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ABSTRACT In this paper, the problem of collaboration in crowdsourced last-mile delivery is addressed,
where multiple crowdsourced vehicles cooperate to fulfill tasks. Collaborative crowdsourced frameworks
allow recruited vehicles, referred to as workers, to perform shorter trips while expanding the geographic
coverage. Existing solutions in collaborative, crowdsourced last-mile delivery solely maximize the task
allocation without considering 1) cost factors such as travel distance and payoff and 2) the self-interest
of crowdsourced workers. As a solution, we propose a hedonic cooperative game approach that determines
delivery routes and assigns relaying vehicles by maximizing the average payoff per kilometer, where payoffs
are based on task contributions. Specifically, the proposed algorithm, hedonic crowd relay assignment
(HCRA), uses the Nash equilibria of a series of hedonic games as the basis for the task allocation. To compute
the workers’ preference lists, HCRA relies on crowd relay breadth-first search (CR-BFS) to find a set of
potential routes for task completion, given the constraints of the vehicles. The proposed solution is compared
to a benchmark, and the results demonstrate that a more efficient and scalable solution is achieved using
HCRA, where both the workers’ total payoffs and average payoff per kilometer are increased, even with
increasing numbers of vehicles, tasks, and relays.

INDEX TERMS Collaborative algorithm, cooperative hedonic game, crowdsourced vehicles, last-mile
delivery, task allocation.

I. INTRODUCTION
The recent rise of the gig economy and advancements in
technology have unlocked new possibilities for innovation
in last-mile delivery, which is a crucial step in getting a
parcel or product to its final destination. In 2020, a report by
Statista noted that the global crowdsourced last mile delivery
market was valued at $1.3 billion [1]. The report projected
the market size to reach $9.31 billion by 2027, leading
to an increased demand for last-mile delivery services.
Crowdsourcing, the practice of recruiting a number of
individuals to perform a task, is emerging as an increasingly
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popular solution with companies such as Postmates, Amazon,
and Uber establishing their own crowdsourced delivery
services [2], [3]. These companies can leverage vast networks
of individual contractors, each with unique vehicles and
capabilities, willing to deliver payment packages.

The main challenge of spatial crowdsourcing applications,
whether a task is fulfilled in a single trip or performed
collaboratively, is the efficient allocation of workers by
accounting for their availability and capabilities [4]. Unlike
employed workers using delivery trucks, available crowd-
sourced workers are mainly characterized by their vehicles
or mode of transportation; the location, quality, and energy
level of their vehicle dictate their constraints and affect their
performance on the task. The vehicles may only be allowed
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in specific neighborhoods, on set routes, or at certain times.
The type of worker, i.e., the vehicle they operate from, is a
crucial aspect of the allocation [5], [6], as pedestrians have
different capabilities than cyclists and motorists. Crowd-
sourcing allocation algorithms must quickly and efficiently
navigate the constraints of the workers and find optimal
allocations. The allocations are optimized with respect to a
goal such as minimizing the total costs [5], [6], [7], [8], [9],
[10], maximizing the number of allocated tasks [11], and
maximizing the rewards or profits of the workers [12], [13].
Alternatively, the optimization is multi-objective, combining
several of the aforementioned goals [14], [15]. The challenge
of optimally allocating crowdsourced workers in last-mile
delivery has been approached in a variety of ways. Greedy
algorithms provide solutions quickly in such a dynamic
environment [8], [10], [16], [17], [18], [19]. Additionally,
heuristics such as simulated annealing, tabu search, and
genetic algorithm have been proposed to reach more optimal
solutions within reasonable time [5], [9], [20], [21], [22].
Despite the plethora of solutions in the literature, the
challenge of fulfilling tasks over long distances remains; such
as when the customer’s location is in a suburban area, far from
the closest warehouse. If the distance is short, a single trip is
sufficient [23]; however, attempting to recruit crowdsourced
workers over a longer distance may be time-consuming
and costly, especially if the task must be completed
quickly [5], [9].
For this reason, recent literature proposes to break down

the tasks in crowdsourced last-mile delivery into multiple
steps [5], [6], [9], [15], [23]. The delivery task may be
performed as a relay between several agents whereby the task
is divided into smaller segments; the agents each perform
one of the segments of the journey and pass along the
package to the next worker at a relay point. The first
examples of such crowdsourced LMD frameworks include
relays between in-house delivery trucks, traveling between
or acting as microhubs, and crowdsourced vehicles [5],
[6], [9], [15]. These systems have been referred to in the
literature as two-echelon or truck-crowd delivery systems.
They are often modeled as routing problems to find the
optimal relay points and assign workers. Most recently, the
literature explores a relay mechanism between two or more
crowdsourced workers; henceforth referred to as crowd-
relay [23], [24]. In the short term, facilitating relay points
between the crowd workers, whether through fixed lockers in
high-traffic locations or scheduled meeting points, improves
the geographic coverage of the workers, thus increasing the
task allocation rate. Over time, the approach reduces the
time and cost of the allocation by reducing delays in the
task allocation caused by waiting for the right worker to be
available to complete the task single-handedly. The problem
remains that allocating workers in a crowd-relay delivery
has added layers of complexity as multiple vehicles need to
collaborate to complete a single task while accounting for the
aforementioned considerations regarding the task nature and
the worker availability and constraints [25].

FIGURE 1. Illustration of a crowd-relay scenario in last-mile delivery.
In this example, the source and destination locations of tasks 1 and 2 are
represented. Locker L represents the location of a parcel locker that can
be used as a relay point between collaborating workers. The available
workers 1, 2, and 3 are a bicycle, a car, and a motorcycle, respectively.
There are four possible delivery paths where the payoff corresponding to
each contributing step is indicated. The blue path assigns worker 1 to
transport package 1 from its source to its destination. The orange path
assigns worker 2 to transport package 1 from its source to its destination.
The green path assigns worker 1 to transport package 2 from its source to
locker L, then worker 3 to transport package 2 from locker L to its
destination. The gray path assigns worker 1 to transport package 2 from
its source to locker L, then worker 2 to transport package 2 from locker L
to its destination.

A. PROBLEM STATEMENT
Optimizing crowd-relay last mile delivery problems is an
open challenge since the current methods aim to maximize
the allocation rate while disregarding the self-interested
nature of workers when considering the tasks they are
capable of participating in or the routes they use to
complete them [23]. The algorithm proposed in [23] favors
single-vehicle routes over collaborative ones and exhaus-
tively searches all possible routes for all tasks before per-
forming the allocation through random selection. To illustrate
the limitations of this strategy, let us consider the scenario
shown in Figure 1, with three crowdsourced vehicles, a relay
point through locker L, and two tasks to fulfill package
1 and package 2, which would afford the assigned workers
a payoff of 1 and 3 upon completion, respectively. Given
the constraints of the crowdsourced vehicles, the figure
highlights the possible routes for completing the tasks, both
single and collaborative, as well as the payoff of the workers
for each contributing step.

