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ABSTRACT The application of UAV-aided MEC well-suited for the execution of the data-intensive and
latency-sensitive tasks in the infrastructure-deprived regions. However, the growing number of UAVs
and smart devices causing a major difficulty in the devising an effective scheme for the task offloading and
resource allocation in multi-UAV-aided MEC networks. Furthermore, the resource deficient environments
unable to sustain prolonged resource-intensive activities, additional complexities are posed on the optimum
utilization of the resources. In this paper, we introduced a multi-agent deep reinforcement learning scheme
for the task offloading in the multi-UAV-assisted networks (MUAVDRL). In this configuration, the mobile
users fetch computational resources from the UAVs with the goal of minimizing the computation cost which
incorporates both the energy consumption and the computation delay. Initially, we start with the optimization
problem which is defined as the minimizing the computational costs. Through modelling it as MDP, we aim
to reduce the computational costs for mobile users. Leveraging the dynamic and high-dimensional nature of
the challenge, the MUAVDRL algorithm solves this problem efficiently. Comprehensive simulation results
exhibit the efficacy and superiority of our projected framework when compared to existing state-of-the-art
methods, illustrating its potential in the practice.

INDEX TERMS DRL, MEC, resource allocation, task offloading, UAV.

I. INTRODUCTION
The swift progression of the Internet of Things (IoTs) and
information and communication technology has propelled
smart applications like virtual reality (VR), augmented
reality(AR), and autonomous driving [1] into the spotlight.
As a result, the demand for minimal latency and considerable
computational power has risen with the emergence of these
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applications, thereby posing substantial challenges for IoT
mobile devices. These problems can be solved by Mobile
edge computing (MEC) which provides the resources like
the cloud at the network edge.. However, traditional MEC
servers are costly to deploy and may not be viable in areas
lacking infrastructure. To reinforceMEC’s adaptability, UAV-
assisted MEC has emerged as a promising paradigm [2].
However, prevalent solutions for optimization problems lean
on centralized frameworks, reliant on the computational
capacity of a central controller. With rising IoT and UAV
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numbers, complexity, and computational costs surging, they
are urging the need for distributed decision-making methods
to alleviate this computational burden in UAV-assisted MEC
networks.

While mobile devices within UAV-assisted networks
increasingly run real-time applications, their operational
scope remains significantly restricted due to limited compu-
tational resources [3]. Introducing task-offloading strategies
has expanded their capabilities by enabling application
execution task delegation to nearby computational nodes [4].
However, this enhancement faces challenges, notably the
potential hindrance caused by insufficient mobile battery
energy [5]. This limitation often leads to service disruptions,
as mobile applications may prematurely terminate [6]. The
uninterrupted function of contemporary wireless networks
necessitates prolonged battery life for sustained energy
availability, alongside effective energy utilization by edge
devices [7]. These issues collectively impede the network’s
ability to process real-time applications within designated
time slots.

Moreover, [8] focuses on optimizing caching in a cellular
network where mobile devices are powered by harvested
energy. It aims to minimize the proportion of file segments
retrieved from the base station (BS) by optimizing file
placement on devices. In another study, Lu et al. [9]
investigate the placement of unmanned aerial vehicle base
stations (UAV-BSs) in mobile UAV networks to minimize
UAV-recall-frequency (UAV-RF) and enhance energy effi-
ciency. Considering various power consumptions and ground
user density, they employ a pattern formation system to
capture the unstable nature of user density. Additionally,
[10] delves into trajectory planning for UAVs in UAV-aided
IoT networks with mobile sensor nodes (SNs), focusing on
priority-oriented time-sensitive data collection. By assigning
different delay sensitivities to each SN, the aim is to minimize
UAV energy consumption and SN average delay through
trajectory optimization. A proposed heuristic trajectory plan-
ning algorithm leverages RL but may introduce oscillations
in convergence models, potentially impacting stability and
effectiveness in specific scenarios.

Deep Reinforcement Learning (DRL) has gained signifi-
cant traction, especially within network resource allocation
problem domains. Its success in video games [11], continuous
action control [12], and now in network resource allocations
is noteworthy. Researchers are increasingly exploring DRL’s
potential in these domains, recognizing that optimal resource
allocation is essentially an optimal decision-making chal-
lenge. When network dynamics exhibit certain regularities,
DRL agents can discern these patterns and learn effective
policies accordingly [13]. Chen et al. [14] delved into
designing computation offloading policies in Edge Comput-
ing (EC) through deep Q-networks, integrating task queue
state, energy queue state, and channel state information.
Meanwhile, Ye et al. [15] focused on resource allocation a
DRL-based scheme within V2V communications, treating

V2V links as agents making informed decisions regard-
ing optimal power levels and sub-band for transmissions.
Sun et al. [16] examined the computation migration as a
crucial issue in vehicular cloud scenario, employing polyno-
mial estimation for value functions and SARSA algorithm
training to address missions with linear inter-dependency
topology. Conversely, Zhu et al. [17] explored research on
UAV-supported edge computing for missions with different
inter-dependence topology structures using only single agent
Actor-Critic (AC) algorithm for selecting target UAVs, albeit
without accounting for parallel transmission and energy con-
straints. Additionally, Min et al. [18] came up with another
offloading algorithm based on RL for IoT devices with energy
harvesting, considering factors like current battery levels,
previous radio transmission rates, and predicted harvested
energy. However, the authors overlooked the time delay
factor concerning energy consumption, potentially limiting
the comprehensive nature of their approach.

