
since it demands for a larger networking bandwidth to transfer
the sensor data required by these connected autonomous
vehicles to make plans for self-driving in the simulated world.
Furthermore, the V2V application logic can be developed on
each instance of autonomous driving software to fulfill the
application requirement.

B. SIMULATION FOR V21 APPLICATIONS
The RSU (PC 3) is the central to simulated V2I applications
as it can collect the environmental status in the simulated
world (PC 1), such as traffic conditions or traffic light
signals, and can also enforce the status updates dictated by
a V2I application, e.g., adjusting traffic light signals. Both
of the functionalities are achieved by the developed CARLA
adaptors in the RSU SW to interact with the 3D simulator
(CARLA), as illustrated in Figure 6.

The other role of the RSU is to interact with connected
(autonomous) vehicles (PC 4). It is worth mentioning that
generally speaking, RSU can talk to “connected vehicles”

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

that are equipped with V2X communication devices for V2I
applications, where OBU SW is responsible for handling at
the software layer and the V2X communication devices are
used to physically transfer the data. In this work, as the IMA
application is considered to showcase the capability of the
proposed framework, we focus on connected autonomous
vehicles; that is, connected vehicles have the capability for
autonomous driving.

1) V2I APPLICATIONS IN RSU

To provide a basic support for V2I applications, RSU
needs to provide the environmental status to those con-
nected autonomous vehicles (i.e., J2735 MAP and SPaT
messages for geo information and real-time traffic light
signal information). With the basic traffic information, more
advanced V2I applications can be established, such as EVSP,
TSP, or CPS. Moreover, when a different V2I application
is considered, a different type of J2735 message could
be adopted. For example, the traffic signal preemption
and priority applications (EVSP and TSP) would use the
SSM/SRM to request for traffic light signal alternation and
to receive the responses for the requests, respectively. On the
other hand, when the RSU-centric vehicle status report is
desired (for the CPS application), the BSM is used to record
the status of vehicles nearby the intersection (that is governed
by the RSU). It is worthy to note that although the CPS
module in Figure 6 is responsible for preparing/emitting
geo, traffic light, and surrounding vehicle information, it is
possible that the different types of messages are handled
by different software modules, depending on the software
system design requirements.

C. DESIGN CONSIDERATIONS IN MIGRATING FROM THE
SIMULATED SYSTEM TO THE PHYSICAL SYSTEM.

V2I applications rely on the external software interfaces
of RSU to fulfill the application needs, and these external
interfaces should be considered carefully while migrating the
prototyping system from the simulated world to the physical
counterpart; this is also true for the connected autonomous
vehicles. These external interfaces can be divided into three
categories: 1) acquiring surrounding traffic condition (e.g.,
geo information, moving vehicles), 2) accessing to the traffic
light signals,” and 3) communicating with the surrounded
connected (autonomous) vehicles. To fulfill the need of V2I
applications, the first and second categories of the interfaces
are majorly used to obtain the environmental information that
is passed to the nearby connected (autonomous) vehicles via
the third category of the interfaces.

To acquire the surrounding traffic condition (1st category)
and broadcast to nearby connected (autonomous) vehicles
(3rd category), the RSU can retrieve the status of simu-
lated objects (e.g., the position and moving trajectory of
a simulated vehicle or pedestrian) through the CARLA

2AnRSU is assigned to handle the traffic lights of an intersection of the
simulated world, which is also true in the real world system.

VOLUME 12, 2024

PC1 PC2 PC3
(3D simulation) Simulation env. ctrl., (RoadSide Unit)
=== ====~ Pt ~ Pt N
1/ N\ A Ve N\
| [CARLA Simulator | | | [CARLA Sim. Ctrl LS |
| [[— Emergency Vehicle i
| | [Sim. ctrl W Signal Preemption 7 |
| ‘ pap) . . interfaces (EVSP) Traffic |
" \ : ! \ Status Transit Signal light !
: Actors ‘ ||| Traffic manager ‘ retriv. Priority (TSP) | control :
' I
| NPC | L\ ’ Collective
I A = . 7/ '»/CARLA| perception System [CARLA| | |
| i L Adaptor (CPS) ‘Adaptor
| NPC ! 5 $
| 74 T <o | - - -—- - -
i pedes!naqs | 3 &§
'] | Traffic lights & 358
! signals | ; G
I 7 n

S~ PC4
) SAE J2735 Msgs
(e.g., BSM, SPaT)

Autonomous
Driving SW OnBoard Unit
Sensing (OBU) SW

Decision

Planning

5 Connected
/ autonomous
vechicle

software framework for prototyping V21 applications, where the
Infrastructure is represented by the RSU (PC 3) and the Vehicle is the
connected autonomous vehicle (PC 4). The concept of a V2I application
enabled by our framework is depicted at the left-bottom corner.

server/client interface (the left-half of Figure 6; described
in Section II-C2), and the status of the objects are encapsu-
lated into the corresponding types of J2735 messages sent to
the connected vehicles (the right-half of Section 6). In such a
case, the differences of the simulated and the physical worlds
are 1) the way to access the traffic condition, and 2) the way
to transmit the J2735 messages.