In this example, the strategy described in [23] would
allocate worker 1 to complete task 1 in one step (illustrated
by the blue path), leaving task 2 unfulfilled. However, if the
payoffs are considered, both worker 1 and worker 2 would
prefer to collaboratively complete task 2 (illustrated in the
gray path) rather than task 1 alone since their individual
payoffs upon completion of task 2 are higher. This would
improve the workers’ total payoff from 1 to 3 but would still
result in a sub-optimal allocation by leaving task 1 unfulfilled.
By considering the preference of the workers in terms of
payoffs versus the distance traveled, it can be shown that
allocating worker 2 to complete task 1 (through the orange
path) allows worker 1 and worker 3 to collaborate on task 2
(illustrated by the green path); thus fulfilling all tasks, and
raising the total payoffs of the workers to 4. In this paper, the
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compensation of the workers with respect to the distance they
travel is used as the basis for optimal allocation.

B. CONTRIBUTION
This article proposes an algorithm for effectively allocating
crowdsourced heterogeneous workers in collaborative deliv-
ery scenarios while maximizing the profit of the workers,
defined as payoffs per distance traveled. The crowdsourced
relay last mile assignment problem (CR-LMAP) is defined
and then framed as a hedonic game, where the workers
are self-interested players willing to collaborate on task
completion, their individual profit defines their utility, and
their utility depends only on their collaborating members.

The crowdsourcing platform identifies the available tasks,
relay points, and workers, as well as their availability and
constraints. The proposed algorithm, HCRA, employs a
series of hedonic games whereby the available workers form
coalitions following their preferences based on a set of
predefined possible paths to perform the available tasks.
The paths are computed using a constrained breadth-first
search subroutine, CR-BFS, such that the workers on the path
can successfully take the intended package from the pickup
location (source) to the drop-off location (destination). The
paths may consist of one or more collaborating workers,
where the workers share the reward of the task based on the
proportion of the path they each contribute. At the end of each
game, the tasks are allocated based on the lowest distance
coalition formed that can successfully complete the task.

Simulation outcomes demonstrate that the proposed algo-
rithm stably maximizes the profit of the assigned workers,
thereby outperforming state-of-the-art methods. This is pri-
marily because the proposed algorithm prioritizes allocating
high-paying tasks through paths that require a lower travel
distance. In addition to providing more preferable solutions,
the proposed algorithm is able to reach the solutions faster
than the benchmark.

The remainder of the paper is organized as follows.
Section II summarizes the related research in crowdsourced
last-mile delivery relay problems as well as that in hedonic
games in task assignment problems. Section III formally
represents the problem and hedonic game, proves the
existence of the hedonic game Nash Equilibrium, and details
the proposed algorithm. Section IV presents the environment,
benchmark,metrics, datasets, and parameters used to evaluate
the performance of the proposed method. Simulation results
are presented and discussed in Section V. The article is
concluded in Section VI.

II. RELATED WORK
In order to allow for better geographical coverage and shorter
trip detours for crowdsourced workers, a variety of multi-step
solutions in crowd-enabled last-mile delivery have been
proposed. The most common is the use of a truck-crowd
delivery model, whereby a fleet of trucks (owned by the
shipping provider) travel to lockers or microhubs, which
then serve as the pickup locations for the crowdsourced

workers to complete the last step of the task to deliver to
the customer’s location [5], [6], [9], [15]. For clarity, the
truck-crowd delivery model is distinguished from the concept
of combining trucks and crowd shippers where a portion of
packages are fully performed by the crowd shippers while the
remaining packages are fully performed by a truck [20]; this
would not be considered multi-step. Another approach is the
use of the crowd-relay model, where a chain of collaborating
crowdsourced workers uses relay points for the task to be
performed. The scope of this work is within the use of the
crowd-relay model for last-mile delivery. The research on this
last mile delivery model is reviewed in the following section;
Table 1 summarizes the key aspects of the research.

A. CROWD-RELAY MODEL
Zhang et al. were the first to propose collaborative delivery
between crowdsourced workers [24]. Their research for-
mulates a general optimization problem for crowdsourced
delivery motivated by Packet-Switch networks with three
aspects: connectivity, profit, and risk. The study proposed to
dynamically optimize the problem using a routing algorithm
based on stochastic mobility and social graphs of the workers
and aimed to increase and optimize the timely delivery of
packages using a multi-criteria function aiming to maximize
profit and quality of service and minimize cost.

The recent study conducted by Ghaderi et al. proposed the
use of a relay of crowdsourced workers and parcel lockers
for last-mile delivery [23]. The authors allow the delivery
tasks to be performed by one or two crowd shippers such that
they exchange the parcels through a locker infrastructure. The
contribution of the work is a novel two-phase algorithm for
1) locating the parcel lockers from a set of potential locations
and 2) assigning each delivery job to one or twoworkers using
a random selection strategy. Experiments were conducted to
evaluate the performance of the algorithms against an ILP
solution. The results showed that the algorithm proposed in
Ghaderi et al. [23], JCA, significantly lowered computational
expenses. Moreover, it was shown that enabling collaborative
delivery improved the delivery rate by up to 5%, with a small
number of lockers utilized in essential locations.

Reviewing the literature in crowd-relay LMD concludes
the following limitations:

• The methods rely heavily on the predictability of the
workers’ mobility patterns or habits [23], [24], [26].
This is not a reliable measure of the workers’ ability or
willingness to perform a task. Many circumstances can
cause workers to operate outside of their usual pattern.
Assuming that the historical positions of the worker
dictate their current location can lead to delayed task
completion or job cancellation if the worker is further
than expected.

• The travel distance is incorporated as a constraint
for delivery; however, the algorithms do not aim to
optimize the travel distance [23], [24]. The travel
distance required to complete a task represents the cost
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TABLE 1. Multi-step last-mile delivery related work.

of delivery; a larger travel distance often translates
to more fuel, emissions, and time. Optimizing travel
distance is a main goal in last-mile delivery problems.

• The worker’s interests or preference over the tasks are
not accounted for [23] and [24]. It is naive to assume that
the workers are equally likely to do a task regardless of
the payment they will receive for completing the task.
The workers will have preferences over the tasks they
are capable of performing based on the amount of work
to be performed and the compensation received.