There has been substantial research into UAVs aiding
mobile edge computing, covering aspects like energy effi-
ciency [19], trajectory design [20], and the joint optimization
of communication and computation [21]. However, few of
these studies account for scenarios involving multiple UAVs.
A single UAV, constrained by a limited payload, possesses
restricted computing resources. Moreover, several recent
studies have explored multi-UAV-assisted MEC. specifically,
Huang et al. [22] delve into offloading scenarios withinmulti-
UAV-enabled aerial edge computing. The authors addressed a
scenario where users have interdependent tasks, and multiple
UAVs process these tasks centrally. Using a multi-objective
optimization approach, they aim to optimize completion
time and energy balance among UAVs. However, this study
overlooked computing resource allocation, and practical
constraints, like limited resources, could indirectly affect its
optimization objectives. Consequently, UAV-assisted mobile
edge computing necessitates a collective effort among UAVs
to share the computation workload. Diverse computing
capabilities among UAVs result in varying processing and
communication times. Additionally, differences in energy
conditions between UAVs and mobile users directly impact
offloading outcomes. Within the dynamic network environ-
ment, efficiently offloading tasks for mobile users during
ground network emergencies poses a significant challenge.
The local ground MEC server might become overwhelmed
as mobile users demand varied resources within the UAV
network. Moreover, the mobile nature of some users causes
them to fall outside the network coverage. Considering UAV-
assisted networks’ complex and dynamic conditions and
resources, the task offloading policy should be carefully
designed to minimize computation costs.

Due to the limitations of preceding works and the
challenges stated above, in this article, we introduced a
multi-agent DRL into a UAV-enabled network to propose
intelligent task offloading. We offer task offloading and
resource allocation, where mobile users offload their tasks to
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FIGURE 1. System model showcasing multi-UAV-assisted MEC network.

UAVs to perform task offloading. We develop the problem
and transform it into a Markov decision process (MDP)
model to attain optimum offloading decision policies. Given
the presence of multi-objective problems and the dynamic
nature inherent in UAV-enabled network environments,
we incorporate the capabilities of advanced DRL techniques.
This approach allows us to effectively grasp the dynamic
network conditions, paving the way to devise an optimal task
offloading algorithm that efficiently manages interactions
between mobile users and UAVs.

This work’s pivotal contributions can be encapsulated as
follows:

1) We proposed a MUAVDRL scheme for task offloading
among mobile devices within a multi-UAV-assisted
network. The primary aim is to minimize computation
costs, specifically targeting energy consumption and
computation delay. This scheme empowers mobile
devices to acquire environmental insights, enabling
them to empower optimal task-offloading decisions
within the network.

2) We developed a resource allocation and task offloading
problem for mobile devices into a Markov MDP model
and utilize a multi-agent model-free deep determinis-
tic policy gradient algorithm for multi-UAV-assisted
networks (MUAVDDPG). This method manages the
expansive and continuous action space to maximize
long-term rewards and determine the most efficient
task-offloading strategy.

3) We extensively simulate and compare the performance
of our proposed algorithm against three benchmark

algorithms. These simulations demonstrate that our
proposed algorithm significantly minimizes computa-
tion costs within a dynamic network setting.

The rest of this paper is arranged as follows. In Section II,
the system model is presented. In Section III, the problem
is formulated is presented. The MUAVDRL scheme and the
algorithm are presented in Section IV. The simulation results
are given in Section V. Finally, Section VI presents the
conclusion.

II. SYSTEM MODEL
The illustration in Fig. 1 delves into a comprehensive
analysis of a Multi-UAV-assisted MEC network, constituting
a collective of M UAVs and N mobile users. The UAVs are
concisely labeled within this network structure in the setM =
{1, 2, . . . ,m, . . . ,M}. At the same time, the mobile users are
categorised explicitly in N = {1, 2, . . . , n, . . . ,N }, which
provides a structured and scalable representation, allowing
for systematic coordination and efficient communication
among the various entities present in the network. Owing
to limited computational capabilities, mobile devices must
transfer their computation tasks to UAVs for processing.
Employing a comprehensive offloading model is essential
to minimize the time and energy consumption of the user’s
equipment. Each UAV has a maximum capacity to connect
with up to Nmax mobile users concurrently, while each user is
limited to offloading tasks to only one UAV during a specific
time.

Each mobile user n ∈ N contributes a computational task
described by Dn = (Sn,Cn, τn), here Sn, Cn, and τn represent
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the task size, necessry for CPU-cycle frequencies, and for
the imposed delay constraint, respectively. The parameter
αn ∈ {1, 2, . . . ,M} serves as the association policy for user
n, indicating the selection of a UAV by user n for offloading
purposes. This association policy is crucial in optimizing
resource allocation, enabling each user to select a UAV
strategically based on factors such as proximity, resource
availability, and computation efficiency, ensuring efficient
task offloading and timely processing within the multi-UAV
environment. The notation used in the system model are
illustrated in Table 1.