1) The way to access the traffic condition in the simulated
environment is done by the ‘“‘knowing-all” CARLA
simulator. It is obviously not applicable to the physical
world. Instead, to simplify the migrating effort and
to provide an intelligent solution, an object-tracking-
based solution can be adopted in the simulated world
during the system prototyping to infer the moving
objects in the simulated intersection handled by the
RSU, and the detected object information can be passed
to the nearby connected vehicles. This matches the
application features provided by CPS [19], which is
illustrated in Figure 8 of Section IV.

2) The way to transmit the J2735 messages can be
identical in both simulated and physical world at the
software layer if the adopted V2X communication
library is able to expose the same software interfaces
without depending on the underlying V2X commu-
nication devices. For example, our adopted library
provided by Unex Technology Corp. has the flexibility
to switch between the Ethernet network and the V2X
communication network, where the former can be
adopted in the simulated world through a Gigabit
Ethernet network interface and the latter is used in
the physical world through the V2X communica-
tion device. The major difference between the two
communication mechanisms is the data transmission
latency and bandwidth. In our experiments, in order
to measure the performance delivered by an RSU and

82591

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

PC1 PC3
Smulation world (RSU)

> -\ e

[CARLA Server RSU sW

PC4

. Traffic Signal ption &
\

Priority App. Autonomous

Ma

‘ P (EVSP)
Transit Signal
Priority (TSP)

Status

- N
Actors ‘ retriv.

Signal Preemption

J Traffic

(mergency Vehicle

)

Driving SW
Sensing

_—>0nBoard Unit,
(OBU) SW

—

M/SRM,

light

7 du @
Vehicles! Collective
pedestrians

controf

SAE J2735 Msgs
(elg., SS

N

SAE J2735 Msgs (e.g.,"
BSM, Map, SPaT)

CARLA
Client{Server
Protocol

Traffic lights &, |

CARLA Perception System CARLA
| | Client (CPS) Client
B { ’

signals !

B

FIGURE 6. Highlights of the m

a connected autonomous vehicle via the hardware-in-
the-loop simulation, the latter case is adopted and is
further detailed in the following section.

To access traffic light signals (2nd category) and broadcast
to nearby connected (autonomous) vehicles (3rd category),
the RSU can leverage the CARLA server/client interfaces
to interact with the object that is responsible for handling
the traffic light signals for the very intersection (that is
handled by the RSU), and then pass the retrieved information
to the connected vehicles. When it is required by the V2I
application for adjusting the traffic light signals (such as
EVSP or TSP), the same interfaces can be used to change
the signals in the simulated world for the traffic signal
preemption and priority application requirements. In this
case, the major differences between the simulated and
physical worlds in accessing to the traffic light signals are
twofold, which are listed as follows.

1) The software (and hardware) interfaces to accessing
the traffic light signals in both worlds are different.
For traffic signal accessing, the CARLA server/client
interfaces are done by C++/Python interfaces over the
TCP/IP protocol in the simulated world, which is very
different from the physical world, where a realistic
traffic light controller could be accessed by passing
encoded commands to hardware registers through
a specific hardware interface, such as RS-232. For
example, in a physical world, an RSU has the access
to the traffic light controller for an intersection through
the RS-232 interface. A software abstraction layer
is needed to accommodate the discrepancy between
the simulated and physical worlds for accessing the
traffic light signals of the virtual/realistic traffic signal
controllers, so as to minimize the code porting overhead
from the simulated system to the physical one. On the
other hand, the hardware discrepancy results in poten-
tial performance differences. For example, the latency
of Gigabit Ethernet is about 1 millisecond, whereas that
of the RS-232 hardware is about 1064.3 milliseconds
for a data transfer of 1024 bytes. In addition, the
computing power between the simulated and physical
“traffic light controllers™ is different, and thus, when
the performance delivered by the controller is desired,
this factor should be taken into account.

82592

flows for V21 applications using the proposed framework.

2) The traffic signal timing plans used by a traffic light
controller of an intersection should be taken into
account when a target V2I involves the alternations of
the traffic light signals, such as EVSP and TSP, to better
reflect the performance delivered by the target V2I
applications. In particular, if real-world signal timing
plans (for traffic lights) are desired to be adopted in the
simulation, the relevant control plans (e.g., fixed-time
and full dynamic signal control plans [27]) could be
implemented in the traffic light control module of the
RSU to evaluate the impact of different control plans on
the application performance. Alternatively, the signal
timing plans can be implemented at the CARLA server
side (by revising the traffic light actor or by adding
an addition module attaching to the actor). When a
V2I application does not require the modification of
the traffic signals, the default traffic signal timing plan
(offered by the traffic light actor in CARLA simulator)
should be sufficient. It is interesting to note that traffic-
adaptive signal control [27], although it is not a V2I
application, can be implemented as an RSU application
along with EVSP, TSP, and CPS to observe the resulting
performance.