• The workers’ payment cannot be distributed uniformly
regardless of the proportion of their work in completing
the task, as done by Ghaderi et al [23]. Fair com-
pensation schemes are important factors in promoting
collaboration.

• Recent methods do not scale well to tasks with more
than two workers [23]. It is our hypothesis that the
reason for this limitation is that the proposed algorithm
in [23], if extended to include more than two-worker
delivery paths, would not be able to produce a feasible
solution for larger instances due to the exhaustive nature
of its pre-processing step to find potential solutions.
Section IV-A provides more details about JCA, which
is used as a benchmark to evaluate the proposed work
and test the hypothesis above.

B. COALITION BUILDING IN ASSIGNMENT PROBLEMS
The literature on game theory was reviewed to highlight the
key work conducted on the use of hedonic games and other
coalition-building strategies in general assignment problems.
In cooperative game theory, the aim is to predict and analyze
which coalitions will form, the joint actions they perform, and
the collective payoffs that result when collaboration between
players is encouraged or enforced [27]. A cooperative game
consisting of a finite set of players N , is formally defined by
the following characteristic function:

p : 2N → R

It defines a utility value on all possible coalitions of players
and satisfies p(∅) = 0. The characteristic function defines the

collective payoff that a given set of players gains by forming
a coalition. The progression or ‘‘solution’’ of a cooperative
game is a partition 5 on the set of players N , such that
each set in the partition is a coalition. Cooperative game
theoretic models are offered in the literature on problems such
as modeling trust in multi-cloud services communities [28],
protocols in urban-VANET [29], [30], [31], [32], and task
matching in crowdsourcing applications [33], [34], [35].

Hedonic games are general models for coalition formation
in which players have socially ‘‘blind’’ preferences over
which group they belong to. Some well-known matching
problems are considered hedonic games, such as the stable
marriage and stable roommates problems. In hedonic games,
the players are greedy and independent; their preferences over
the coalitions depend only on the members of the coalition,
with no regard for the distribution of the remaining members
in the partition. In other words, the players in a hedonic
game are not interested in the welfare of others in the game.
The players will only join a coalition with other members
if it improves their payoff. Hedonic game models are used
when forming coalitions of players who are not concerned
with the placement of players outside their coalition or the
structure of other coalitions. Moreover, hedonic games have
non-transferable utility, meaning they are not concerned with
determining the payment structure of the members of the
coalition. The properties of hedonic games are well-suited
to model the preferences of the crowdsourced workers in the
task allocation problem described in Section I-A. The main
goal of the problem is the find groups of worker that are
willing to collaborate over each task in a way that allocates
the tasks while accounting for the workers’ satisfaction. The
delivery workers do not gain rewards based on the allocation
of other workers to different tasks; they are only interested
in the rewards from the collaboration they participate in.
Additionally, since the delivery compensation is known, the
workers are not concerned with determining the resulting
payment structure within their coalition. In contrast to other
cooperative games such as auctions, coalition formation in
hedonic games does not choose how to allocate profit among
its members.
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While hedonic games do not inherently incorporate
tasks, hedonic game-based models have been proposed in
the research for task assignment problems. Crowdsourced
delivery problems, without collaboration, have been modeled
as stable matching games and solutions are found using
Gale-Shapely [33], [36]. However, using Gale-Shapley in the
context of this collaborative last-mile delivery assignment
problem would not be suitable due to the algorithm’s
limitation in navigating highly constrained problems with
large state spaces. Stability, using Gale-Shapley, may be
reached but may result in an unfavorable solution. Jang et
al. (2018) proposed a hedonic game-based framework for
decision-making in the problem of task allocation of drone
swarms [37]. The authors model the task allocation problem
as a hedonic game with self-interested players who are open
to forming coalitions such that it improves their utility. The
utility of the workers is defined on task-coalition pairs, and at
the start of the game, all workers are in singleton coalitions
paired with the ‘‘void’’ task, i.e., doing no tasks. The work
of Jang et al. [37] informs and inspires the hedonic game
proposed in Section III-B; however, some key differences
arise from the nature of the problem in which the game is
set. The game in [37] is anonymous, meaning that the players
are only concerned with the number of participants in the
coalition rather than the identity of those members. In last-
mile delivery, the identity of the collaborating members is
crucial. In drone swarming, each task can have at most one
task-coalition pair (if two coalitions are paired with the same
task, their union is considered the task-coalition pair; they
cannot be considered separate). However, in the setting of
last-mile delivery, the same taskmay be fulfilled bymore than
one coalition of workers (delivery routes). For this reason, the
proposed work does not consider the stability of one hedonic
game as the solution; rather, it plays a series of hedonic
games and considers the stability of each hedonic game as
the basis for the allocation step before starting the next game.
Additionally, [37] states that all drones must be allocated to
a task; therefore, the utility of being assigned to the void
task is zero for all players. In last-mile delivery, this is not a
feasible assumption; instead, each worker states a minimum
acceptable utility, which serves as their individual utility on
the void task. Finally, the algorithm in [37] is designed to
play in the game in a distributed asynchronous environment,
whereas, the algorithm proposed in this paper plays the game
on a centralized platform while simulating the self-interested
nature of the players.

III. PROPOSED METHODOLOGY
This section formally introduces the assignment problem in
crowdsourced relay for last-mile delivery and its underlying
constraints and assumptions. Table 2 provides the notation
used. We propose to solve the CR-LMAP through a
hedonic game-based algorithm. The definitions of the game
characteristics are detailed in Section III-B and the proposed
algorithm can be found in Section III-C.

A. PROBLEM FORMULATION
Suppose there is a set of available crowdsourced workersW ,
a set of tasks T , and a set of available lockers L acting as relay
points, where:

• Each workerwi ∈ W is attributed with a current location
and maximum travel distance dWi , dictated by the type
and condition of the vehicle.

• Each task tj corresponds to a source location, destination
location, and reward f Tj .

• Each locker l ∈ L is associated with a location.

Given the worker and task constraints, a set of possible
delivery paths Pj can be found for each task tj. Each path
pjk ∈ Pj consists of an ordered list of one ormore contributing
steps. If the path consists of one step, it is considered as
a single delivery; if it consists of more than one step, it is
referred to as collaborative delivery. Each step s in pjk is
defined by:

• The pickup location a and dropoff location b; the pickup
location of the first step must be the task source,
and the dropoff of the last step must be the task
destination. Intermediary pickups and dropoffs may be
locker locations as long as the dropoff location of one
step is the pickup location of the following step.