TABLE 1. List of notations.

A. CHANNEL MODEL
The overall system bandwidth, denoted as W , is distributed
among M unmanned aerial vehicles (UAVs), each utilizing
a bandwidth of Wm. To prevent interference among these
UAVs, the combined bandwidth across all UAVs must not
surpass the overall system bandwidth, i.e.,

∑M
m=1Wm ≤ W .

Moreover, an equal distribution of bandwidth allocation is
assumed among users connected to a particular UAV. This
means that users connected with UAV m evenly divide the
overall bandwidth Wm allocated to that specific UAV m.
To ensure optimal utilization of bandwidth, the collective
bandwidth used by all UAVs should not fall below the total
system bandwidth W [23], which can be represented as
follows: ∑

m∈M
Wm = W , 0 < Wm < W . (1)

The coordinates defining the position of UAV m ∈ M and
user n ∈ N are specified as Lm = (xm, ym, h) and Ln =
(xn, yn, 0), respectively. To determine the Euclidean distance
in a three-dimensional space between two points UAV m and
user n, an approach detailed in [2] is adopted, which can be
expressed as:

dmn =
√

(xm − xn)2 + (ym − yn)2 + h2 (2)

Under the assumption, communication link among UAVs and
mobile users is primarily Line of Sight (LoS), as highlighted
in [24], the channel gain between mobile user n and UAV m
is defined as per [25]:

Gmn = (dmn)−λ, (3)

where, the symbolλ illustrates the path loss exponent, serving
as a parameter in the characterization of path loss for the
communication link between the mobile user and the UAV.

B. OFFLOADING MODEL
The expression for the transmission rate between UAV m
and mobile user n for the offloaded task Dn to UAV m is
represented as:

rmn =
Wm

|Nm|
log2

(
1+

pnGmn
N0

)
, (4)

where,Wm stands for the total bandwidth allocated to UAVm.
Nm signifies the count of users associated to UAV m, with
Nm representing this set of users as Nm = n1, n2, . . . , n|Nm|.
ensures an equitable distribution of available bandwidth
resources among the users connected to UAVm. Additionally,
the variable pn refers to the transmission power of user n,
while N0 encompasses the background noise within the
system.

The time taken for user n to transfer tasks to UAV m,
referred to as the transmission delay, can be represented as:

T offn,m =
Sn
rmn

. (5)

The energy consumption related to user n during the
process of offloading tasks to its respective UAV can be
formulated as:

Eoffn,m = pnT offn . (6)

C. QUEUING MODEL
Once all computation tasks are received from their corre-
sponding users, each UAV m organizes these tasks based
on their order of arrival within the set of user Nm =

{n1, n2, . . . , n|Nm|}. Consequently, the computation delay for
user n at MEC m includes both queuing and computation
delay. The queuing delay, crucially dependent on the order
of task arrival, aggregates the computational delays of all
tasks handled prior to the current task in the sequence. Tasks
arriving earlier experience a longer queuing delay as theywait
for previously arrived tasks to be processed. For instance,
considering user n(i) ∈ Nm, processing delay pertaining to
n(i) is outlined in [26].

T ren(i),m =


Cn(i)
fm

, i = 1

T ren(i−1),m +
Cn(i)
fm

, i > 1,
(7)

Therefore, accounting for the available computation fre-
quency of UAV m, denoted as fm, the comprehensive latency
incurred in processing tasks from user n encompasses both
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the queuing delay and the computational time. As defined
in (7) the remaining processing time T re

n(i),m
for tasks from

user n(i) at UAVm. It comprises two cases: firstly, when i = 1,
indicating the first task from user n, the remaining processing
time is straightforwardly computed as the computational time
of the initial task Cn(i) divided by the computation frequency
ofUAVm as fm. Subsequently, for tasks beyond the first i > 1,
the remaining processing time is determined by adding the
computational time of the current task Cn(i) divided by fm to
the remaining processing time of the previous task T re

n(i−1),m
.

This formulation enables tracking of the time required
for task completion, considering both the computational
demands of individual tasks and the processing capabilities
of the UAV. Hence, the total latency is calculated as the sum
of the queuing delay and the time required for computation
on UAV m, which is defined as follows.

T totn,m = T offn,m + T
re
n,m, (8)

The variable βn = {0, 1} functions as a binary indicator,
signifying whether user n gratifies the stipulated delay
requirement. When T totn,m ≤ τn · βn = 1, it indicates that
the user meets the specified delay constraints. This condition
ensures that the total time taken for task processing by user n
at UAV m does not exceed the designated maximum time
threshold, thus adhering to the latency requirements.

