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ABSTRACT Deep Learning (DL) models can make short- and long-term predictions in just a few seconds,
beyond the capabilities of traditional physical models. However, the capabilities of different DL models for
meteorological element forecasting, are still yet to be comprehensively evaluated. Here, DL models were
used to forecast multiple meteorological elements, including temperature (T), surface net solar radiation
(SSR), soil moisture (SM), and evapotranspiration (ET). We compared the seven models in term of training
performance, prediction accuracy, and the effects of parameters. We found that the training of RNN-based
models (LSTM, GRU, and Bi-LSTM) was faster than others. However, with sufficient training epochs,
Transformer-based models consistently achieve the lowest loss function. Among the Transformers, the
Informer demonstrates the best prediction accuracy in most scenarios. Beyond the choice of DL model, the
prediction performance is also influenced by the meteorological element itself. The MTGNN is comparable
to Transformer-based models for T and SSR forecasting, but it does not perform as well as the Informer
for SM and ET. The sliding window size and prediction time step have a slight impact on the performance
differences between the models. The results can offer insights into applying DL models in meteorological
element forecasting.

INDEX TERMS Meteorological elements forecasting, deep learning, RNN, GNN, transformer.

I. INTRODUCTION
Weather forecasting is a fundamental part of people’s lives
worldwide as the global weather pattern is constantly chang-
ing, and how it behaves in the 21st century is unpredictable
and complex [1], [2]. The abnormal change in the weather
pattern reflects drought, floods, typhoons, and several other
natural disasters worldwide, posing unprecedented damage
to nature and society [3], [4]. Hence, the timely and accu-
rate prediction of various meteorological elements, including
temperature, radiation, and humidity, is essential for multiple
applications that benefit human lives [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

Weather forecasting is the scientific process of predict-
ing atmospheric conditions for specific time periods and
locations. Traditional weather forecasting usually depends
on numerical simulation methods. Numerical simulation
methods perform parameterized mathematical modeling of
nonlinear weather system processes, and then simulate com-
plex physical processes in the weather system to forecast
various meteorological elements [6]. In addition, with the
development of computer technology and detection tech-
nology, weather radar and satellite data are further assim-
ilated into numerical models to improve the accuracy of
weather forecasts [7], [8], [9]. Numerical simulation meth-
ods are now extensively applied in both global and regional
weather forecasting [10], [11], [12]. However, the inherent
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uncertainty in modeling the parameterization of nonlin-
ear weather systems contributes to ongoing uncertainty
in local-scale predictions [13]. Recently, machine learning
methods have been adapted to forecasting meteorologi-
cal elements. Compared with statistical models, traditional
machine learning methods such as shallow neural net-
work [14], [15], Bayesian statistics [16], [17], and support
vector machine [18], [19] are increasingly effective in dealing
with issues related to non-linear relationships. However, for
complex problems, the generalization of their use and abili-
ties are restricted [20].
Deep Learning (DL) models are superior to traditional

machine learning methods for complex issues and exten-
sive data analysis [21]. DL models are usually data-driven
without having prior physical knowledge. They are power-
ful in capturing non-linear relationships among forecasting
elements and thus are being widely adopted [22]. Recurrent
neural networks (RNNs) within DL frameworks are com-
monly employed for researching time series data predictions,
including meteorological elements. For example, Qing and
Niu predicted hourly day-ahead solar irradiance based on
LSTM networks [23], whilst Shi et al. utilized the radar
echo map to predict the probability of rainfall based on the
GRU network [24]. RNNs have revolutionized environmental
forecasting and resolved problems associated with consid-
erable management complexity in various fields, including
water resources, agriculture, and soil sciences [25], [26].
However, the input time series continues to increase and the
model continues to iterate, the RNN models meet problems
such as gradient explosion and vanishing [27]. Thus, Graph
Neural Networks (GNNs) have been impressive in the task
of time series prediction [28], [29]. A graph is a special data
form describing the relationship between different entities.
Multivariate time series prediction can be viewed from the
perspective of a graph [30]. The variables in a multivariate
time series can be regarded as nodes in the graph, and the
edges of connecting nodes represent the relationship between
variables. GNNs can capture directional relationships
efficiently [31].
While the RNNs and GNNs is widely used in mete-

orological element forecasting over the past decade, the
transformers, created in 2017, broke the monopoly of the
RNN and CNN. The network structure of the transformers
is composed of a self-attention module and a feed-forward
layer [32]. Although the transformers were initially designed
for natural language processing tasks in humans, many stud-
ies have now applied them to cross-border tasks such as
time series prediction, music generation, image classification,
etc., [33] and [34]. Transformers allow the creation of a
long enough look-back window. When the computational
force is sufficient, it can theoretically capture infinite rich
sequence context, which leverages transformers in model-
ing long-term dependencies, realizing a more powerful large
model [35], [36].

