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ABSTRACT Balance training is widely used to improve stability, and Achilles tendon vibration is an
effective method. However, evaluation of training progress often relies on Center of Pressure (COP) analysis,
which can be challenging for non-experts. To provide an objective and automated assessment, this study
explores machine learning techniques. Achilles tendon vibration was applied during standing, and COP
data were collected under various conditions, including eyes open/closed and cognitive/non-cognitive tasks.
To more accurately assess the training effects, this study applied machine learning techniques that combine
wavelet decomposition for feature extraction. Three genetic algorithm-based machine learning models
(GA-SVM, GA-LGBM, and GA-LR) were constructed for feature selection and classification. The results
showed that all three models achieved classification accuracies above 80% in identifying Achilles tendon
vibration and non-vibration data, with SVM achieving the highest accuracy of 89.59%. Among the selected
features, entropy category features played a crucial role, and entropy values were higher under Achilles
tendon vibration conditions than under non-vibration conditions. This study confirms the feasibility of
applying machine learning to Achilles tendon vibration rehabilitation training in the future, and the identified
key features also provide a theoretical basis for the analysis of Achilles tendon vibration data. These findings
provide valuable insights for further optimization of balance rehabilitation training programs.

INDEX TERMS Balance, Achilles tendon vibration training, machine-learning, genetic algorithm, feature
selection, wavelet discrete decomposition.

I. INTRODUCTION
Maintaining balance while standing is a complex and
critical aspect of human motor control [1]. The ability to
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maintain postural stability is essential for daily activities and
coordinated movements. Impaired balance increases the risk
of falls [2], which not only result in physical injury, but also
cause fear of falling. Fear of falling can lead to decreased
confidence, activity avoidance, and social isolation, which
can exacerbate mental health problems such as anxiety
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and depression [3]. To improve balance and reduce the
risks associated with balance disorders, balance training has
become a widely used approach [4], [5].

Achilles tendon vibration training as a form of balance
training has been shown to improve neuromuscular coor-
dination, modulate neurotransmitter release, and promote
neuroplasticity, making it a promising approach for improv-
ing balance control [6], [7]. During training, the measurement
of center of pressure (COP) related metrics is a common
evaluation method [8], [9], [10]. COP represents the center
of pressure on the body, and analysis of its variations
provides insight into an individual’s balance status while
standing. However, for the general population, understanding
the meaningful interpretation of these complex data metrics
can be challenging. As a result, effective balance training
typically requires the guidance of physical therapists (PTs).
However, when individuals engage in home-based balance
training, PTs often provide exercise plans and individuals
must perform self-assessments to determine their progress.
Due to the lack of feedback from PTs, self-assessments
may be inaccurate, leading to slow training progress and
compromising the overall effectiveness of the program [11],
[12].

In order to provide a more comprehensive, objective, and
automated approach to training evaluation, some researchers
have recently applied machine learning (ML) techniques to
the analysis of balance data. Peng Ren et al. attempted to
evaluate balance control subsystems (BCS) using artificial
intelligence and demonstrated its potential applications in
clinical settings by analyzing center of pressure data [13].
Tian Bao et al. manipulated visual, foot, and support
surface conditions, recorded balance data using inertial
measurement units (IMUs), and achieved classification of
balanced and unbalanced states [12]. However, targeted
analysis of Achilles tendon vibration data during the standing
balance task using machine learning techniques has not been
investigated.

Machine learning uses large amounts of training data to
learn patterns and features within the data, enabling the
construction of models that can automatically recognize and
classify data [14]. Classification model performance metrics,
such as accuracy, reflect the differences or separability of
the data. Higher accuracy indicates greater dissimilarity
between different classes of data, allowing the model to
effectively classify them. Given the individual differences
in response to Achilles tendon vibration training, the
differences between non-vibration and vibration data may
vary between individuals, resulting in different classification
results [15]. To achieve better training results, it is necessary
to adjust vibration frequency, intensity, or other training
parameters based on individual differences. In addition,
flexible adaptation of training parameters during different
stages of training is important to meet individual needs
and achieve better results [16]. By establishing models
for classification, the differences between data can be

evaluated, especially with respect to an individual’s response
to Achilles tendon vibration. By quantitatively evaluating
classification performance metrics, a better understanding of
an individual’s response to Achilles tendon vibration training
can be obtained.