• The worker wjks who performs the contributing step
by traveling from his current location to the pickup
location and then proceeding to the dropoff location.wjks
belongs toWjk ⊆ W which represents the set of workers
collaborating on the path pjk .

• dwajks the euclidean distance between worker wjks and the
pickup location.

• dwbjks the euclidean distance between worker wjks and the
dropoff location.

• dabjks the euclidean distance between the pickup and
dropoff locations.

• The distance djks = dwajks + dabjks that worker wjks travels
to complete the contributing step. Due to the constraint
imposed by workers on their travel distance, a path is
only considered valid if:

(dwajks + dwbjks ) ≤ dWi , wi = wjks (1)

• The individual reward, or payoff, of rjks, which is a
portion of the total task reward f Tj ,

rjks =
dabjks∑

∀s∈pjk d
ab
jks

· f Tj (2)

The objective of the CR-LMAP is to find the allocation of
workers to maximize the overall profit of the workers i.e.
the payoff earned per kilometer traveled by the workers. The
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TABLE 2. Nomenclature.

problem defined above is then represented as follows:

max
xjk

∑
∀tj∈T

∑
∀pjk∈Pj

xjk ·
f Tj∑

∀s∈pjk djks
(3)

subject to
∑

∀pjk∈Pj

xjk ≤ 1, ∀tj ∈ T (4)

∑
∀tj∈T

∑
∀pjk∈Pj

xjk · 1(wi ∈ Wjk ) ≤ 1, ∀wi ∈ W

(5)

xjk ∈ {0, 1}, ∀pjk ∈ Pj, ∀tj ∈ T (6)

where xjk is the binary decision variable indicating if task
tj will be completed through path pjk by its corresponding
workersWjk . The indicator function 1(·) gives a value of 1 if
true and 0 otherwise. Every task can be assigned to at most
one path as stated by Equation 4. Equation 5 stipulates that
each worker can be assigned in at most one path.

B. GAME DEFINITION
In order to solve the CR-LMAP defined in Section III-A, the
following hedonic game event is characterized similarly to
that proposed in [37] and summarized in Section II-B. The
workers inW are the players, and the individual utility ofwi ∈

W on the task-coalition pair (t,m) is defined by themaximum
obtainable profit using this coalition. The individual utility
and profit functions are defined by align 7 and Equation 8.
Each worker wi possesses an individual utility function ui :

T × W → R attributing each possible path’s worker set
Wjk with its utility to wi. In other words, it is the maximum
individual profit wi gains for successfully completing a path
for delivering task tj in collaboration with members m. If a
subset of W does not correspond to any possible paths, its
individual utility for all workers is zero. Furthermore, the
void task tφ formally represents the task-coalition pair for
unassigned workers. The individual utility for tφ is set to a
non-zero minimum acceptable utility, uφ , regardless of the

collaborator set.

ui(tj,m) = max
pjk∈Pj

[profiti(pjk ) × 1(wi ∈ m)] (7)

profiti(pjk ) =


rjks
djks

if ∃s ∈ pjk ,wi = wjks

0 if wi /∈ Wjk

(8)

1) NASH STABILITY
The equations above derive a preference relation for each wi
on the tasks the worker could join; thereby characterizing
the hedonic game. To guarantee algorithm convergence, the
stability of the game is shown.

Proof: If the number of workers, tasks, and paths for
each task is finite, then, using Equation 7, it is possible
to compute the utility of each worker on each task i.e. the
worker’s highest possible ‘‘profit’’ from completing this task.
Let all workers begin the game in the coalition of the void
task: (tφ,W ). Let all task coalitions for real tasks be empty
member sets: ∀tj in T , the corresponding coalition is (tj, ∅).
In the first round of the game, each worker will decide to
move to the coalition of their most preferred task. If more
workers join a coalition, the utility of other workers in the
coalition does not change. Once each worker has joined their
most profitable task, no worker will choose to move to a
different coalition unilaterally. □

With this knowledge, the Nash stable partition of this
hedonic game can be found easily. However, the Nash
equilibrium of this game does not necessarily supply the
optimal allocation. The resulting task-coalition pairs contain
workers that fall into one of two categories: 1) the worker and
their necessary collaborators played the same strategy and can
fully deliver the package through one or more paths, or 2)
the worker cannot fully deliver the package through any path
because some necessary collaborator did not play the same
strategy. Post-processing is required to assign a single path
of collaborating workers to each task based on the resulting
coalition structures.

C. PROPOSED ALGORITHM
The proposed algorithm is designed to assign the available
set of crowdsourced workers to the available tasks such
that the workers may collaborate by successively completing
contributing steps for the same task. The algorithm aims to
maximize the overall profit of the workers as defined by
Equation 3. Figure 2 illustrates the flowchart of the proposed
Algorithm 1. The components of the system are the tasks,
the crowdsourced workers, and the lockers. The tasks are
defined by their unique source location, unique destination
location, and reward (freight value). The available lockers
are identified by their locations. The workers are identified
by their current location, mode of transport, and maximum
travel distance.

The worker assignment process HCRA in Algorithm 1
repeats the following steps until no more tasks can be
assigned:
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FIGURE 2. Flowchart of the proposed algorithm HCRA and its subroutine
CR-BFS.

1) Identifies the set of available tasks, the set of available
lockers, and the set of available workers on the
crowdsourcing platform,

2) Calls CR-BFS, described in Algorithm 2, to find the
sets of possible delivery routes for each of the available
tasks; given a maximum number of paths nP and a
maximum number of steps nS ,

3) Plays a series of hedonic games based on the computed
paths where for each game it:

a) Computes the Nash equilibrium of the resulting
hedonic game,

b) Assigns the shortest path of workers to each task
based on the Nash equilibrium of the game,

c) Updates the available tasks, workers, and lockers
to reset the preference lists.

d) Repeats until convergence.

4) Updates the available tasks, workers, and lockers.

1) CROWDSOURCED RELAY BREADTH-FIRST SEARCH
In order to find a set of possible paths that complete a given
task, the algorithm represents the problem setting as a graph.
The problem graph nodes are the task source and destination
locations and the locations of the lockers. Edges on the
graph represent a contributing step that can be performed.
Each edge stores a pickup node, a drop-off node, and a set
of qualified workers. Algorithm 2 creates the worker graph
constrained by the limitations of the workers with respect to
the task.