Various deep learning methods, including RNNs, GNNs,
and Transformers, exist within a single framework that can

incorporate multiple models. RNN-based models, such as
LSTM [37], GRU [38], Bi-LSTM [39], GNN-based models,
such as MTGNN [30], GPT-GNN [40], DAG-GNN [41], and
Transformer-based models, such as Deep transformer [42],
Informer [43] and Autoformer [44], have been widely used
in meteorological element forecasting. However, comprehen-
sive comparisons of the capabilities of different DL models
for meteorological element forecasting have yet to be further
conducted. Accordingly, this study aims to comprehensively
evaluate the performance of different DLmodels for forecast-
ing multiple meteorological elements, including temperature,
surface net solar radiation, soil moisture and evapotranspira-
tion, across dimensions of training performance, prediction
accuracy, and the effects of parameters.

II. DATASETS
A. STUDY AREA
To fully consider the interaction between meteorological ele-
ments, we choose a farmland area in Cangzhou City, Hebei
Province, China (shown in the hashed rectangle in Fig. 1) as
the study area. This farmland represents a typical transitional
zone in China, with area of 250 km2, featuring both dry
and wet climates [45]. The location is highly susceptible
to climate fluctuations where drought and flood disasters
occurs, characterized by a strong gradient of climate variables
and instability [46], [47]. Due to themicroclimatic influences,
the meteorological elements change dramatically locally. The
changes in microclimate meteorological elements are closely
related to the radiation transfer and heat balance in each
canopy layer [48]. In addition, human activities, such as

FIGURE 1. The geographical location of the study area.
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FIGURE 2. Workflow of the proposed method.

irrigation, sowing, and tillage, constantly change the state of
solar radiation near the surface, soil temperature, and humid-
ity [49]. These factors contribute to the relatively unstable
meteorological changes in this region, which are crucial for
assisting in model simulation and understanding the interre-
lationships among the meteorological elements.

B. ERA-5 DATASET
We select the 2m air temperature (T), surface latent heat flux,
surface net solar radiation (SSR), and volumetric soil water
layer 1 (SM) data from the ERA5 hourly product, spanning
from 1982 to 2016, at a spatial resolution of 0.25◦. The
ERA5 provides reanalyzed observations of the atmosphere,
land, and ocean, which results from the best combination
of observations from different measurement sources and the
output of a numerical model using a Bayesian estimation
process called data assimilation [50]. Note that we converted
latent heat flux into evapotranspiration (ET) values using the
guidelines fromFAO56 documentation, as detailed in Table 1.

The main reasons for choosing the ERA5 product are:
(1) it is a comprehensive set of grid data from 1950 to the
near present, which can provide sufficient input data for
our model; (2) ERA5 data has been used in the area of
North China [51], [52], boasting both high temporal and
spatial resolution. We trained each model with ERA5 data
and evaluated the accuracy of each model on the test dataset
with evaluation metrics described in section III-C.

III. METHODOLOGY
A. OVERVIEW
Fig. 2 shows the workflow of this paper. First, the T, SSR,
SM, and ET data of the study area were extracted for the
years 1982 to 2016. Then, these meteorological data were

TABLE 1. Meteorological weather forecast parameters used in our work.

pre-processed by data standardization and sliding windows
algorithm. Third, different DL models were trained with
various sliding windows for the meteorological elements
forecasting. Finally, the performance of different DL models
was compared using accuracy metrics, such as Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE) and
Pearson correlation coefficient (R).

B. DATA PRE-PROCESSING
Before the training, the ERA5 data were standardized by
z-score to eliminate the differences in measurement units and
value ranges for eachmeteorological element. The maximum
andminimumvalues of the samemeteorological elementmay
also differ by several orders of magnitude [53].