Furthermore, balance control is a complex process involv-
ing the coordination of multiple aspects [17]. Among these,
the integration of sensory inputs (such as vision and propri-
oception) and cognitive resources plays a critical role [18],
[19], [20], [21]. Through visual perception, individuals gain
an understanding of their own posture and the environment,
allowing them to make appropriate adjustments to maintain
stability. Changes in visual input can affect balance, for
example, people’s balance can be challenged in low light
conditions or when blindfolded [9]. In addition, people often
engage in multiple cognitive tasks simultaneously while
maintaining balance. For example, they may be talking,
problem solving, or performing other cognitive tasks while
walking. These cognitive tasks require additional cognitive
resources and attention, which may interfere with balance
control [22]. These factors may lead to variations in Achilles
tendon vibration data under different conditions of the
standing balance task. Therefore, when classifying Achilles
tendon vibration data, it is necessary to consider different
visual and cognitive task states and observe the corresponding
data patterns. By increasing the diversity of the data set,
a more comprehensive and accurate analysis can be achieved,
providing valuable insights for Achilles tendon vibration
training and evaluation.

In addition to data acquisition, feature extraction and
selection are crucial aspects in building machine learning
models [23], [24]. Compared to traditional time-domain
or frequency-domain feature extraction methods, wavelet
analysis as a signal processing technique can provide more
comprehensive information [25]. Wavelet decomposition
decomposes data into multiple frequency bands, with each
band representing a different frequency range [25], [26], [27].
By performing decomposition and reconstruction operations,
features associated with different frequency bands can be
extracted. Subsequently, feature selection techniques can be
used to identify key features for the classification task of
Achilles tendon vibration data. A commonly used feature
selection technique is the Genetic Algorithm (GA), which
simulates the natural selection mechanism in biological
evolution and iteratively selects the optimal feature subset
over generations [23]. In the analysis of Achilles tendon
vibration and non-vibration data, GA can be combined with
machine learning approaches to optimize the selection of
feature subsets based on predetermined fitness functions and
selection strategies, with the goal of improving the accuracy
and performance of the classification models. Different
machine learning models may have different perspectives
on the importance of features [28]. By combining genetic
algorithm with multiple machine learning models such as
support vector machine (SVM), logistic regression (LR),
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and lightweight gradient boosting machine (LGBM), features
that contribute significantly to multiple models can be
identified. Compared to deep learning models, these learning
algorithms preserve the interpretability of the original input
features when selecting important features [23], [29]. This
allows for a better understanding of the model’s decision-
making process and the role of key features, thereby
improving the interpretability and reliability of classification
results.

Based on the above background, this study aims to
propose a genetic algorithm-machine learning approach to
evaluate Achilles tendon vibration training using wavelet
decomposition. Specifically, this study uses wavelet decom-
position to extract features and combines genetic algorithm
with three machine learning models, namely Support Vector
Machine (SVM), Logistic Regression (LR), and Lightweight
Gradient Boosting Machine (LGBM), to achieve the clas-
sification of Achilles tendon vibration and non-vibration
data under different posture conditions and the selection
of key features.Through this method, it is possible to
extract features from balance data more comprehensively,
enhancing the accuracy and interpretability of classifying
Achilles tendon vibration training data. This provides new
technical support for the development of personalized train-
ing programs, offering significant theoretical and practical
value.

II. METHOD
A. PARTICIPANTS
This study recruited 40 healthy young adults (age: 24.7 ±

2.7 years, height: 169.5 ± 9.1 cm, weight: 65.7 ± 14.3 kg) to
participate in the experiment. Participants had no neurologi-
cal disorders, lower limb injuries, language, hearing, or visual
impairments (normal corrected vision was considered within
the screening range). This study was approved by the
ethical standards of the Soonchunhyang University of Korea
(1040875-202302-SB-015).

B. EXPERIMENTAL EQUIPMENT
To obtain plantar pressure center data, a force plate (Tekscan
Inc., 307 West First Street, South Boston, MA 02127, USA)
was used to collect data at a sampling rate of 100 Hz.
A vibration motor (5V, 80Hz) was used to apply vibration
to the Achilles tendon and was encapsulated in a flat plastic
cylinder and fixed to both sides of the Achilles tendon with a
strap.