The algorithm considers a worker qualified to perform a
contributing step (edge) if it does not violate the worker’s
travel threshold constraint as defined in equation 1. BFS
first explores paths with the least amount of edges (steps)
and, therefore, workers. CR-BFS aims to find paths starting
from the task’s source node and reaching the destination node
while maintaining the constraints listed below. The algorithm
continues to search until the maximum number of paths is
reached or there are no more nodes in the queue.

1) Each worker may be qualified on multiple edges on the
graph; however, each worker may only be assigned to
one contributing step on the graph.

Algorithm 1 Hedonic Crowdsourced Relay Assignment
(HCRA)

Input: available tasks T , available workers W and lockers L,
nP, nS

Output: task-worker-path assignment
1: while T not converged do
2: for task t ∈ T do
3: // compute potential paths for each task
4: CR-BFS(t, W, L, nP, nS )
5: end for
6: for worker w ∈ W do
7: // compute preference list for all workers
8: for task t ∈ T do
9: for path p ∈ Pt do
10: Store profiti(p)
11: end for
12: end for
13: end for
14: while T not converged do
15: // start new hedonic game
16: // compute Nash equilibrium
17: for worker wi ∈ W do
18: // according to Equation 7
19: Find the (tj, pjk ) pair with max ui(tj,Wjk ).
20: Join wi to the coalition of task tj.
21: end for
22: // assign tasks based on Nash equilibrium
23: for task tj ∈ T do
24: for path pjk ∈ Pj (in ascending order) do
25: if Wjk ⊆ the coalition of task tj then
26: Assign task tj to Wjk using path pjk .
27: Update T ,W ,L.
28: Update preference lists ∀ workers.
29: end if
30: end for
31: end for
32: end while
33: end while

2) There is a maximum number of paths nP parameter to
control the complexity of the algorithm.

3) There is a maximum path length (number of relay
steps) parameter nS to control the maximum number
of workers relaying to deliver each task. Therefore, the
algorithm is depth-limited by the maximum number of
workers per path.

D. EVALUATION METRICS
In order to evaluate the efficacy of the proposed model,
HCRA + CR-BFS, the following metrics were considered
along with the algorithm runtime:

1) NUMBER OF TASKS ALLOCATED
The number of tasks that were assigned by the algorithm
according to Equation 9.

∑
∀tj∈T

∑
∀pjk∈Pj

xjk (9)
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Algorithm 2 Crowdsourced Relay Breadth-first Search (CR-
BFS)

Input: task t , available workersW and lockers L, nP, nS

Output: possible paths Pt
Let nP be the maximum number of paths that should be
found for task t and nS be the maximum depth of the
paths.

1: Let Pt be the set of paths found for task t . Pt = []
2: Compute worker graph GtWL
3: Add (task source node, [], []) to the queue.
4: while queue is not empty do
5: if |Pt | = nP then
6: // path number limit exceeded
7: break
8: end if
9: Dequeue (node a, pa, Wa).

10: // pa is the path to a
11: // Wa is the order of workers on pa
12: if node depth of a > nS then
13: // depth limit exceeded
14: break
15: end if
16: if node a is task destination node then
17: Add the path to Pt .
18: else
19: Get all paths to the adjacent nodes of node a.
20: for (worker w, node b) ∈ set of adjacent paths do
21: if constraint (5) is violated then
22: continue
23: end if
24: if (a, b) not visited by w & w /∈ Wa then
25: Mark (worker w, node a, node b) visited.
26: Enqueue (node b, pb, Wb).
27: end if
28: end for
29: end if
30: end while
31: for path p ∈ Pt do
32: Compute time, distance, and payoff for all workers.
33: end for
34: Sort paths by distance in ascending order.
35: // To be used in the assignment step

2) NUMBER OF UNFULFILLABLE TASKS
The number of tasks that the algorithm found no possible
paths and thus could not possibly allocate.∑

∀tj∈T

1(Pj = ∅) (10)

3) TOTAL PAYOFFS
The total payoffs earned by the workers according to
Equation 11, i.e. the sum of the rewards of the allocated tasks.
It gives insight into the algorithm’s behavior in maximizing

the workers’ social welfare.∑
∀tj∈T

∑
∀pjk∈Pj

xjk · f Tj (11)

4) DISTANCE TRAVELLED PER TASK
The average number of kilometers the workers must travel
per assigned task according to Equation 12, i.e. the total
distance traveled in the assigned paths divided by the number
of allocated tasks. It gives insight into the algorithm behavior
in terms of preferring to allocate lower distance tasks.∑

∀tj∈T
∑

∀pjk∈Pj xjk ·
∑

∀s∈pjk djks∑
∀tj∈T

∑
∀pjk∈Pj xjk

(12)

5) ‘PROFIT’ (PAYOFF PER KM)
The payoff per kilometer traveled to complete the tasks
according to Equation 13, i.e. the sum of the rewards of the
allocated tasks divided by the total distance traveled in the
assigned paths. The payoffs earned versus the investment of
travel distance (which implicitly requires resources such as
fuel/energy and time) is the main measure of ‘‘worth’’ for a
task from the perspective of the crowdsourced worker.∑

∀tj∈T
∑

∀pjk∈Pj xjk · f Tj∑
∀tj∈T

∑
∀pjk∈Pj xjk ·

∑
∀s∈pjk djks

(13)

6) QUALITY OF ALLOCATION
To assess the overall performance of the algorithm against the
benchmark, we define the quality of the allocation (QoA) as
the arithmetic mean of five measures:

• Task Allocation Ratio: Number of Tasks Allocated
|T |

• Fulfillable Task Ratio: |T |−Number of Unfulfillable Tasks
|T |

• Reward Allocation Ratio as defined by Equation 14.∑
∀tj∈T

∑
∀pjk∈Pj xjk · f Tj∑

∀tj∈T
∑

∀pjk∈Pj f
T
j

(14)

• Algorithm Execution Time Performance Ratio as
defined by Equation 15, where x is the algorithm runtime
in seconds. Sixty seconds are used as the cut-off for
the allocation to be computed; beyond 60 seconds, the
execution time performance ratio is 0.

1 − max(0,min(log60 x, 1)) (15)

• Distance Performance Ratio as defined by Equation 16,
where x is the average distance per assigned task in
kilometers according to Equation 12. Dmax is used as
the cut-off for the average distance per task; beyond it
the distance performance ratio is 0.

1 − max(0,min(logDmax x, 1)) (16)
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FIGURE 3. Illustration of the workers, lockers, and tasks in the AoI.