Then, the times-series dataset was generally divided into
multiple samples of the same size for training using the
sliding window algorithm. Previous studies [54], [55] have
showed the effectiveness of the sliding window algorithm
in deep learning prediction. Given a p-step historical
time series data X =

{
xt , xt+1, xt+2, · · · , xt+p

}
, where

xt ∈ RN , are the values of N variables selected at time
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step t, our goal is to predict a future time series Y ={
xt+p+1, xt+p+2, xt+p+3, · · · , xt+p+q

}
, using the DL mod-

els. The sliding window size (p) affects the sample size
and, subsequently, the training of the models. Here, we set
the sliding window sizes to 24, 48, and 72 h, respectively,
to explore how different settings affect the training perfor-
mance of various models. It should also be noted that the
sliding window slides forward one step at a time, and the
model will output future continuous prediction values after
each sliding operation. For example, if the model output is
set to 24 steps, there will be 24 continuous prediction values
for each sliding. Since our model is based on historical time
series, the predicted sequence’s real value is known, and each
prediction step’s error can be calculated.

Meteorological forecasting is generally based on mete-
orological station, namely, point-based. Here we used the
point model after averaging the meteorological element value
across the study area for the time series prediction. The entire
time series dataset was divided into three parts: 70% allocated
for training, 10% for validation, and the remaining 20% for
independent testing. The training and validation sets are used
to train and update model hyper-parameters and the test set is
used for the final performance evaluation of the models.

C. THE DEEP LEARNING MODELS
This study compared seven deep learning models, encom-
passing three RNN-based models, one GNN-based model,
and three Transformer-based models.

1) THE RNN -BASED MODELS
Typical sequence models, RNN-based models, utilize a
sequence-to-sequence structure to process time series data
as sequences of inputs and outputs [56], [57], [58]. Known
for their proficiency in handling time series problems, RNNs
effectively save and update state information due to their
unique looping structure, which updates and saves the context
state in each iteration [59].
We select three RNN-based models, LSTM, GRU and

Bi-LSTM, as baseline models. RNNs can deal with time
series problems [60], [61], but they are better at feature
extraction rather than saving and updating information [62].
The LSTM [63] solves these limitations by adding gradient
flows of the forgetting stage, memory selection stage and out-
put stage to the hidden layer. The forgetting stage selectively
loses the information transmitted from the previously hidden
layer. The memory selection stage selectively remembers the
input information of the current hidden layer. The output
stage determines which will be regarded as the output of
the current state. Compared with LSTM, GRU can achieve
significant results, and it is easier to train; this can greatly
improve the training efficiency [64]. Bi-LSTM combines an
LSTM moving from the beginning of the sequence and an
LSTMmoving from the end of the sequence to the beginning
of the sequence, so that the feature obtained at time t has both
past and future information.

2) THE GNN-BASED MODELS
MTGNN is the first model to process multivariate time series
data using a graph [30]. The MTGNN consists of three
mainmodules: graph learning layer, time convolutionmodule
and graph convolution module. The graph learning layer
adaptively learns the graph adjacency matrix as the input of
the graph convolution module and is specially designed for
data without an explicit graph adjacency matrix. The graph
learning layer inMTGNN is designed to extract one-way rela-
tionships and only focuses on the relationship between paired
variables. It is helpful to simulate the driving relationship
between meteorological elements. Multiple one-dimensional
convolution filters in the time convolution module allow the
model to capture different periodic signals through the size of
the receptive fields.

3) TRANSFORMER-BASED MODELS
The Transformers are an encoder-decoder model based on
the self-attention mechanism. It is suitable for parallel com-
puting and the complexity of its own model. When the
encoder processes each time point in the sequence, it deter-
mines how much the value of the time point is affected by
itself or other time point values by calculating the attention
score to obtain a weighting vector. The decoder gradually
restores the low-dimensional representation of the target
sequence obtained by the encoder to the target sequence.
The Informer [43] and Autoformer [44] have been derived
from the traditional Transformer. The Informer breaks the
inherent limitations of conventional transformers, such as
secondary time complexity, high memory utilization, and
encoder-decoder architecture; it has significant performance
in dealing with long-term dependence. The Autoformer
can progressively decompose complex time series, focusing
on seasonal pattern modeling [44]. The deep transformer,
Informer, and Autoformer were selected for the comparison.