C. EXPERIMENTAL PROCEDURE
The participants stood barefoot on a force plate with their
hands naturally hanging by their sides, maintaining an upright
posture, while COP data was measured under different
conditions. The experiment consisted of two conditions:
with Achilles tendon vibration and without Achilles tendon
vibration. Under the Achilles tendon vibration condition,
a vibrating motor was attached to both sides of the

participants’ Achilles tendons, applying vibrations at a
frequency of 80 Hz [6]. Under the no Achilles tendon vibra-
tion condition, participants did not receive any additional
stimulation. Additionally, visual and cognitive conditions
were introduced as covariates. The visual conditions included
eyes open and eyes closed. In the eyes open condition,
participants were instructed to fixate on a black dot
located 2 meters in front of them. Under the cognitive
condition, a pre-recorded arithmetic task involving two-digit
subtraction or addition problems was played on a mobile
phone, and participants verbally calculated the answers.
In the non-verbal cognitive condition, no cognitive task was
performed.

Experiment in this study was comprised of the following
8 conditions:

1) Eyes open only (Eo)
2) Eyes closed only (Ec)
3) Eyes open, with Cognitive task, without Achilles

tendon vibration (EoC)
4) Eyes closed, with Cognitive task, without Achilles

tendon vibration (EcC)
5) Eyes open, without Cognitive task, with Achilles

tendon vibration (EoV)
6) Eyes closed, without Cognitive task, with Achilles

tendon vibration (EcV)
7) Eyes open, with Cognitive task, with Achilles tendon

vibration (EoCV)
8) Eyes closed, with Cognitive task, with Achilles tendon

vibration (EcCV)
Each task lasted 60 seconds, with a total of 8 tasks

performed in a randomized order. Tasks involving Achilles
tendon vibration were followed by a 5-minute rest period
to minimize the effects of vibration. Tasks without Achilles
tendon vibration were followed by a 1-minute rest period
before beginning the next task. The completion of 8 tasks
constituted a complete experiment. The full experiment was
performed twice, with a one-week interval between the two
sessions (Figure 1).

D. DATA PREPROCESSING AND FEATURE EXTRACTION
1) DATA PREPROCESSING
In this study, employed a force platform to collect COP
velocity data at a frequency of 100 Hz for a duration
of 60 seconds. A total of 80 60-second data sets were
collected for each condition. To ensure data integrity, unstable
segments from the first and last 5 seconds of each data set
were excluded. The collected data were then pre-processed
by applying a second-order Butterworth low-pass filter
with a cutoff frequency of 12.5 Hz. The resulting COP
velocity data were used for the subsequent classification
analysis to distinguish between Achilles tendon vibration and
non-Achilles tendon vibration conditions.

A sliding window approach was used to facilitate the
classification process. This approach involved segmenting
the data into overlapping windows, each 20 seconds in length,
with a step size of 15 seconds. Consequently, this procedure
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FIGURE 1. Experiment flow chart.

generated a total of 240 samples for each condition, ensuring
comprehensive coverage and representation of the data
set.

2) WAVELET FEATURE EXTRACTION
Discrete wavelet decomposition can divide a signal into
multiple sub-band signals. For a discrete signal, a single
round of discrete wavelet decomposition results in two sub-
band signals: a low-frequency sub-band (approximation)
and a high-frequency sub-band (detail). The low-frequency
sub-band contains most of the low-frequency information
of the signal, while the high-frequency sub-band contains
the high-frequency and detailed information. The pro-
cess of decomposing the low-frequency sub-band can be
repeated to obtain more low-frequency and high-frequency
sub-bands until the desired level of decomposition is
achieved.

In this study, a 9-level Symlet-8 discrete wavelet decom-
position was applied to the original COP velocity signal,
resulting in 10 different sub-signals, which were then
reconstructed into five distinct frequency bands:

1) high-frequency: 12.50-50.00 Hz (undefined)

TABLE 1. Features used in this study.

2) mid-frequency: 1.56-6.25 Hz (muscle proprioception)
3) low-frequency: 0.39-1.25 Hz (cerebellar)
4) sub- low frequency: 0.10-0.39 Hz (vestibular)
5) ultra-low frequency: below 0.10 Hz (visual)

In addition to an undefined high-frequency range, these
frequency bands sequentially represent variations in muscle
proprioception, cerebellar function, vestibular system, and
visual system [26].

For each of the reconstructed five frequency bands, energy
features, amplitude features, entropy features, phase features,
and frequency features of the wavelet coefficients were
extracted (Table 1).
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E. GA-ML MODEL
A genetic algorithm-based machine learning model was used
to classify Achilles tendon vibration and non-vibration data.
Figure 2 shows the data processing and application of the GA-
ML model. The pseudocode of the GA-ML model is shown
in Algorithm 1.