Consequently, the total amount of the system cost amalga-
mates the energy consumption and time utilization from all
users whose computational tasks are completed successfully.
The representation of the total amount of the system cost is
formulated as the summation of energy and time costs across
all users in the system whose task computations are within
the stipulated time constraints:

C tot
= δeE tot + δtT tot

= δe
∑
n∈N

∑
m∈M

βnpnT totn,m

+ δt
∑
n∈N

∑
m∈M

βnT totn,m. (9)

III. PROBLEM FORMULATION
The primary objective is to minimize the cost of the system
in multi-UAV-assisted network scenarios. The system cost is
expressed as energy consumption and computation delay. For
this, we formulate an optimization problem to minimize the
system cost of the system through optimizing task offloading
strategy and resource allocation to eventually reduce the
overall system cost and is mathematically expressed as:

P1 :min
T ,E

C tot

s.t.
∑
m∈M

Wm = W ,∀m, (10a)

αn ∈ {1, 2, . . . ,m, . . . ,M},∀n,m, (10b)

|Nm| ≤ Nmax, ,∀m, (10c)

pn ∈ {1, 2, . . . , n, . . . ,N },∀n. (10d)

Eoffn ≤ E
max
n , ∀n. (10e)

T totn ≤ T
max
n , ∀n (10f)

The optimization problem (P1) revolves around key
variables: the user association vector, transmit power vector,
and UAV bandwidth allocation vector. These variables are
defined as follows:

1) User Association Vector (α): The α = [α1, , αn, . . . ,

αN ] represents the user association vector. Each αn
denotes the choice of a UAV by user n for task
offloading.

2) Transmit Power Vector (p): The p = [p1, . . . , pn, . . . ,
pN ] represents the transmit power vector. The pn
corresponds to the transmission power of individual
users.

3) UAV Bandwidth Allocation Vector (W ): The W =

[W1, . . . ,Wm, . . . ,WM ] denotes the UAV bandwidth
allocation vector. Wm stands for the total bandwidth
allocated to each specific UAV m in the system.

These variables set the foundation for the optimization prob-
lem, which is further defined by the following constraints:

1) Bandwidth Restriction (
∑

m∈M
Wm = W ,∀m): Con-

straint (10a) ensures that the aggregate bandwidth
usage across all UAVs does not exceed the total system
bandwidthW .

2) User Association (αn ∈ {1, 2, . . . ,m, . . . ,M},∀n,m):
Constraint (10b) represents the user association indi-
cator governed by the user association vector α.
It imposes a limit on the maximum number of users
a UAV can associate with, denoted as Nmax.

3) Maximum User Association (|Nm| ≤ Nmax, ,∀m):
Constraint (10c) regulates the number of users con-
nected to each UAV, aiding in workload management
and optimization for individual UAVs within the
network.

4) Transmit Power Range (pn ∈ {1, 2, . . . , n, . . . ,N },
∀n): Constraint (10d) signifies the permissible range for
users’ transmit power.

5) Energy Limitation (Eoffn ≤ Emaxn , ∀n): Constraint (10e)
outlines mobile users’ energy limitation, ensuring
that each computing device’s battery energy remains
adequate.

6) Time Constraint (T totn ≤ Tmaxn , ∀n): Constraint (10f)
sets the time constraint for mobile users, stipulating
that the total time T totn should not surpass the maximum
delay constraint for the task, denoted as Tmaxn .

The proliferation of mobile devices is experiencing rapid
exponential growth, coupled with the dynamic network scal-
ability, thereby elevating the complexity of problem P1. This
complexity stems from its classification as a mixed-integer
and non-convex optimization problem. It revolves around
the offloading decision vector α and features a nonconvex
objective function, a characteristic that renders it NP-hard
and poses challenges in directly deriving an optimal solution.
An algorithm in polynomial time would not be able to unveil
the best decision.Hence, we are providing a simplified DRL

81432 VOLUME 12, 2024



M. N. Tariq et al.: Toward Optimal Resource Allocation: A Multi-Agent DRL

FIGURE 2. MUAVDRL scheme for multi-UAV-assisted MEC network.

algorithm that minimizes the system offloading cost while
maximizing resource allocation efficiency.

IV. MULTI-AGENT DRL SCHEME
A. MUAVDRL BASED TASK OFFLOADING
In this paper, we explore the task offloading paradigm within
a multi-UAV-supported network operating within a dynamic
environment where multiple agents are actively involved. The
complexities of optimizing solutions in such a setting using
traditional single-agent approaches have been acknowledged
as challenging [27]. To overcome these hurdles, our contribu-
tion introduces the MUAVDRL algorithm, tailored explicitly
to address multiple problems within a multi-agent system.
This algorithm is a strategic response to the complexities of
optimizing task offloading across a network supported by
multiple UAV agents.

We have formulated the problems within a Markov
decision process framework in a multi-agent setting. Our
approach introduces a MUAVDRL-based task offloading
scheme aimed at minimizing the computation costs of mobile
users while concurrently maximizing the rewards accrued
by UAVs. Within this scheme, mobile devices and UAVs
function as agents, engaging in a competitive interplay to
accomplish their objectives. As illustrated in Fig. 2, agents
compete during each stage, gaining experiential insights
from others by observing the environmental state. The

rewards acquired by UAVs and mobile users constitute the
system’s overall reward. To execute the MUAVDRL method
effectively, we define the state space, action space, and
rewards as follows:
• State space: The learning agents within the sys-
tem acquire experiential knowledge and refine their
decision-making policies by observing the environmen-
tal states. Their decisions are selected by optimization
objectives within the environment, relying on the state
space s(t). This state space s(t) = (rmn,E

off
n,m, fm, pn),

comprising elements such as the transmission rate rmn
between user n and UAV m, user energy consumption
Eoffn,m during task offloading, UAV computation fre-
quency fm, and user transmit power pn, serves as the
cornerstone for these agents’ adaptive decision-making,
enabling them to optimize strategies based on the current
environmental conditions.