We standardized the training parameters across all models
for the model training, utilizing ten grids and three sliding
window settings. In the configuration, we set the epochs to
100 and the batch size to 64. The optimizer of each model is
the Adam optimizer. Each experiment was conducted thrice
to obtain an average value. We assess each model by the
decline of the loss curve in the training period and the predic-
tion error accumulation in the test period. All the experiments
were performed on an NVIDIA Tesla T4 GPU.

D. PERFORMANCE EVALUATION
The Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Pearson correlation coefficient (R) (signifi-
cance level at P < 0.05), are selected to evaluate model
performances. The MAE indicates the average value of the
distance between the model’s predicted value and the true
value. The RMSE measures the deviation between the pre-
dicted value and the true value, which is sensitive to large or
small errors. The R is used to measure the linear correlation
between the predicted and true values; a larger absolute value
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FIGURE 3. The training loss of each model under three different sliding window settings (24h (a),
48h (b) and 72h (c)). Each curve represents the average value of ten grids. MAE is selected as the loss
function in the training.

of R signifies a stronger correlation. The formulas of the
metrics are shown below.

MAE(y, y′) =
1
n

n∑
i=1

∣∣yi − y′i
∣∣ (1)

RMSE(y, y′) =

√√√√1
n

n∑
i=1

(y′i − yi)2 (2)

r(y, y′) =
Cov(y, y′)√
Var [y]Var [y′]

(3)

In the above equations yi and yi
′ represent the original

ERA5 time series at time I and Its predicted value at the
corresponding time. Cov(y,y

′
) is the covariance between the

predicted values and the true values. Var [y] and Var
[
y′

]
is

the variance of the true values and the predicted values. The
lower the MAE and RMSE, the better; R is the inverse.

IV. RESULT
A. THE TRAINING PERFORMANCE
Fig. 3 shows the loss function curve of each model during
training under three different sliding window settings. As the
number of epochs increases, all models’ MAE decreases
quickly, then tends to be stable. However, the speed of stabi-
lization varies across models. The RNN-basedmodels always
tend to be stable first, followed by the Transformers-based
models and the MTGNN. However, the Transformer-based

models have the lowest MAE once they become stable. This
shows that the RNN-basedmodels have the highest efficiency
in training. Yet, the Transformers-based models have the best
performance in loss function in training.

The size of the sliding window has a minimal impact
on the training performance of both RNN-based and
Transformer-based models (Fig. 3). Regardless of whether
the sliding window is set to 24, 48, or 72 hours,
the RNN-based models typically stabilize after about
25 epochs. In contrast, the MTGNN usually stabilizes after
35 epochs, while the Transformers consistently stabilize after
30 epochs. Moreover, although the sizes of sliding win-
dows are different, the transformers achieve the best training
performance.

However, the training performance of the MTGNN model
is notably affected by the sliding window size. The loss
curve of MTGNN is different and fluctuates with different
sliding window sizes (Fig. 3). This may be related to the
complexity of the model. The model architecture of RNNs
is relatively simple, and the loss curve decreases steadily.
Compared with RNNs, the MTGNN has one more learning
process of the graph adjacency matrix. The graph learning
layer also updates the structure of the adjacency matrix with
the introduction of data in the training stage. This leads to
a slight fluctuation in the loss curve of the MTGNN at the
beginning of training, but the fluctuation decreases, which is
acceptable.
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FIGURE 4. Prediction results on testing set at prediction step 1. The black line
represents the real value of ERA5; lines of other colors represent prediction
sequences of different models. The three columns from left to right represent the
sliding window for 24h, 48h and 72h respectively.