Algorithm 1 Genetic Algorithm-Based Machine Learning
Approach (GA-ML)
1: Input:
2: Data: Original feature set
3: Genetic algorithm parameters: (aCrossRate: crossover

probability; aMutationRate: mutation probability; aLife-
Count: population size; aGeneLength: gene length;
aFitFun: fitness function)

4: Output:
5: SelectedFeatures: The optimal selected feature subset
6: ClassificationPerformance: Classification Performance

Metrics (Accuracy, F1 score, Precision, Recall)
7: Procedure InitializeGeneticAlgorithm:
8: Create Genetic Algorithm object with parameters

(aCrossRate, aMutationRate, aLifeCount, aGeneLength,
aFitFun)

9: Procedure RunGeneticAlgorithm(nGenerations):
10: for i = 1 to nGenerations do
11: Execute next generation in Genetic Algorithm
12: end for
13: Procedure EvaluateModelPerformance(features):
14: Train ML model (LGBM / SVM / LR) using selected

features
15: Calculate Accuracy, F1 score, Precision, Recall
16: Return a dictionary with performance metrics
17: ProcedureMain:
18: Initialize Genetic Algorithmwith specified parameters

19: Run Genetic Algorithm for a certain number of
generations

20: Extract selected features from the best individual in the
final generation

21: Evaluate model performance using the selected fea-
tures

22: Output SelectedFeatures and ClassificationPerfor-
mance

Three MLmodels (SVM, LGBM, and LR) were combined
with GA (SVM-GA, LGBM -GA, LR-GA) for feature selec-
tion and classification of tendon vibration and non-tendon
vibration data (Figure 2). 70% of the dataset was used for
training the GA-ML models, while the remaining 30% of the
data was used for model performance evaluation.

In detail, a genetic algorithm was used to select subsets
of features for training machine learning models. These
subsets were selected from the original features to provide an
effective data description. The evaluation of these generated
feature subsets included the F1 score as a metric to assess the
degree of fitting (adaptation). The F1 score, which combines

model precision and recall, is commonly used to evaluate the
performance of classification models across different classes
and is used in GA-ML to evaluate the effectiveness of feature
subsets for classification tasks. Furthermore, the population
size was set to 80, the number of iterations was set to 200,
the crossover probability was set to 0.7, and the mutation
probability was set to 0.1.

For SVM, the penalty coefficient Cwas set to 1.0, the value
of gamma was automatically calculated based on the number
of training samples, and the radial basis kernel function was
used for data mapping.

For LGBM, 80%of the sub-samples were used for training,
the learning rate was set to 0.1, each iteration produced 16 leaf
nodes, and the maximum depth was set to 5. Then, 80% of
the selected features were used to train each tree, and the
L2 regularization coefficient was set to 0.1 to enhance the
generalization ability of the model.

For LR, default parameter settings were employed after
testing for optimum methods.

As shown in Figure 2, it is necessary to apply the GA-ML
model iteratively. For the data of different frequency bands,
five feature sets was obtained in the feature extraction step.
In order to prevent features from specific frequency bands
from being missed during the selection process, the genetic
algorithm feature selection was performed on the features of
different frequency bands, and five optimal feature sets were
obtained. Finally, these five best feature sets were merged and
subjected to another round of GA-based feature selection to
obtain a more representative feature set.

F. KEY FEATURES
Three GA-ML models were used to classify Achilles tendon
vibration data under four different conditions, resulting in
a total of 12 feature subsets (3 models * 4 conditions).
A feature importance ranking was performed for each subset.
To identify key features across conditions and models, further
feature selection was performed. For each feature subset, the
top 10 most important features were retained, and then the
features that appeared in at least two or more of the three
feature subsets for each GA-ML model were selected as
important features, resulting in three feature sets. Finally, the
features that appeared in two or more of these three feature
sets (i.e., features that were repeated in all three models) were
selected as the key features (Figure 3).

III. RESULTS
A. CLASSIFICATION RESULTS
Combining the use of wavelet decomposition for feature
extraction and genetic algorithm for feature selection, the
classification performance of Achilles tendon vibration and
non-tendon vibration under different conditions is shown in
Table 2 and Figure 4. Overall, the SVM, LGBM, and LR
models achieved classification accuracies of over 80%.