• Action space: The vector of offloading decision
B = [β1, β2, . . ., βN ], vector of transmit power
p = [p1, . . . , pn, . . . , pN ], and computation resource
allocation is represented as F = [f1, f2, . . ., fN ]. The
complete action vector at time ‘t’ is indicated as a(t) =
[β1, p1, f1, . . ., βN , pN , fN ].

• Reward function: The overarching aim of the
reward function is to enhance offloading decisions,
mitigating computation costs encompassing delays and
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energy consumption. This optimization is crucial for
ensuring QoS while extending the battery lifespan of
mobile users. The reward function for mobile users is
formulated as:

rn,m(t) = −(δeE tot + δtT tot ). (11)

The reward function for UAVs is defined as:

rm(t) = Rm(t). (12)

The comprehensive reward function for the system is
formulated as:

r(t) =
∑
n∈N

∑
m∈M

(
rn,m(t)+ rm(t)

)
. (13)

B. MUAVDRL ALGORITHM
Fig. 2 illustrates the MUAVDRL framework within a
multi-UAV-supported network. TheMUAVDDPG algorithm,
an adapted actor-critic network incorporating the DQN
method, demonstrates its efficacy in managing dynamic
environments. Particularly suited for cooperative policy
learning among multiple agents operating within a continu-
ous action space, this algorithm stands as a valuable tool. It is
essential to highlight that this system facilitates centralized
training of the action-value function, known as the critic
network while promoting decentralized execution. The critic
function utilizes action policies from other agents, enabling
each agent to decide its actions autonomously based on
individual strategies and observations. The update of policy
parameters is carried out individually by each agent within
the framework.

The scheme involves a collection of J agents, encompass-
ing both UAVs denoted as Mm and mobile users denoted
as Nn, each equipped with distinctive observations, actions,
and reward mechanisms. Within this context, each agent,
indexed as J among the J agents, possesses a distinct set
of states denoted as S = {S1, S2, . . ., SJ }, an array of
actions denoted as A = {A1,A2, . . .,AJ }, and a series of
observations represents as O = {O1,O2, . . .,OJ }. In this
scheme, agents are empowered to select an action utilizing
a stochastic policy π(θj) : Oj × Aj → [0, 1] to select an
action based on its own observations and available actions.
The transition to the subsequent state is facilitated by the
state transition function T : S × Aj×, . . .,×AJ → S.
Every agent receives rewards centered on their current states
and the actions taken, depicted as rj : S × Aj → R.
Additionally, each agent privately acquires their specific
observation Oj : S → Oj. Each agent j operates with the
primary goal of maximizing its expected cumulative rewards,
denoted as E

{∑
∞

j=0 γ jrj, t + k
}
. Here, rj, t + k signifies

the reward obtained by agent j at a time k episodes into
the future, considering the discount factor γ . Within the
MUAVDDPG framework, the fundamental concept revolves
around learning a centralized critic function, namely the
action-value function, designated as Qπ

j (J , α1, . . ., αJ ) for
the j-th agent. This function involves representations of

actions from all agents {α1, . . ., αJ } ∈ A, and each
agent possesses comprehensive information regarding global
training weights.

Moreover, the collective policies’ set utilized by agents is
denoted as π = π1, . . ., πJ , each accompanied by its respec-
tive policy parameter represented as θ = θ1, . . ., θJ . This
centralized learning approach underpins the MUAVDDPG
framework, facilitating coordinated learning among mul-
tiple agents within the system. Within the MUAVDDPG
algorithm, updates are performed on both the actor and
critic-network upon completing every training episode. More
precisely, the actor-network undergoes an update using a
gradient method computed in the following manner:

∇θj (θj) = EJ ,a∼D[∇ajθ
µ
j (J , a1, . . ., aJ )

∇θjµθj(Oj)|aj = µθj(Oj)], (14)

where, the variable D signifies the replay buffer, responsible
for storing tuples of experiences encountered by all agents,
consisting of (J ,J ′, a1, . . ., aJ , r1, . . ., rJ ). The update
process for the critic function θ

µ
j is represented as follows:

L(θj) = EJ ,J ′,a1,...,aJ ,r1,...,rJ [(θ
µ
j (J , a1, . . ., aJ )− y)2],

(15)

where, y = rj + γ θ jµ
′

(J ′, a1′, . . ., a′J )|ak ′ = µk ′(Ok)
denotes the computation for updating the critic function.
Here, the target policies’ set, characterized by delayed param-
eters, is represented as θ ′j , represented as θ ′j , is depicted as
µ′ = µθ ′1, . . ., µθ ′J . This calculation involves incorporating
the rewards received by agent j alongside evaluating the next
state-action values utilizing the target policies, considering
the delayed parameters.