B. THE PREDICTION RESULTS OF DL MODEL
After model training, the best epoch of each method is
saved and used to predict values of T, SSR, SM, and ET.
Fig. 4 shows the prediction results of different models
under different sliding window sizes. For each meteorolog-
ical element, we can clearly see the impact of the change
in sliding window size on the prediction. Specifically, with
the increase of sliding window sizes, the prediction error
of each model correspondingly increases. Among them, the
prediction sequence of the Transformer-based models fits
the real value more accurately (Fig. 4). Especially in the
prediction of T, SSR and ET, when the predicted values of
other models gradually deviate from the real values with the
increase of sliding window sizes, the prediction sequence of
the Transformer-based models are still consistent with the
real value. Notably, in the prediction of SM, the variation
in results of Transformer-based models is relatively larger,
suggesting a potential dependency of model performance on
the specific variable.

In addition, we found that the errors are mainly concen-
trated at the extreme values (peak and valley of the series),
especially at the peak. All models are not good at predicting
extreme values, which is also one of the challenges faced by
the time series prediction task based on DL [65]. At the valley

values, the performance of each model is different. In the
prediction of SSR and ET, RNN-based models and MTGNN
perform poorly near 0, while transformers do the opposite.
With the increase of sliding window, the error near 0 will
increase slightly.

Overall, the Transformer-based models are better than
MTGNN and RNN-based models. The MTGNN is com-
parable to Transformer-based models for T and SSR; the
Informer and Transformer have smaller prediction errors for
SM and ET, and MTGNN gradually surpasses them as the
value increases. Among the three transformers, the Informer
performs best overall.

C. THE PREDICTIVE PERFORMANCE OF THE TRAINED
MODEL
The test dataset is then used to evaluate the predictive perfor-
mance of the trained model. In general, the error will increase
gradually with the increase of the prediction time step in
meteorological element forecasting. Here, the slidingwindow
technique is employed to produce predictions for the next 24,
48, or 72 hours, corresponding to the sliding window sizes we
set. Then, we evaluate the MAE of the predicted values in the
different time steps.
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FIGURE 5. Comparison of MAE changes of four variables on the test set under three
different sliding window size settings (24h, 48h, 72h) of the models. The horizontal
axes are the comparison of different sliding window settings under the same
variable, and the vertical axes are the comparison of different variables under the
same sliding window setting.

Fig. 5 shows the MAE of the predicted T, SSR, SM, and
ET, with different prediction time steps and sliding windows.
As expected, theMAE increases with the prediction time step
in all models.Meanwhile, the prediction time step has aminor
effect on the prediction performance of different models. For
example, in the prediction of the T, the prediction error of
the MTGNN in the first few steps is the lowest. After about
5h, the Informer and Transformer are the better performing
models among all models.

The models have different performances in the four meteo-
rological elements. Across the board, the Transformer-based
models have the best performance, followed by MTGNN
and the RNN-based models. This superior performance of
the Transformer-based models is evident in SSR and ET
prediction but becomes minor in T and SM prediction. This
indicates that the effectiveness of a DL model may depend

on the specific meteorological element being forecasted, sug-
gesting the need for tailored model selection for different
elements.

The models with sliding windows of 24h have the lowest
MAE, followed by the 48h and 72h windows. This trend
aligns with expectations: smaller sliding windows yield better
prediction performance. However, the sliding window has a
minor effect on the prediction ability of the models. Although
the sliding window changed from 24 to 72h, the trends of
MAE are almost the same in all models. Notably, with the
increase of the sliding window size, the gap between themod-
els gradually narrowed in T and SM prediction, suggesting
that the meteorological element itself could be substantial.

Given the effect of the prediction time step, short-term
meteorological forecasting is more important and significant.
Table 2. shows the comparison of RMSE and R of each model

81778 VOLUME 12, 2024



R. Qiu et al.: Evaluation of Different DL Methods for Meteorological Element Forecasting

TABLE 2. Metrics summary of each model in the 1st step under different sliding window settings.

in the prediction of each element under the prediction time
step of 1h with different sliding window sizes. The bold font
indicates the model with the lowest RMSE and the highest R
under the same sliding window setting. It can be seen from
the table that the MTGNN performs best in the prediction
of T and SM, while Informer is better than other models in
the prediction of SSR and ET. On the other hand, with the
increase of sliding window, RMSE increases and R decreases.
Overall, the MTGNN and transformers are better than RNN-
based models, reinforcing earlier observations.