In the classification task of Ec and EcV, SVM achieved
the highest accuracy of 89.59% with an F1 score of 89.36%.
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FIGURE 2. Machine learning models combined with genetic algorithms: Frequency band 1(12.50-50.00Hz), frequency band
2(1.56-6.25Hz), frequency band 3(0.39-1.25Hz), frequency band 4(0.10-0.39Hz), frequency band 5(<0.10Hz). GA-SVM is a
model combining Support Vector Machine and genetic algorithm; GA-LGBM is a model combining Light Gradient Boosting
Machine and genetic algorithm; GA-RL is a model combining Logistic Regression and genetic algorithm.

FIGURE 3. Key feature selection method for vibration classification: GA-SVM is a model combining Support Vector Machine
and genetic algorithm; GA-LGBM is a model combining Light Gradient Boosting Machine and genetic algorithm; GA-RL is a
model combining Logistic Regression and genetic algorithm. Fn represents a different feature example.

It was followed by Logistic Regression with an accuracy
of 88.89% and an F1 score of 89.19%. LGBM achieved an
accuracy of 87.50% with an F1 score of 87.50%, marking the
lowest accuracy of the three models.

In the classification task of Eo and EoV, the highest
accuracy was achieved by LGBM with a score of 84.72%,
followed closely by SVMand LR, both achieving an accuracy
of 84.72% and 83.33% respectively. The corresponding F1
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TABLE 2. Classification results.

FIGURE 4. The effect of each model on the classification of Achilles
tendon vibration and non-vibration data under each condition.

scores were 84.51% for LGBM, 84.29% for SVM, and
82.61% for LR.

In the classification task of EcC and EcCV, the highest
accuracy was 84.72% (SVM), while the accuracies of other
models were 84.03% (Logistic Regression) and 84.03%
(LGBM). The corresponding F1 scores were 84.72% for
SVM, 84.14% for LR, and 83.92% for LGBM. In the
classification task of EoC and EoCV, the accuracies from
highest to lowest were 82.64% (LR), 81.94% (LGBM),
and 81.25% (SVM), and the corresponding F1 scores
were 82.52% for LR, 81.94% for LGBM, and 80.29% for
SVM.

B. KEY FEATURES
The important features selected using the method shown in
Figure3 were: Entropy (for the 4th frequency band), Entropy
(for the 3rd frequency band), and Mean Entropy (for the
4rd frequency band), Minimum Dominant Frequency (for
the 5rd frequency band), as shown in Table 3. Three of

these four features are related to entropy. In the comparison
of data under conditions with and without tendon vibra-
tion, an increase in entropy was observed due to tendon
vibration, and these differences were statistically significant
(p<0.05).

Furthermore, for each classification task, the top 10 fea-
tures were selected based on their importance ranking, and the
frequency of feature usage across different frequency bands
is shown in Figure 5. The frequency of feature usage was
highest for frequency band F_3with 29 occurrences, followed
by F_5 with 27 occurrences, F_4 with 26 occurrences, F_2
with 23 occurrences and F_1 with 16 occurrences.

TABLE 3. Selected key features.

FIGURE 5. The frequency bands’ feature utilization frequency. F_1
(undefined): 12.50-50.00 Hz; F_2 (muscle proprioception): 1.56-6.25 Hz;
F_3 (cerebellar): 0.39-1.25 Hz; F_4 (vestibular): 0.10-0.39 Hz; F_5 (visual):
below 0.10 Hz.

IV. DISCUSSION
The results showed that using a feature set selected through
GA, three interpretable machine learning models (SVM,
LGBM, LR) achieved classification accuracies of over
80% in the task of differentiating between Achilles tendon
vibration and non-vibration data. Specifically, in the absence
of cognitive tasks and with eyes closed, SVM demonstrated
the highest classification accuracy, reaching up to 89%. Due
to the inclusion of healthy young individuals as participants
in this study, who have naturally good balance skills, the
effect of applying Achilles tendon vibration on balance may
be relatively small. As a result, the observed differences in
the data may not be as pronounced, resulting in a relatively
lower classification accuracy [15]. Metrics such as accuracy
can be used to evaluate the effectiveness of Achilles tendon
vibration training. Higher classification accuracy indicates a
better response to Achilles tendon vibration, which may lead

VOLUME 12, 2024 81789



X. Ning et al.: Exploring Achilles Tendon Vibration Data Classification for Balance Training

to improved outcomes. Conversely, lower classification accu-
racy indicates difficulty in distinguishing between vibration
and non-vibration data, which may indicate a weaker or less
pronounced response to Achilles tendon vibration training.
In such cases, appropriate adjustments to training parameters,
such as vibration intensity and frequency, or consideration of
alternative training methods or additional interventions may
be required to increase training effectiveness. In addition,
if improvements in balance skills result in changes in
data patterns, there may be differences in classification
metric results between the pre-training and post-training
phases. Future studies could consider integrating changes
in classification metrics with other assessment indicators
to comprehensively evaluate the effects of Achilles tendon
vibration training.