Algorithm 1 outlines the proposed MUAVDDPG algo-
rithm tailored for task offloading within a multi-UAV-
supported network. It comprises two essential procedures:
Collecting the observed data and the training process. The
algorithm commences with an initialization phase (lines 1-4),
establishing the replay buffer and initializing parameters
for the actor-network and critic-network along with their
respective weights. This phase also sets the groundwork by
defining the total number of episodes and training steps for
the agents (lines 5-10). This preliminary step ensures that the
algorithm starts with a defined structure and clear parameters
before the actual training begins. Collection of observed data
by agents: Execution of actions, reward acquisition, and gen-
eration of new states (lines 11-21). The experiences gained
are stored within the experience replay buffer. Training
phase (lines 22-28): Policy training involves batch sampling
from the replay buffer. Subsequently, the actor-network and
critic-network undergo updates based on randomly selected
samples. This algorithm orchestrates the collection of data
from the environment by agents, storing experiences for
later training. During the training phase, samples from
these experiences to update the actor and critic networks,
facilitating policy learning within the multi-agent system.
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Algorithm 1MUAVDDPG Algorithm for Task Offloading
1: Initialization:
2: Replay buffer Dloc

j at UAV and User.
3: Initialization:
4: Actor and critic networks parameters are initialized

with θ

5: for episode = 1 to 3000 do
6: Initialize the states S = {s1, s2, . . ., sJ }
7: for t = 1 to 200 do
8: Estimate the resource requirements of the user

(Eoffn,m, fn)
9: Estimate the available resource of UAV (fm)

10: Each agent receives an initial state. s(t) =
(rmn,E

off
n,m, fm, pn)

11: Every agent j makes a stochastic decision aj
according to the policy πθj

12: given the state sj with probability ε

13: Agents perform the action a(t) =

{a1(t), a2(t), . . . , aJ (t)}, encompassing
a = [β1, p1, f1, . . ., βN , pN , fN ]

14: The rewards observed are denoted as r(t) =
{r1(t), r2(t), . . . , rJ (t)}

15: The new state sj(t + 1) is denoted by s′j
16: store the tuples {sj(t), aj(t), rj(t), s′j} in D

loc
j

17: sJ ← s′j
18: for agent j = 1 to J do
19: Mini-batch of H samples tuples

(sk , ak , rk , s′k ) from Dlocj
20: Set yk = rkj +

γQπ ′

j

(
S ′k , a′1, . . . , a

′
J

)
|a′j=π ′j (s

k
j )

21: Update the critic-network as (15)
22: Update actor-network as (14)
23: end for
24: Update the target network’s parameters for each

agent j
25: θ ′j ← τθj + (1− τ )θ ′j
26: end for
27: end for

C. COMPUTATIONAL COMPLEXITY
The proposed MUAVDDPG algorithm outlines the compu-
tational complexities for actor and critic networks. For the
actor-network with P layers and the critic network with
U layers, the computational complexity of each layer is
expressed asO

(
Zap−1Z

a
p+Z

a
pZ

a
p+1

)
andO

(
Z cu−1Z

c
u+Z

c
uZ

c
u+1

)
respectively. Consequently, the overall training complexity of
the proposed algorithm can be expressed as:

O

J ∗ T ∗ E ∗
P−1∑
p=2

(
Zag−1Z

a
p + Z

a
pZ

a
p+1

)
+

U−1∑
u=2

(
Z cu−1Z

c
u + Z

c
uZ

c
u+1

)))
(16)

Each agent’s execution complexity is O
(
J ∗ E ∗

(∑P−1
p=2(

Ma
p−1Z

a
p + Z

a
pZ

a
p+1

)))
. The algorithm’s convergence anal-

ysis considers UAV agents’ interaction, influencing subse-
quent user agent actions while supporting policy changes
among agents.

V. SIMULATIONS RESULTS AND DISCUSSIONS
In this section, we analyze the outcomes of our algorithm’s
simulations across various parameter configurations. Our
simulations were executed in a Python 3.7 environment
utilizing Tensorflow 2.0. The computations were performed
on a system powered by a Core i7 CPU operating at 2.4GHz
and equipped with 16GB RAM. We consider our analysis
to involve a range of 2 to 12 UAVs and 10 to 60 mobile
users unless specified otherwise. These UAVs are positioned
at an altitude of 100m above ground level. Within our devised
multi-agent algorithm, we established 3000 episodes during
the training phase, each comprising 200 steps. The neural
network employed in this algorithm is a fully connected
architecture featuring both a critic network and an actor-
network. Specifically, every agent within the system operates
with a neural network structure comprising two hidden
layers in the actor as well as critic neural networks. These
layers consist of 256 neurons in the initial hidden layer and
128 neurons in the subsequent layer. A mini-batch size of
256 was employed to manage the learning process. Other
simulation parameters are summarized in Table 2.

TABLE 2. Experimental parameters.

The proposedMUAVDDPG algorithm is evaluated against
the following baseline algorithms.

1) Deep Deterministic Policy Gradient (DDPG) [28]: A
DDPG-based scheme wherein each agent learns from
prior offloading experiences and dynamically fellows
the nearest computational UAV node.

2) A3C [28]: Both the A3C and DDPG algorithms belong
to the paradigm of model-free DRL and follow an
actor-critic framework. However, their distinct advan-
tages come to light in various applications, especially
in achieving efficient convergence during training.