IV. CASE STUDY ON THE V2I-BASED IMA APPLICATION
WITH THE HARDWARE-IN-THE-LOOP SIMULATION

This work conducts a case study on the IMA application
illustrated in Figure 1 to showcase the effectiveness of
the proposed framework. A more concrete scenario of the
target IMA application conducted in this work is depicted
in Figure 7. Specifically, a red car is a connected autonomous
vehicle driving toward the intersection (it follows the path
pointed by the blue arrow and is about to make a right
turn with a green light), and a white emergency vehicle
is a non-connected vehicle driving toward the intersection
(it is a non-player character vehicle object controlled by
CARLA simulator, following a fixed routing path along the
red arrow to cross the intersection). As the active sensors (e.g.,
lidar) on the connected autonomous vehicle cannot detect
the coming vehicle (the non-connected vehicle) because the
building sits in between the two vehicles, it would cause a
car accident (i.e., the red car collides with the white car).
To avoid potential traffic collision, the CPS application [19] is
deployed in the RSU to detect the vehicles driving toward the

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

FIGURE 7. The CARLA simulated world for the IMA application scenario
illustrated in Figure 1.

intersection and to broadcast the information of the detected
vehicles to surrounding connected (autonomous) vehicles to
avoid collision through the J2735 BSMs. The corresponding
system established by the proposed framework to prototype
the IMA application is illustrated in Figure 8.

A. CPS IN RSU

Instead of retrieving the moving vehicles from the CARLA
simulator, an intelligent, object-tracking-based CPS design
is adopted in this work (as described in Section III-C).
The prototype system emulates the design that a camera
is attached to the RSU to monitor and detect the vehicles
moving toward the intersection. As illustrated in the left-
half of Figure 8, in the prototype system, the RSU accepts
the image stream (the black, dotted arrow) constantly from
the CARLA server, as if there is a camera attached to the
RSU to feed the image stream for vehicle detection @ .
The information of the detected vehicle is then passed to
the broadcast module @ that encapsulates the information
of the detected vehicles into the J2735 BSM format and
broadcasts the BSMs periodically to surrounding connected
(autonomous) vehicles (e.g., at 10 Hz per the J2945 standard).
Based on our empirical experiences, the adopted solution for
the image-based vehicle detection (T) has a great impact on
the delivered performance of the RSU, and various solution
alternatives are tested and evaluated in the following section.
This also showcase that the proposed framework is also good
for design space exploration during the system prototyping
stage.

B. COLLISION AVOIDANCE IN CONNECTED
AUTONOMOUS VEHICLE

The connected autonomous vehicle is planned to drive down
the road and makes a right turn at the intersection by its
autonomous driving logic. To cope with the IMA application
scenario, the vehicle needs to receive the BSMs and to
be aware of the surrounding vehicles that may potentially
cause the collision and should avoid the collision when
necessary. To this end, in the right half of Figure 8, an OBU
module is used on the connected autonomous vehicle (PC
2) to receive the broadcasted BSMs and autonomous driving
software on the vehicle should be modified accordingly (e.g.,
by revising the module in perception stage @) to interpret
the decoded BSMs, determining if a countermeasure should

VOLUME 12, 2024

be made based on the perceived surrounding traffic condition.
The data flows of the BSMs sent from the RSU to the
connected autonomous vehicle are illustrated by the green,
dotted arrows.

C. THE HARDWARE-IN-THE-LOOP SIMULATION

The V2I-based IMA application is emulated by the CARLA
simulator that is used to generate the workload driving the
execution of the RSU and the connected autonomous vehicle
for the collision avoidance. To better gauge the system
performance, the physical hardware platforms are adopted for
running the RSU software (Industrial PC), the autonomous
driving software (PC 2), and the data transmission over the
J2735 protocol (C-V2X comm. devices), where the CARLA
simulator (PC 1) connects with the RSU over Gigabit
Ethernet, and the RSU links to the connected autonomous
vehicle (PC 2) through C-V2X communication hardware.
Through generating the workloads by the CARLA simulator,
the software correctness and the delivered performance of the
RSU and the connected autonomous vehicle can be validated
and evaluated with a lower cost without deployed in the field.
The hardware and software specifications adopted for this
case study, as well as the related performance results, are
provided in the following section.