The classification performance varied under different
cognitive and visual conditions, indicating potential inter-
actions and modulation among different sensory inputs in
balance control. For example, previous research has revealed
that in the absence of auditory input, visual and balance
sensations become more crucial, implying the existence of
interplay and modulation between sensory inputs [30]. The
theory of sensory reweighting, as proposed by Rakshatha
Kabbaligere et al., further supports the notion that the
human body automatically adjusts the weight allocation of
different sensory inputs to adapt to environmental changes
and maintain stability in balance control [31]. Therefore, the
impact of cognitive, visual, and Achilles tendon vibration
factors on balance may not simply be additive, and the
interrelationships among these three factors require further
investigation.

The key feature selection method used in this study
considers both the importance of features and the gen-
eralization ability of multiple models, resulting in the
identification of key features based on their importance and
frequency of occurrence across the three models. Among
the final selected features, three of them belong to the
entropy category, indicating the higher importance of entropy
in this classification task. Additionally, it was observed
that the entropy under tendon vibration conditions was
higher than that under non-vibration conditions in all five
frequency bands, and there were significant differences,
consistent with the findings of Dettmer et al. [32]. Previous
studies have reported that the entropy of the postural
control system increases in healthy young individuals during
complex balance tasks, indicating more flexible and adaptive
postural control [33]. During the process of standing,
maintaining stable balance is essential, and an increase
in entropy may indicate system disruption and instability,
prompting the body to continually adjust posture to restore
balance [34]. Therefore, entropy can serve as a biomechanical
indicator to evaluate human balance control and help
understand the balance control capabilities under different
states.

When classifying Achilles tendon vibration data and
non-Achilles tendon vibration data, different frequency

bands play different roles. Specifically, features within the
0.39-1.25 Hz frequency band (associated with the cere-
bellum) show the highest frequency of use, followed by
those below 0.10 Hz (associated with vision) and the
0.10-0.39 Hz band (associated with the vestibular system).
This finding is consistent with previous studies. For example,
Morton et al. investigated the mechanisms by which the
cerebellum controls balance and movement. As an integral
part of the central nervous system, the cerebellum plays a
critical role in coordinating movement, regulating posture,
and maintaining balance [35]. In addition, the visual and
vestibular systems have been identified as significant factors
in balance control [36], [37], [38], with their corresponding
frequency band features showing higher importance in clas-
sification. However, features within lower frequency bands,
such as 12.50-50.00 Hz (undefined), show less importance in
classification. This may suggest that features within higher
frequency bands contribute less to distinguishing Achilles
tendon vibration data from non-Achilles tendon vibration
data.

These findings provide a foundation for future research
aimed at applying machine learning (ML) to Achilles
tendon vibration rehabilitation training. However, due to the
specific population and experimental conditions examined
in this study, further research is warranted to include
individuals of different ages, health conditions, and training
protocols to obtain more comprehensive and accurate results.
Furthermore, further research and understanding of the key
features selected in this study will contribute to a deeper
understanding of the mechanisms and influencing factors
involved in balance control, thus providing a more practical
theoretical basis for future balance training and rehabilitation
interventions.

In future work, the optimization of the model is of
paramount importance. First, increasing the size of the dataset
is imperative to improve the generalization performance of
the model. In addition, it is crucial to consider employing
more sophisticated machine learning models to better capture
the intricate relationships within the data. Regarding feature
selection, more refined and context-adaptive approaches
should be explored to ensure that the selected features
accurately reflect the influence of visual conditions or
cognitive tasks. Therefore, future work should not only focus
on improving the overall model performance, but also on
exploring the key features that enable the classification of
data under visual conditions or cognitive tasks, thus providing
deeper insights for further understanding in the field of
balance control.

V. CONCLUSION
This study used machine learning techniques, the classifica-
tion of Achilles tendon vibration and non-vibration data was
achieved and the key features for this classification task were
identified. In addition, additional experiments validated the
proposed method for its ability to identify COP attributes
associatedwith two other conditions (visual / cognitive tasks).
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These research findings provide a theoretical foundation and
methodological support for future studies related to Achilles
tendon vibration rehabilitation training.
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