IV. EXPERIMENTAL SETUP
A. EXPERIMENTAL TARGET
The work proposed by Ghaderi et al. [23] is the most
recent to tackle the relay of crowdsourced workers in
last-mile delivery. This work is used as a benchmark to
assess the effectiveness of the proposed framework in this
paper, HCRA powered by CR-BFS. The authors propose
to solve the CR-LMAP by maximizing the task allocation
rate using a greedy method, JCA, which finds all possible
solutions to the assignment problem, then randomly selects
solutions according to an inverse roulette wheel (IRW)
probability distribution [23]. IRW gives a higher probability
of selection to workers and tasks that have fewer options
for assignment. JCA is able to assign tasks with up to two
collaborating workers by performing the assignment in two
phases: 1) single delivery and 2) collaborative delivery. Phase
1 finds as many single delivery allocations as possible; then,
Phase 2 assigns the remaining tasks through collaborative
deliveries between two workers facilitated by a parcel
locker as a relay point. For a fair comparison, an extended
version of JCA is implemented by adding Phase 3 which
takes the unassigned tasks, workers, and lockers following
Phase 2 and collaboratively allocates tasks with three steps.
Table 3 summarizes Phases 1, 2, and 3. Furthermore,
in order to show the effect of CR-BFS on HCRA, it is
comparedwith the performance of HCRAusing a constrained
random path-finding algorithm defined in Algorithm 3.
For clarity, the following naming conventions are used to
describe the algorithms’ performance results reported in
Section V.

• HCRA + CR-BFS: refers to the proposed algorithm
HCRA which as defined in Algorithm 1, calls CR-BFS
as a subroutine for path-finding.

• HCRA + CR-Rand: refers to a version of HCRA that
calls the random tree search, defined in Algorithm 3, as
a subroutine for path-finding.

• JCA: refers to the benchmark proposed by Ghaderi et al.
[23] and its extension.

Algorithm 3Crowdsourced Relay RandomTree Search (CR-
Rand)

Input: task t , available workersW and lockers L, nP, nS

Output: possible paths Pt
Let nP be the maximum number of paths that should be
found for task t and nS be the maximum depth of the
paths.

1: Let Pt be the set of paths found for task t . Pt = []
2: Compute worker graph GtWL
3: Add (task source node, [], []) to the queue.
4: while queue is not empty do
5: if |Pt | = nP then
6: // path number limit exceeded
7: break
8: end if
9: Dequeue a randomly selected (node a, pa, Wa).
10: // using a uniform distribution
11: // pa is the path to a
12: // Wa is the order of workers on pa
13: if node depth of a > nS then
14: // depth limit exceeded
15: continue
16: end if
17: if node a is task destination node then
18: Add the path to Pt .
19: else
20: Get all paths to the adjacent nodes of node a.
21: for (worker w, node b) ∈ set of adjacent paths do
22: if constraint (5) is violated then
23: continue
24: else
25: // x is the new potential queue member
26: x = (node b, [pa, a], Wa ∪ w)
27: if w /∈ Wa & x /∈ visited then
28: Mark x visited.
29: Enqueue x.
30: end if
31: end if
32: end for
33: end if
34: end while
35: for path p ∈ Pt do
36: Compute time, distance, and payoff for all workers.
37: end for
38: Sort paths by distance in ascending order.
39: // To be used in the assignment step

B. DATA PREPARATION
The simulations utilize three combined real-life datasets
collected in the state of Sao Paulo in Brazil. These datasets are
used to extract the locations of theworkers, lockers, and tasks,
as detailed next. The resulting dataset represents an AoI grid
of 50 km × 55 km. Figure 3 depicts a subset of the extracted
workers, lockers, and tasks in the AoI.
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TABLE 3. JCA Phase 1, Phase 2, and extended Phase 3 for fair comparison with HCRA.

TABLE 4. Worker capacity generation.

1) TASKS
The details of the tasks are obtained from the Brazilian
E-Commerce Public Dataset by the Olist Store published on
Kaggle [38]. Olist, a Brazilian e-commerce platform provides
the details for 120 delivery packages, including the seller
locations, customer locations, and freight value.

2) LOCKERS
The locations of the large chain of Extra supermarkets, owned
by Grupo Pão de Açúcar, were collected by the authors using
Google Earth [39]. The extracted locations of 25 stores are
used to represent the available locker locations.

3) WORKERS
Check-in locations of users of Gowalla, an international
social networking application, collected through their public
API by the SNAP group in Stanford University [40]. This
dataset provides 120 unique user check-in locations used as
the current locations of the delivery workers. Additionally,
the workers’ vehicles or mode of transport and travel
distance threshold are randomly generated. The workers were
randomly allocated a mode of transport where 10% of the
workers were pedestrians, 30% were bicycle riders, 60%
used a motorcycle or a car. The resulting number of samples
of each mode is reported in Table 4. Within each mode
of transport, the workers’ travel distance thresholds were
generated using a normal distribution with the corresponding
mean and standard deviation. Table 4 defines the parameters
of the random distributions used.

C. EXPERIMENT DESCRIPTIONS
This section defines the experiments conducted to evaluate
the performance of HCRA + CR-BFS and HCRA + CR-
Rand against JCA. Three experiments were conducted:

• Validation of the efficacy of the proposed work in single
delivery scenarios (nS = 1, |L| = ∅); for example, when
no lockers are available.

• Comparative performance of algorithms allowing col-
laborative delivery with two workers
(nS = 2, |L| = 25).

• Comparative performance of algorithms allowing col-
laborative delivery with three workers
(nS = 3, |L| = 25).

In each experiment, the algorithms were compared as the
task load on the platform increased and as the density of the
worker network varied. In the first set of simulations, the task
load on the platform is increased from 10 to 100 tasks while
the number of available workers is set to 100. In the second
set, the algorithms’ behavior is observed as the number of
workers on the platform increases from 10 to 100, while the
number of available tasks is set to 30.

For all executions of HCRA, the maximum number of
paths parameter is nP = 5, and the utility of tφ is uφ = 0.001.
Dmax is computed to be 24 kilometers. The simulation results
are presented in Section V, where each result is the average
of 15 random selection simulations. Furthermore, all JCA and
HCRA + CR-Rand simulations are repeated 5 times due to
the probabilistic nature of their solutions.

D. EVALUATION ENVIRONMENT
The implementation and experiments detailed in the follow-
ing sections were implemented using Python 3.7.13 on a PC
with a 64-bit Windows 10 operating system, 8 GB of RAM,
and a 2.60-GHz-Core(TM) i7-based processor.