D. IMPLEMENTATION REMARKS

The workflow of the V2I application simulation is illustrated
at the bottom of Figure 8. The workflow follows the flow
of the vehicle data that are generated by the 3D simulator,
detected by the RSU-CPS, and perceived by the autonomous
driving software. The handling of the vehicle data requires
the enhancements in the 3D simulator, the RSU, and the
autonomous driving software. For the RSU, our developed
CPS system [19] is adopted in the simulation, and a CARLA
client software is added for redirecting the streaming video
frames to the image-based vehicle detection module. The
enhancements done in the 3D simulator and the autonomous
driving software are introduced as follows.

o The IMA application scenario is virtually created by
the CARLA simulator. A CARLA client software is
used to establish the virtual world, as mentioned in
Section Section II-C2. This is done by creating the
required actors for NPC vehicles, pedestrians, traffic
lights with the help from the Blueprint class,
where the Actor and Blueprint classes are part of
the CARLA Plugin library. These created objects are
highlighted in the light yellow rectangles within the
CARLA server of PC 1 in Figure 8.

o In order to emulate the image-based CPS of the
RSU at the intersection illustrated in Figure 7, the
location and position of the camera attached to the
RSU should be configured to capture the traffic
status for the intersection. As camera objects created
by the Unreal/CARLA environment should be tied
with certain actors, this default rule cannot meet

82593

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

System organization with data flow information

PC1
(Smulation world)

/ CARLA Server

NPC
Vehicles

NPC
pedestrians

Traffic lights &

(
Material
Weather
control

/CARLAPlugins library "\

PC2

RSU (Industrial PC)

Decision

J RSU SW Autonomous
I o
Driving SW
Status |
— I -
3 Collective | Perception 2/
CARLA | perception : .|, Euclidea Cluster
Client System (CPS) i Detector
|
I
|

I

|

I

|

I

!

I

b, (
) mage-based “ Broadcast
| vehicle | detected -

VL E detectionJ vehicles |
o sisiall Binadty

Client/Server Protocol

Send traffic images (CARLA

i
I

| i

, 2

I

I

I

I

|

ol Traffic
I control |
I

|

I

I

I

I

I

I

signals
\|" Blueprint Surveillance (O
camera
(Unreal Engine)
Blueprint)
/

A\

Ny

Workflow
PC1 .
(Smulation world) RSU (Industrial PC)
St_art the_ 3D Boot up the
simulation
with CARLA DR
I ‘:;i‘;‘ i

‘ Connected

+> Recv. traffic video frames
with RSU Jmage

and detect vehicles
Streaming

@

|| Transfer SW | 1

Broadcast the
surrounding traffic
status to conn. vehicles

Conﬁ. autongmous vehicle
C-V2X Dev.

‘. """ J2735Msg | |
Transfer SW | |

SAE J2735

)

J2735 Msg

PC2
(Conn. autonomous vehicle)

Start the

autonomous
driving sys.

Connects with CARLA for
,,,,,,,,,, autonomous driving
. ,.| Connects with RSU to receive
SAE J2735 | traffic status
BSMs ‘/é\Acts accordingly if there is any
*'Q/ehicles perceived

FIGURE 8. The system organization (top) and workflow (bottom) of the hardware-in-the-loop
simulation for the IMA application scenario illustrated in Figure 7. The data flow information and
the important software modules involved with the IMA application are highlighted in yellow
rectangles. The workflow reflects the procedures of the V2I system simulation based on the data

flow information.

the requirement of the V2I application development.
To tackle the problem, we have added a new object class
SurveillanceCamera within the Blueprint of
Unreal Engine, which is the class name of the object
factory (template) to create new object instances, so that
an RSU-camera can be created and placed in arbitrary
location in the simulated environment for runtime traffic
monitoring. This object class is also exposed to users
as ordinary actors in the CARLA plugin library, and
the CARLA client at the RSU can retrieve the image
streaming during the V2I application simulation for the
image-based vehicle detection, as illustrated in the CPS
of the RSU in Figure 8. The relevant enhancements made
are represented as the dark yellow rectangles within the
CARLA server of PC 1 in Figure 8.

As a system prototype for the IMA application, in order
to “perceive’ the surrounding vehicles (recorded in the
received BSMs) and to avoid collision, the coordinates
of the vehicles (detected by the RSU) are converted
into the coordinates recognized by the autonomous
driving software, and the coordinates of these vehicles
are ‘“‘projected” into the coordinate system of the
connected autonomous vehicle. This is achieved by
injecting the decoded BSM data (the orientation and the
coordinates of a detected vehicle) into the data flow of
the autonomous driving software, so that the collision
avoidance can be achieved by the obstacle-avoidance
algorithm built in the autonomous driving software.
In this work, Autoware is chosen as the autonomous

82594

V.

driving software and the detected vehicle information
is added to the Euclidean Cluster Detector (ECD)
module that is represented as the dark yellow rectangle
within the autonomous driving software in PC 2 and
is originally designed to identify obstacles in the point
cloud data provided by the Lidar sensor. In other
words, the vehicles detected by the RSU are added
as obstacles,® perceived by the ECD module. These
detected vehicles are then fed into the Object Collision
Estimator module to generate the routing path to avoid
any potential collisions. Therefore, for example, the
collision avoidance for the white car in Figure 7 can
be accomplished as if Autoware can actively detect the
white car by its Lidar sensor. The relevant results are
further provided in Section V.