3) DQN [29]: DQN exhibits strengths in dynamically
allocating computational tasks among heterogeneous
resources. DQN learns from experience and navigates
high-dimensional state spaces contributing to effective
decision-making in dynamically changing network
conditions.
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The convergence analysis depicted in Fig. 3 illustrates the
performance of various DRL algorithms. Specifically, the
proposed MUAVDDPG algorithm demonstrates superior
performance compared to the three baseline algorithms. Con-
vergence for the MUAVDDPG algorithm occurs before the
550-episode mark, while the other three algorithms converge
around the 700-episode range. This points to the successful
alignment of interests between UAVs and mobile users,
effectively maximizing rewards and minimizing computation
costs through optimal offloading decisions. An observed
trend reveals an increase in average rewards proportional
to both the number of episodes and the number of agents.
Remarkably, the proposed MUAVDDPG algorithm yields an
overall reward increase of 16%, 26%, and 33% compared
to DDPG, A3C, and DQN, respectively. This notable
enhancement in reward values signifies the efficacy of the
MUAVDDPG approach in optimizing both UAV and mobile
users’ objectives within a dynamic network environment.

FIGURE 3. Average rewards with training episodes.

In Fig. 4, our focus initially centers on analyzing the
performance of the proposed algorithm concerning the
escalating number of UAVs. As observed in Fig. 4a,
a trend emerges, indicating a decrease in the average
computation cost across all algorithms with an increase in
the number of UAVs. Notably, the MUAVDDPG algorithm
showcases a swifter reduction in average cost, surpassing the
performance of the three baseline algorithms. This pattern
suggests that under the MUAVDDPG framework, agents
collaborate more effectively, leading to reduced resource
consumption compared to other algorithms. DDPG and A3C
exhibit superior performance to DQN due to their enhanced
support for distributed learning. Particularly noteworthy is
the MUAVDDPG’s remarkable reduction in average cost by
30%, 49%, and 70% compared to DDPG, A3C, and DQN,
respectively. This demonstrates the MUAVDDPG algo-
rithm’s effectiveness within a multi-agent system, surpassing
baselines by optimizing agents’ decisions. Additionally,
Fig. 4b and 4c portray a notable trend: as the number of UAVs
increases within the MUAVDDPG algorithm, optimal time
delay and energy consumption decrease. This trend is also

observed, to a lesser extent, in DDPG, A3C, and DQN. Thus,
across various numbers of UAVs, theMUAVDDPGalgorithm
consistently outperforms the three baseline algorithms by
efficiently minimizing time delay and energy consumption.

In Fig. 5, our investigation delves into the average cost,
time delay, and energy consumption across various data sizes
from 1 to 16MB. This analysis aims to assess how offloading
data sizes impact system performance. Fig. 5a graphs
the average cost across diverse data sizes. The observed
gradual increase in the average cost across all algorithms
is attributed to larger offloading data sizes demanding more
time and energy consumption. Tasks with increased data
sizes require higher computational time and resources from
UAVs. Once the offloading task size reaches 4 MB, there’s
a rapid spike in the average cost for the three benchmark
algorithms. However, under the proposed algorithm, the
average cost escalates significantly slower. The algorithm’s
collaborative nature facilitates information sharing among
agents, enabling efficient cost minimization. Comparatively,
the proposed algorithm demonstrates a significant reduction
in the average cost, showcasing a decrease of 45%, 52%,
and 65% when compared to the DDPG, A3C, and DQN
algorithms, respectively. Moving to Fig. 5b and 5c, the
analysis focuses on time delay and computation energy
consumption, encompassing the transmission and execution
of mobile users’ tasks. Fig. 5b demonstrates a proportional
increase in computation time delay with rising offloading
data sizes. However, the proposed algorithm consistently
maintains lower time delays compared to the three baseline
algorithms. Meanwhile, Fig. 5c reveals a general uptrend in
total energy consumption across all algorithms as offloading
tasks expand. Remarkably, the proposed algorithm exhibits a
notably slower increase in energy consumption compared to
the three baseline algorithms. This highlights the algorithm’s
capacity to effectively minimize computation costs con-
cerning time delay and energy consumption across varying
offloading data sizes.

The research analyzes how the computational capabilities
of UAVs impact the computation cost mobile users incur
when offloading tasks. As indicated in Fig. 6, an evident
pattern emerges: as the computational capacity of UAVs rises,
there is a gradual decline in average costs observed across
all algorithms. This decline in average costs demonstrates
a consistent, albeit slow, reduction. To elaborate further,
it is important to note that the average cost associated
with the three fundamental algorithms exceeds that of the
proposed MUAVDDPG algorithm. Upon closer examination
by evaluating each algorithm’s performance concerning the
maximum computation capacity, substantial reductions in
average costs are evident. Specifically, when comparing
the MUAVDDPG algorithm to the DDPG, A3C, and DQN
algorithms, there is a notable decrease in average costs
by 40%, 52%, and 66%, respectively. This comparison
underscores the significant efficacy of the MUAVDDPG
algorithm in significantly reducing costs compared to the
established algorithms studied.
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FIGURE 4. Effects of UAVs on cost, time, and energy consumption.