V. RESULTS
A. VALIDATION ON SINGLE DELIVERY SCENARIOS
The results of the simulations, while the number of tasks
and workers varied, are reported in Table 5. In both
simulations, HCRA+CR-BFS andHCRA+CR-Rand reach
more optimal solutions than JCA within up to 1.43 and
2.04 seconds additional time, respectively. HCRA + CR-
BFS improves the overall QoA by an average of 0.61 to
1.43% more than JCA. HCRA + Rand improves the overall
QoA by an average of 0.1 to 1.54% more than JCA.
The following discussions demonstrate that deploying the
proposed algorithm upholds a performance advantage even
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TABLE 5. Summary of results in single delivery scenarios. The mean
values of each metric are reported. The better-performing algorithm
result is highlighted for each test.

when relays are not possible with a negligible computational
cost.

1) VARYING THE TASK LOAD
With an abundant set of workers, HCRA + CR-BFS, HCRA
+ CR-Rand, and JCA allocate all the tasks that could
be assigned through single-worker delivery. The workers
assigned by HCRA + CR-BFS travel about 790 meters
per task less than those selected by JCA. The workers
assigned by HCRA +CR-Rand travel about 1.06 km per task
less than those selected by JCA. Since the same tasks are
allocated by all algorithms, the workers allocated by both
HCRA algorithms achieve the same total payoffs using a
shorter travel distance. Thus, HCRA improves the profit
of the workers in single-delivery by 16.2 to 23.7% over
JCA, on average. This also validates that using HCRA
indeed assigns tasks using shorter paths. The results further
indicate that, in single delivery cases with an abundant
worker network, using HCRA + CR-Rand can result in more
optimal allocations than HCRA + CR-BFS with a negligible
additional runtime.

2) VARYING THE WORKER DENSITY
With a relatively low number of tasks, the algorithms’
behavior can be classified into two scenarios: sparse worker
set and abundant worker set. When the worker set is sparse
(with 10 to 40 available workers), not all tasks can be
allocated. Due to the greedy nature of the workers and
the non-cooperative scenario, the HCRA prioritizes the
allocation of higher-paying tasks and lower-distance tasks,
which results in a slightly lower task allocation rate. In other
words, the workers’ self-interested nature is exaggerated,

TABLE 6. Summary of results in collaborative delivery with up to two
workers. The mean values of each metric are reported. The
better-performing algorithm result is highlighted for each test.

resulting in a slightly lower total payoff, but individually,
the allocated workers maintain a higher profit. As the
worker set becomes more abundant (50 or more available
workers), HCRA + CR-BFS, HCRA + CR-Rand, and JCA
allocate all the tasks that were assignable through single-
worker delivery. Similarly to the performance of the previous
simulation in Section V-A1, when the worker set became
sufficiently large in the AoI, the three algorithms assign
the same tasks, and HCRA + CR-BFS selects paths that
require about 1.23 km per task less than those assigned by
JCA. HCRA + CR-Rand selects paths that require about
1.32 km per task less than those assigned by JCA. This
results in a 29.2 to 31.8% increase in profit for the workers
assigned by HCRA, on average. These results confirm that,
in single delivery cases with an abundant worker network,
using HCRA + CR-Rand can result in more optimal allo-
cations than HCRA + CR-BFS with a negligible additional
runtime.

B. COLLABORATIVE DELIVERY WITH TWO WORKERS
The results of the simulations, while the number of tasks and
workers varied, are reported in Table 6. In both simulations,
all algorithms allocated a similar number of tasks in the
dataset; however, the HCRA algorithms achieved higher total
payoffs to the allocated workers and lower travel distance
per task. Moreover, using HCRA lowered the number of
unfulfillable tasks as it found potential paths for up to 14more
tasks than JCA.
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FIGURE 4. The average runtime using collaborative delivery with up to
two workers as the number of tasks varied.

FIGURE 5. The average payoffs per kilometer using collaborative delivery
with up to two workers as the number of tasks varied.

1) VARYING THE TASK LOAD
As the number of tasks increased, HCRA + CR-BFS
solutions increased the total payoffs of the workers by an
average of 8.4% where the mean reward of the assigned tasks
was 12.6% more than those of JCA. HCRA + CR-Rand
solutions also increased the total payoffs of the workers by
an average of 15.2%, where the mean reward of the assigned
tasks was 15.8% more than those of JCA. The paths assigned
by HCRA + CR-BFS required the workers to travel 1.1 km
per task less than those found by JCA. The paths assigned by
HCRA + CR-Rand required the workers to travel 900 meters
per task less than those found by JCA. Finally, HCRA + CR-
BFS achieved its performance advantage over JCA within
about 1 second less execution time than of JCA, as shown in
Figure 4. Whereas, the execution time of HCRA + CR-Rand
exceeds that of JCA as the number of tasks is above 40. Thus,
both HCRA algorithms improved the profit of the workers
by an average of 26.6% to 26.8% over JCA, as depicted in
Figure 5. The advantage of the HCRA+CR-BFS and HCRA
+ CR-Rand over JCA is also captured by the QoA, which
increased by an average of 4.0% and 2.0%, respectively. It is
notable that HCRA+CR-Rand achieves a higher total payoff
than HCRA + CR-BFS while maintaining a similar profit for
the workers as the number of available tasks increases.

FIGURE 6. The average payoffs per kilometer using collaborative delivery
with up to two workers as the number of workers varied.

2) VARYING THE WORKER DENSITY
As the number of available workers in the platform increases,
HCRA maintained an advantage over JCA by allocating a
similar number of tasks to those allocated by JCA while
increasing the total payoffs of the workers and decreasing the
average travel distance per task. HCRA + CR-BFS solutions
increased the total payoffs of the workers by an average of
3.6% where the mean reward of the assigned tasks was 7.4%
more than those of JCA. HCRA + CR-Rand solutions also
increased the total payoffs of the workers by an average of
2.8% where the mean reward of the assigned tasks was 8.2%
more than those of JCA. The paths assigned by HCRA+CR-
BFS required the workers to travel 1.5 km per task less than
those found by JCA. The paths assigned by HCRA + CR-
Rand required the workers to travel 1.2 km per task less than
those found by JCA. The execution time of HCRA+CR-BFS
was superior to that of JCA for tests with 60 or more workers
and always reached a solution faster than HCRA+CR-Rand.
Figure 6 illustrates the results of the algorithms in terms of the
payoff per km traveled, demonstrating an average increase of
28.9% and 23.4% usingHCRA+CR-BFS andHCRA+CR-
Rand, respectively. Therefore, HCRA improved the overall
QoA by between 2.3% and 2.7% over JCA.