PERFORMANCE EVALUATION

The V2I IMA application introduced in Section IV is served

as

the case study to demonstrate the effectiveness of our

proposed framework, assisting the system development of a
V2I application system. To this end, a prototyping system
with the hardware-in-the-loop simulation is established based

on

the description introduced in Section IV, where the

connected autonomous vehicle drives at the speed of 30 KM/h
and it is 60 KM/h for the non-connected vehicle. Three sets

of

experiments have been conducted and their results are

3In our experiment, the detected vehicles are added as objects to
/perception/object_recognition/objects in Autoware.

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

FIGURE 9. The actual hardware of the prototyping system for the IMA
application illustrated in Figure 8. PC 1 (left), RSU (middle), and PC 2
(right) are connected by the Gigabit Ethernet network. The FPGA board
(bottom) connects with PC 1 through the WiFi module on its left to
transfer its inputs and outputs.

presented in the following three subsections. The functional
correctness is validated and presented in Section V-A. The
delivered performance of the prototyping system, in terms
of the end-to-end latency, is Section V-B. In addition, based
on the delivered performance in Section V-B, Section V-C
further explores the performance of the various hardware
designs for the CPS of the RSU. This design space
exploration example demonstrates the advantage of our
proposed framework. This is achieved by evaluating the
performance of the image-based vehicle detection function
(as illustrated in Figure 8) handled by different computation
engines, i.e., CPU, GPU, and FPGA.

A prototyping system is built based on the system
organization presented in Figure 8. The picture of the actual
hardware is displayed in Figure 9, and the hardware and
software specifications of the system are listed in Table 1. Itis
worth noting that the YOLO software is used to handle the
image-based vehicle detection function within the CPS on the
RSU (running on the CPU, GPU, and FPGA). When the CPU
and GPU are used as the computation engine, the pre-trained
model YOLOv7 is adopted* for the vehicle detection. When
the FPGA board is used to perform the detection task, the
pre-trained model YOLOv3~-tiny is served as the reference
for developing our FPGA implementation, where the input
image frame is set to the default resolution accepted by
YOLOV3, 416 x 416.

4The official CPU and GPU implementations of YOLOv7 are used in
our experiments with the default configurations (i.e., ~config 0.25,
-img-size 640).

VOLUME 12, 2024

(a) The perception result for a non-connected vehicle reported by
BSMs.

(b) The perception result for a non-connected vehicle scanned by Lidar
Sensor.

FIGURE 10. The screenshots of the perception results reported by
Autoware to validate the detected vehicle (sent by BSMs from RSU) can
be perceived by Autoware.

A. FUNCTIONAL CORRECTNESS VALIDATION
Two sets of experiments have been done to demonstrate the
functional correctness of the prototyping system. First, the
visual perception result provided by Autoware? is adopted to
report the status of the non-connected vehicle (the ambulance
in the IMA application illustrated in Figure 7). Figure 10a
shows that the information of the detected vehicle can be fed
to Autoware successfully, where the non-connected vehicle
is able to appear as the scanned obstacle at the right-bottom
corner (highlighted by the red rectangle). In order to confirm
our result, the obstacle detected by the Lidar sensor equipped
in the connected autonomous vehicle is also presented
in Figure 10b, which suggests that the information of the
detected vehicle (for the non-connected vehicle) can be
presented in the Autoware system for obstacle avoidance.
Second, the visual output of the CARLA simulator further
demonstrates the functional correctness of the IMA appli-
cation. Figure 11a indicates that the connected autonomous
vehicle is able to detect the non-connected vehicle via the
broadcasted BSMs, and can react (slow down its speed) to
avoid the side collision. On the other hand, without the CPS
support, the connected autonomous vehicle cannot react in
time, leading to the side collision (Figure 11b).

5In Autoware, a GUI interface is provided for users to observe the results
during the software execution. In this case, we turn on the visualization
window to observe the route planning and the perceived data.

82595

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

TABLE 1. Hardware and software specifications of the system in Figure 8.

Simulated world RSU

Connected autonomous vehicle

CPU Intel 17-12700KF Intel 17-12700KF Intel 17-9850H

GPU NVIDIA RTX-3070 NVIDIA RTX-1650
DRAM DDRS5 32 GB DDR4 4 GB DDR4 16 GB

SSD ITB 1TB ITB

V2X library Unex J2735 impl. Unex J2735 impl.

V2X dev. Unex C-V2X Unex C-V2X

Comp. networking Gigabit Ethernet Gigabit Ethernet

(0N Ubuntu 18.04 Ubuntu 20.04 Ubuntu 20.04

Ctrl. SW CARLA ver.0.9.13 RSUSW [19] & YOLO [19] Autoware.Universe Galactic

(a) With CPS, the connected autonomous vehicle can slow down to
avoid collision.