V. DISCUSSION
In recent years, data-driven models have had an important
impact on science and society with their ability to minimize
computing costs, increase speed, and generate large-scale
integration among the meteorological elements [66]. The
application of modern DL methods in the field of meteo-
rology has achieved some exceptional successes in weather
forecasting [67], [68]. One of the significant successes is the
strength in the prediction ability. The DL models can make
short-term predictions in the future in just a few seconds on

the trained model, which is far from being achieved by any
physical model [66].

This study demonstrates the ability of different DL mod-
els for meteorological element forecasting. Transformers
always perform better than RNNs and MTGNN in many
scenarios. This is related to the special attention mechanism
of the transformers 32. It completely abandons the previ-
ously widely used RNN architectures and uses a specific
encoding and decoding structure. When the encoder pro-
cesses time points in the sequence, it confirms the extent
to which the value of the time point is affected by its own
or other time point values by computing the attention score
entirely by the self-attention mechanism to obtain a weighted
vector. Subsequently, the decoder progressively reconstructs
the low-dimensional representation of the target sequence
obtained from the encoder into the original target sequence.
This design greatly improves the ability and efficiency of the
model in processing sequence data.

We note that the loss curve of MTGNN decreases mod-
erately compared to the other models (Fig. 3). This may
be related to the complexity of the model. The model
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architecture of RNNs is relatively simple, and the loss curve
decreases steadily. Compared with RNNs, the MTGNN has
one more learning process of the graph adjacency matrix.
The graph learning layer also updates the structure of the
adjacency matrix with the introduction of data in the training
stage. This leads to a slight fluctuation in the loss curve of
the MTGNN at the beginning of training, but the fluctua-
tion decreases, which is acceptable. Under the three sliding
window settings, the training loss of MTGNN is reduced to
different lowest points, suggesting that different sliding win-
dow size settings (that is, different model input sizes) impact
the MTGNN (Fig. 3). This phenomenon seems non-existent
in other models inferring that the transformer has performed
best so far.

There are some limitations of this study. On the one hand,
this study does not consider the impact of spatial dimension
on model accuracy. Adding a spatial information aggregation
module to the model may further improve the performance,
which may be a potential direction for future studies on
high-performing weather forecasting. On the other hand, pre-
dicting extreme values remains a challenge in time series
prediction. Integrating specific components to monitor and
predict extreme values may be necessary.

DL models continually evolve, showing increased accu-
racy and predictive power, especially in larger models with
hundreds of billions of parameters. In this study, the T, SSR,
SM, and ET were forecasted by DL models. The atmospheric
process is complex, so the four meteorological elements may
have interactive effects. This means that if the computing
resources are enough, more variables such as wind speed, pre-
cipitation, and so on should be considered and incorporated
into the DP models to improve prediction accuracy.

VI. CONCLUSION
This study compared the performance of seven DL models,
including LSTM, GRU and Bi-LSTM, MTGNN, deep trans-
former, Informer, and Autoformer, on forecasting multiple
meteorological elements (T, SSR, SM, and ET). The training
performance, prediction accuracy, and parameters effect of all
seven models were comprehensively evaluated. The results
show that:

1) The models have different training speeds. The
RNN-based models (LSTM, GRU and Bi-LSTM)
always tend to be stable first, followed by the
Transformers-based models and the MTGNN. If train-
ing epoch is enough, the transformers always achieve
the best training performance (lowest loss function).

2) Transformer-basedmodels (deep transformer, Informer,
and Autoformer) generally have the better prediction
accuracy in most of scenarios. Among the three trans-
formers, the Informer performs best overall.

3) The predictive performance of a DL model varies
according to the specific meteorological element. The
MTGNN is comparable to Transformer-based models
for T and SSR; the Informer and Transformer have

smallest prediction errors for SM and ET. The model
selection is related to meteorological elements.

4) The prediction accuracy of all models is affected by the
sliding window (i.e., the length of input sub-sequence)
and prediction time step. The smaller sliding win-
dow and prediction time step is, the higher prediction
accuracy. However, the two parameters have only a
minor effect on the performance differences of different
models.

The DL models continues to evolve, with each model
possessing unique capabilities. The performance of the trans-
formers is generally better than RNNbasedmodels. However,
we argue that the choice of model should not only be based on
the model’s inherent characteristics but also on other factors,
such as the specific meteorological element being forecasted.
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