FIGURE 5. Effects of data size on cost, time, and energy consumption.

FIGURE 6. UAV computation capacity vs average cost.

Fig. 7 and Fig. 8 demonstrate how the computation
capacity of UAVs influences the performance metrics of
various benchmark algorithms in multi-UAV-assisted MEC
environments. Specifically, Fig. 7 illustrates the relationship
between UAVs’ computation capacity and the average reward
achieved by each algorithm, highlighting the increasing
trend in average rewards as the computation capacity
grows. Notably, the MUAVDDPG algorithm shows the most
significant performance enhancement, suggesting that it is

FIGURE 7. UAVs capacity vs average reward.

particularly effective at utilizing increased computational
resources to maximize rewards. This outperformance is con-
sistent across varying capacities, indicating MUAVDDPG’s
robustness in different computational scenarios. Moreover,
Fig. 8 explores the impact of UAVs’ computation capacity
on the offloading rate, which is a critical measure of how
effectively computing tasks are transferred from mobile
devices to UAVs. It can be observed from Fig. 8 that all
algorithms benefit from increased computation capacities,
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FIGURE 8. UAVs capacity vs offloading rate.

achieving higher offloading rates. The superior performance
of MUAVDDPG in achieving higher offloading rates further
confirms its enhanced ability to efficiently manage and
utilize UAV computational resources, which is crucial for
task offloading in complex environments. The consistency of
MUAVDDPG’s superior performance in both average reward
and offloading rates under varying computational capacities
supports its stability and robustness, making it a promising
option for optimizing UAV-assisted operations in diverse
MEC settings.

As the demand frommobile users for resources fromUAVs
rises, so does the average cost. Collaboration intensifies
within the ever-changing network setting when there’s a
growth in the number of agents - including UAVs and
mobile users. This collaboration leads to improved rewards
for UAVs and cost reductions for mobile users. To confirm
the scalability of our proposed framework, we varied the
number of agents in our scenario, ranging from 1 UAV and
5 mobile users to 6 UAVs and 30 mobile users across all
algorithms, as depicted in Fig. 9. The proposedMUAVDDPG
outperforms the three alternative algorithms. Our obser-
vations revealed that average costs also escalate as the
number of agents rises. However, the cost associated with the
MUAVDDPG algorithm remains lower than the others and
sees a more gradual increase. Under MUAVDDPG, agents
exhibit higher cooperation and amore favorable experience in
contrast to DDPG, A3C, and DQN algorithms as the number
of participants grows. Hence, in our proposed scenario, the
MUAVDDPG algorithm exhibits greater scalability than the
other benchmark algorithms and proves its relevance in
multi-agent system scenarios.

A. PRACTICAL IMPLEMENTING AND EVALUATING OF THE
PROPOSED ALGORITHM
The evaluation of the proposed MUAVDDPG algo-
rithm against various practical scenarios and benchmark
approaches reveals its efficacy in optimizing resource

FIGURE 9. Varying No. of UAVs and mobile users vs average cost.

allocation and minimizing computation costs in dynamic
network environments. Compared to baseline algorithms
such as DQN, A3C, and DDPG, the MUAVDDPG algo-
rithm demonstrates superior performance, as illustrated by
convergence analysis and average reward increases. Notably,
the MUAVDDPG algorithm converges faster, aligning the
interests of UAVs and mobile users to maximize rewards
and minimize computation costs through optimal offloading
decisions.

Furthermore, across different network scales, including
varying numbers of UAVs and offloading data sizes, the
MUAVDDPG algorithm consistently outperforms baseline
algorithms by efficiently minimizing time delay, energy
consumption, and average cost. This performance advantage
is attributed to the collaborative nature of the MUAVDDPG
framework, which facilitates effective information sharing
among agents, reduces resource consumption, and ensures
optimal resource allocation.

Additionally, the scalability of theMUAVDDPG algorithm
is demonstrated by its ability to maintain lower average
computation costs even as the number of agents, including
UAVs and mobile users, increases. Overall, these findings
underscore the practical utility and generalizability of the
proposed algorithm in multi-agent system scenarios, high-
lighting its potential to address complex task offloading
and resource allocation challenges in dynamic network
environments.

VI. CONCLUSION
In this paper, we explored task offloading and resource alloca-
tion within a resource-constrained multi-UAV-assisted MEC
network. Our focus centered on optimizing computation
costs, encompassing energy consumption and computation
delay, by enabling mobile users to access computational
resources from UAVs. Leveraging an optimization problem
modeled on dynamic preferences and employing the MDP
framework, our goal was tominimize computational demands
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for mobile users.The MUAVDRL algorithm effectively
addresses this challenge by efficiently navigating its dynamic
and high-dimensional nature. Rigorous simulation results
validate our proposed framework’s superior performance
and effectiveness when compared to existing state-of-the-
art methods, highlighting its substantial potential in practical
scenarios. Notably, the simulation outcomes underscore
the efficacy of the MUAVDRL algorithm, showcasing its
ability to significantly enhance system utility while meeting
stringent latency and energy requirements, surpassing the
capabilities of other baseline algorithms.
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