(b) Without CPS, the connected autonomous vehicle collides the other
vehicle.
FIGURE 11. The screenshots (of the simulated world) for the IMA
application illustrated in Figure 7 with and without the CPS support.

B. END TO END LATENCY ESTIMATION

Theoretically, one of the end to end latencies for the IMA
application starts from the CARLA simulator feeding the
image frames to the RSU and ends with Autoware perceiving
the environmental status and making the control decisions.
Considering the facts that 1) the latency of feeding the image
frames to the RSU is actually not taken place in the physical
system, and 2) the data of the IMA application flow through
various software components across different hardware
devices, the end to end latency is estimated by decomposing
the overall latency into three parts ((1), (2),and (3) as
introduced in Figure 8) and calculating the summation of the
three parts. The first part performs the image-based vehicle
detection, the second part is encapsulating the information
of the detected into BSMs that are further transferred to
the connected autonomous vehicle, and the final part is
receiving/injecting the BSMs into the perception stage of
Autoware that runs the routing planning avoiding the detected
obstacles, if any. The average time of each part for handling
the vehicle detection and the relevant operations is 3.6 s
for (1), 8.1 ms for (2), and 19 ms for (3), leading to
3627 ms for the end to end latency. It is obvious that the

82596

first part, which uses YOLO v7 for detecting vehicles with
the CPU, is the performance bottleneck, and we decide to
explore various designs/implementations for the image-based
vehicle detection in the following subsection. As for the
second part, the average data transmission latency satisfies
the performance requirement of the J2945 standard that
demands the highest message broadcast frequency of 10 Hz.
The third part seems to be a reasonable time for controlling
the autonomous vehicle at the speed of 30 KM/h. Based
on our further analysis, the injection of the information
encapsulated in BSMs into the Autoware dataflow has a little
influence on the overall processing time because the rate of
incoming BSMs is low (10 Hz).

C. RSU-CPS HW DESIGN EXPLORATION

As the target IMA application is based on the J2735 BSM
for sharing traffic information, the performance index for
the prototyping system can be set at the processing rate
to fit the BSM frequency requirement (10 Hz). Apparently,
the reported processing speed of the image-based vehicle
detection module (based on YOLOvV7 software @ running
on the eight-core CPU) is of 0.27 Hz, which is far less than
the target rate. Thus, two additional platforms (GPU and
FPGA [28]) are adopted for the performance testing for the
vehicle detection, as listed in Table 2, where the frame per
second (FPS) is used to measure the processing speed. The
delivered performance is tested under the same workload
that is a video clip pre-recorded by the CARLA simulator to
emulate the output of the RSU-camera, which is the input for
the image-based vehicle detection module of the RSU-CPS
shown in Figure 8. Specifically, the three hardware platforms
take the same inputs for the vehicle detection task and outputs
the detected vehicles, which are further converted into the
BSM format to represent the traffic information, as illustrated
in Figure 12.

The performance results listed in Table 2 indicate that
the GPU and FPGA platforms can meet the performance
requirement. Nevertheless, while the FPGA platform can
perform the vehicle detection at 10 FPS (which is handled
by the programmable logic solely, operating at the frequency
of 33.3 MHz) at the lowest hardware cost, it requires an
extensive amount of engineering work (i.e., human resources)
to migrate the software implementation of the object

VOLUME 12, 2024

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

IEEE Access

TABLE 2. Performance and cost.

HW platform Item Attribute Utilization FPS(Yolo) Cost ($)
CPU platform CPU Intel i7-12700KF (8 cores) 3 GHz 100% 0.27 $277.99
RAM 4GB
GPU platform CPU Intel i7-9850H 2.60GHz 17.2% 30 $3,079
RAM 16GB
GPU GTX 1650 90%
GPU Memory 3GB
FPGA platform (ZYNQ 7020) Processor system $157.3
CPU ARM Cortex A9, dual-core 667MHz
On-chip meoroy 256KB
Programmable logic 16GB
Look-up Tables (LUTs) 53,200 10
Total block RAM 1.8 Mb
(CPUR?L:f , a straightforward mechanism is used to convert the software
plattorm . . . - g
— e, implementation into the FPGA counterpart, which utilizes
mage W loecvca— approximately 96% of the available LUTs; this means that
CARLA | o2 | am| voLou? | vahicles | /Bi0adcast | 51,320 out of 53,200 LUTs are used for the vehicle detection
f | vehicles
| Muttithreading) | ! Vit task and relevant operations. Further improvement is possible
‘-\uf_J'_ ________ ,' to optimize the implementation of the vehicle detection task,
(GPUR?Lif) which can significantly reduce the LUTs utilization and
latiorm . .
? ";iii R T T — increase the operating frequency.
image | | [Conversely, the GPU platform requires a higher hardware
CARLA |7 loram | 778 s vehicles |/ ot | cost, but it presents a better performance result (30 FPS) with
o 7, the software solution for the vehicle detection. It is important
e to note that a lower-end hardware platform (e.g., an Intel
RSU Atom processor with a built-in GPU support or an ARM
FPGA platf .
(FPeNpsom) S Cortex processor with a 256-core Maxwell GPU from Tegra
il : .
imaa [ARM Cortex-A9 || proctod ——— g X1) could be further adopted to lower the hardware cost while
| i ‘DRAM‘ e i“e"‘C'“ i satisfying the performance goal. It is also worth noting that
“‘ F,OLD\Z_",,, : Vi the processing load for encapsulating and broadcasting the
\L.J) BSMs is low, and the main processors of the above hardware