C. COLLABORATIVE DELIVERY WITH THREE WORKERS
1) VARYING THE TASK LOAD
Due to space and time limitations, the task load simulations
with up to three collaboratingworkers could not be performed
using the benchmark algorithm, JCA. This is due to the
exhaustive nature of the path-finding strategy of Ghaderi et
al. [23]. It cannot find paths with more than two steps within
reasonable computational time. However, HCRA + CR-BFS
found solutions within 2.3 seconds on average and up to
4.4 seconds when the number of tasks is 100. HCRA + CR-
Rand found solutions within 4.2 seconds on average and up
to 8.8 seconds when the number of tasks is 100. HCRA +

CR-Rand achieves 9.4 % higher total payoffs for the workers
than HCRA + CR-BFS.
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TABLE 7. Summary of results in collaborative delivery with up to three
workers. The mean values of each metric are reported. The
better-performing algorithm result is highlighted for each test.

2) VARYING THE WORKER DENSITY
The results of the simulations, while the number of workers
varied, are reported in Table 7.
When allowing up to three workers to collaborate on

a single task, HCRA + CR-BFS and HCRA + CR-Rand
enabled the allocation of about 1 additional task and achieved
a total payoff that was 17.5% higher than that of JCA,
as illustrated in Figure 7. Despite the average additional 60 to
540meters traveled per task, HCRA+CR-BFS improved the
profit over JCA by 15.5% and HCRA + CR-Rand improved
it by 11.8%. The additional travel distance, in this case,
can be attributed to the fact that higher-paying jobs in the
dataset generally required higher travel distances. Moreover,
HCRA lowered the number of unfulfillable tasks as it found
potential paths for up to 8 more tasks than JCA. Finally,
in this scenario, HCRA + CR-BFS and HCRA + CR-
Rand provide solutions within a maximum of about 1.1 and
1.6 seconds, respectively. In contrast, JCA requires minutes
when the number of workers exceeds 40 and requires about
16.9 minutes to reach a solution when the number of workers
is 100. Figure 8 demonstrates the exponential growth of the
computational time of JCA when optimizing the allocation
with more than two steps. As a result, using HCRA + CR-
BFS and HCRA + CR-Rand when allowing up to three
workers to collaborate improved the overall QoA by 19.1%
and 20.1%, respectively.

D. DISCUSSION
The results validate that when the number of tasks is relatively
low and the availability of workers is limited, it is best to
use a single delivery solution where JCA would provide
fast allocation aiming to maximize the number of allocated
tasks. However, with a negligible additional computation
time, HCRA provides a multi-objective solution that can
easily scale to collaborative scenarios without compromising
runtime. As the availability of workers increases, it becomes
advantageous to use collaborative delivery. When 25 lockers
are available in the AoI, collaborative delivery algorithms
improved the task allocation rate over the single delivery

FIGURE 7. The total payoffs using collaborative delivery with up to three
workers as the number of workers varied.

FIGURE 8. The computational time using collaborative delivery with up to
three workers as the number of workers varied.

algorithms by 14.0% to 21.7%, on average, as the task load
varied. In all simulations, both HCRA algorithms indeed
yield a better allocation than JCA by assigning the tasks
using shorter paths and prioritizing the allocation of higher
reward tasks. Another advantage of HCRA can be attributed
to its path-finding strategy: finding a few potential paths
for as many tasks as possible before assigning any workers.
This minimizes the number of unfulfillable tasks and further
demonstrates the flexibility of HCRA in handling larger
instances of the allocation problem with computational ease.
In contrast, JCA utilizes a strategy that first finds all potential
paths of single deliveries, allocates workers, and then finds all
potential paths of collaborative deliveries with the remaining
tasks and workers. The iterative and exhaustive nature of JCA
prevents some tasks from being considered for collaborative
delivery and requires a longer computation time. The results
show that replacing CR-BFS in the proposed algorithm with
a random path-finding sub-routine CR-Rand always requires
more computation time but only sometimes finds more
favorable solutions. This can be attributed to the probabilistic
nature of CR-Rand, which may explore more collaborative
paths than CR-BFS. For example, if there are many possible
single-delivery paths, HCRA + CR-BFS would likely assign
the task only through single delivery, whereas HCRA + CR-
Rand is not limited in the same way. HCRA + CR-BFS
consistently outperforms JCA, faster than HCRA + CR-
Rand.
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VI. CONCLUSION
In this article, we propose a hedonic game-based model for
collaboratively allocating a heterogeneous pool of crowd-
sourced vehicles. The proposed model is applied within
a crowd-relay model for crowdsourced last-mile delivery
where the recruited vehicles transfer the task to the next
worker at a relay point. The paper defines the crowdsourced
relay last mile assignment problem (CR-LMAP) with the
aim of maximizing the profit of workers i.e. their returns
relative to the cost they incurred. To achieve this goal, a game-
theoretic approach is proposed that maximizes the average
worker payoff per kilometer. The proposed algorithm,
HCRA, utilizes a contained breadth-first search subroutine,
CR-BFS, to find potential delivery paths (both single and
collaborative) as a basis for the hedonic games used to
find optimal task assignments. The notable contribution
of this work is the demonstration that the use of the
proposed hedonic-based worker assignment method, HCRA,
provides 15.5 to 29.2% more profitable solutions for the
crowdsourced vehicles in relayed last mile delivery in a
reduced computation time than state-of-the-art methods.

A. FUTURE WORK
While the proposed work provides a multi-objective method
for optimizing the allocation of collaborating workers,
considering economic and worker satisfaction metrics, and
promoting fair compensation, several avenues for future
research and development remain open. The proposed model
and simulations should be enhanced to be adopted in real-
life scenarios. In order to maintain a fair comparison with the
literature, the proposed algorithm was designed to consider
travel distance and payment as the only factors in the
allocation. Future studies will include the removal of naive
assumptions, such as assuming that the workers’ willingness
to complete a task is simply in terms of travel distance.
In reality, the workers consider their working time windows,
carrying capacity, and traffic or weather events. The behavior
of the workers is inherently probabilistic. Including machine
learning models to predict workers’ likelihood to deliver
the tasks will enhance the efficacy of the proposed work
[14], [41], [42]. Another interesting direction could be the
adoption of dynamic task allocation strategies. Investigating
the behavior of the proposed algorithm in a dynamic
task allocation setting could give insight into the real-time
applicability of the algorithm. Exploring real-time adaptation
mechanisms such as auctions while dynamically adjusting
the allocation process based on the ongoing performance and
availability of the crowd could improve the effectiveness of
the proposed algorithm.
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