FIGURE 12. The high-level view of the three different hardware
implementations for the image-based vehicle detection module within
the RSU-CPS. This is a zoom-in view of the RSU-CPS illustrated in Figure 8.

detection to the corresponding hardware counterpart on the
programmable logic, and if new application features are
demanded, the enhancement would further require additional
time for the feature development.

In particular, this FPGA implementation is realized by
converting the software implementation (the YOLOv3-tiny
from Darknet) into the corresponding hardware design on
the programmable logic of Zynq 7020. This conversion
is done manually on top of the software platform of
Xilinx Vivado 2019.1 and DNNDK v3.1. The input and
output of the vehicle detection hardware are orchestrated
by the data movement hardware module implemented on
the programmable logic of the Zynq SoC. To accelerate the
communication performance, the data movement from the
DRAM of the Zynq board to the local memory of the FPGA
hardware is done over the AXI interface. The Cortex-A9
processor running on top of the PetalLinux 2019.1 is used
to manage the FPGA hardware, e.g., initializing hardware
and connecting with external devices to acquire input data
and to transfer the output data. In current implementation,

VOLUME 12, 2024

platforms can generate and transfer the BSMs at the fixed
frequency easily.

VI. CONCLUSION

This work presents a software framework to develop V2I
applications based on the open-source CARLA simulator.
The advantage of the proposed approach is that it enables the
full stack simulations for each involved RSUs and connected
autonomous vehicles. The case study targeting the IMA
application is used to showcase the capability of the proposed
framework, and a system prototype has been built for the
case study. Our experimental results show the framework
is able to model the IMA application scenario with correct
results. Furthermore, the end to end latency of the IMA
application can be obtained via the prototyping system, where
the performance bottleneck at the RSU-CPS is identified.
Different hardware designs to implement the RSU-CPS have
been explored, and the performance of the CPS has been
tested on the hardware platforms to evaluate various hardware
cost-performance alternatives.

REFERENCES

[1] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of DSRC and
cellular network technologies for V2X communications: A survey,” IEEE
Trans. Veh. Technol., vol. 65, no. 12, pp. 9457-9470, Dec. 2016.

82597

IEEE Access

C.-T. Wu et al.: Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

Z. Hameed Mir and F. Filali, “C-ITS applications, use cases and
requirements for V2X communication systems—Threading through IEEE
802.11p to 5G,” in Towards a Wireless Connected World: Achievements
and New Technologies. Cham, Switzerland: Springer, 2022, pp. 261-285.
B. Roberto, B. Bert, D. Matthias, F. Andreas, F. Walter, K. C. Christopher,
K. Timo, K. Andras, L. Massimiliano, M. Cornelius, P. Timo, R. Matthias,
S. Dieter, S. Markus, S. Hannes, V. Hans-Jorg, W. Benjamin, and
Z. Wenhui. (2023). Car-2-Car Communication Consortium-Manifesto.
Accessed: Oct. 6, 2023. [Online]. Available: https://www.car-2-car.org/
(2023). ETSI TR 102 638: Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Definitions. Accessed:
Oct. 6, 2023. [Online]. Available: https://www.en-standard.eu/etsi-tr-102-
638-v1-1-1-intelligent-transport-systems-its-vehicular-communications-
basic-set-of-applications-definitions/

(2023). PTV Vissim. Accessed: Oct. 6, 2023. [Online]. Available:
https://www.ptvgroup.com/en/products/ptv-vissim

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. Wiessner,
“Microscopic traffic simulation using SUMO,” in Proc. 21st Int. Conf.
Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 2575-2582.

L. Smith, R. Beckman, and K. Baggerly. (2023). Transims:
Transportation Analysis and Simulation System. [Online]. Available:
https://www.osti.gov/biblio/88648

C. Sommer, D. Eckhoff, A. Brummer, D. S. Buse, F. Hagenauer,
S. Joerer, and M. Segata, ““Veins: The open source vehicular network
simulation framework,” in Recent Advances in Network Simulation. Cham,
Switzerland: Springer, 2019, pp. 215-252.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” 2017, arXiv:1711.03938.

J. B. Kenney, “Dedicated short-range communications (DSRC) standards
in the United States,” Proc. IEEE, vol. 99, no. 7, pp. 1162-1182, Jul. 2011.
S. Chen, J. Hu, Y. Shi, L. Zhao, and W. Li, “A vision of C-V2X:
Technologies, field testing, and challenges with Chinese development,”
IEEE Internet Things J., vol. 7, no. 5, pp. 3872-3881, May 2020.

SAE Int. (2023). SAE J2735: V2X Communications
Message Set Dictionary. [Online]. Available: https://www.sae.
org/standards/content/j2735_202007

(2023). SAE J2945/1: On-Board System Requirements for V2V Safety
Communications. Accessed: SAE International. [Online]. Available:
https://www.sae.org/standards/content/j2945/1_202004/

H.-S. Seo, D.-G. Noh, C.-J. Lee, and S.-S. Lee, “Design and imple-
mentation of intersection movement assistant applications using V2V
communications,” in Proc. 5th Int. Conf. Ubiquitous Future Netw.
(ICUFN), Jul. 2013, pp. 49-50.

R. Miucic, A. Sheikh, Z. Medenica, and R. Kunde, “V2X applications
using collaborative perception,” in Proc. IEEE 88th Veh. Technol. Conf.
(VIC-Fall), Aug. 2018, pp. 1-6.

M. Tsukada, T. Oi, A. Ito, M. Hirata, and H. Esaki, “AutoC2X: Open-
source software to realize V2X cooperative perception among autonomous
vehicles,” in Proc. IEEE 92nd Veh. Technol. Conf. (VTC-Fall), Nov. 2020,
pp. 1-6.

S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada,
“An open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6,
pp. 60-68, Nov. 2015.

T. Kitazato, M. Tsukada, H. Ochiai, and H. Esaki, “Proxy cooperative
awareness message: An infrastructure-assisted V2V messaging,” in Proc.
9th Int. Conf. Mobile Comput. Ubiquitous Netw. (ICMU), Oct. 2016,
pp. 1-6.

S.-H. Wang, W.-L. Yiu, C.-H. Tu, D.-W. Chang, and W.-H. Lee, “A
software framework of roadside units for traffic condition perception
and broadcast,” in Proc. Conf. Res. Adapt. Convergent Syst., Oct. 2022,
pp. 1-8.

C.-H. Su. (2021). Design and Implementation of Roadside Unit Mid-
dleware for Intelligent Transportation System Applications. [Online].
Available: https://hdl.handle.net/11296/jt4bx7

S. Coast. (2023). OpenStreetMap. [Online]. Available:
https://www.openstreetmap.org/

A. Horni, K. Nagel, and K. Axhausen, Multi-Agent Transport Simulation
MATSim. London, U.K.: Ubiquity Press, 2016.

G. Rong, B. Hyun Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. MozZeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim,
E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim, “LGSVL
simulator: A high fidelity simulator for autonomous driving,” 2020,
arXiv:2005.03778.

82598

[24] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” 2017,
arXiv:1705.05065.

[25] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma, “OpenCDA:
An open cooperative driving automation framework integrated with
co-simulation,” in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC),
Sep. 2021, pp. 1155-1162.

[26] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
in Proc. ICRA Workshop Open Source Softw., May 2009, vol. 3, no. 3, p. 5.

[27] H. K. Lo and H. F. Chow, “Adaptive traffic control system: Control
strategy, prediction, resolution, and accuracy,” J. Adv. Transp., vol. 36,
no. 3, pp. 323-347, Sep. 2002.

[28] Z. Li and J. Wang, “An improved algorithm for deep learning YOLO
network based on Xilinx Zynq FPGA,” in Proc. Int. Conf. Culture-
Oriented Sci. Technol. (ICCST), Oct. 2020, pp. 447-451.

CHUN-TING WU is currently pursuing the Ph.D.
degree in computer science and information engi-
neering with the National Cheng Kung University,
Taiwan. His major research interests include
autonomous driving and vehicle-to-everything
technologies.

SHAO-HUA WANG is currently pursuing the
Ph.D. degree in computer science and infor-
mation engineering with the National Cheng
Kung University, Taiwan. His research interests
include system performance analysis, optimiza-
tion, robot operating systems, autonomous driving,
and vehicle-to-everything.

CHIA-HENG TU (Member, IEEE) has been
an Associate Professor with the Department of
Computer Science and Information Engineer-
ing (CSIE), National Cheng Kung University
(NCKU), since 2021. Before joining NCKU
CSIE in August 2016, he worked as Postdoctoral
Researcher with the MEDIATEK-NTU Advanced
) Research Center, National Taiwan University
Q / (NTU), from 2015 to 2016, and as the Research
o/ and Development Manager with the Institute for
Information Industry, from 2012 to 2015, where he did his Research and
Development Substitute Services after he completed his Ph.D. training
from NTU, in 2012. His research interest includes developing tools (e.g.,
computer architecture simulators and performance analyzers/optimizers) for
designing/optimizing specialized computer systems.

VOLUME 12, 2024

