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ABSTRACT Uncoupled stability analysis is valuable for assessing the stability of haptic interaction, since
the interaction between a stable haptic device and a human operator maintains stability. Previous analyses
have primarily focused on the normalized parameter space, but they yield an incorrect stability region that
may lead to instability in the case of large normalized physical damping (NPD). Additionally, these analyses
have neglected to return to the real parameter space, which can result in misconceptions such as increasing
the control period expands the stability region or incomplete notions such as increasing the physical inertia
always enlarges the stability region. To address these issues, this article presents an uncoupled stability
constraint in the normalized parameter space that is applicable for all NPDs. Furthermore, the study returns
to the real parameter space and, for the first time, provides analytical expressions that demonstrate the impacts
of control period, physical damping and physical inertia on the achievable extremes of virtual stiffness and
damping. Remarkably, it is observed that four out of the six influences exhibit non-monotonic behaviors,
characterized by an ‘‘increase-decrease-increase’’ pattern. The correctness of the developed uncoupled
stability region in the normalized parameter space and the existence of the unconventional non-monotonic
behaviors in the real parameter space are validated through simulations and experiments.

INDEX TERMS Compliance and impedance control, haptics and haptic interfaces, impedance range,
physical human–robot interaction, stability analysis.

I. INTRODUCTION
Hptic devices have found widespread use in physical
human-robot interaction (pHRI) applications, including but
not limited to rehabilitation [1], [2], robotic surgery [3],
[4], [5], space exploration [6], [7], intelligent vehicles [8],
[9], [10], [11] and various training systems [12], [13], [14].
These devices enable users to physically interact with virtual
environments (VEs) that are either reconstructed from reality
or specially designed, providing force feedback that enhance
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the realism and immersion of the experience. Among all the
requirements of a haptic device, interaction stability is the
top priority since an unstable behavior can pose a danger
to both the robot and the human. However, the interaction
stability analysis is challenging as it involves not only the
nonlinear factors in the haptic device (such as the sampling,
the discretization, the quantization, the Coulomb friction and
the delay), but also the time-varying and personal-dependent
behaviors of the human operator [15].

In order to address the challenge of interaction stability,
considerable efforts have been devoted. These efforts can
be broadly categorized into two main strategies. The first
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strategy, i.e. Strategy I, involves isolating the haptic device
for analysis, assuming that the human operator possesses spe-
cific properties. Representative approaches include passivity
analysis, absolute stability analysis, input-to-state stability
(ISS) analysis and uncoupled stability analysis. The second
strategy, i.e. Strategy II, involves integrating the information
of the human operator into the controlled plant so as to relax
the requirement on the haptic device when employing certain
stability approaches.

The most famous approach using Strategy I is the so-called
passivity analysis. By assuming the human operator is passive
and limiting the haptic device in the passivity constraint,
the stability of the interacted system is guaranteed since the
interaction of two passive systems remains passive and thus
stable [16]. In [17], necessary and sufficient conditions for the
passivity of the general sampled-data haptic device and the
concrete impedance-controlled haptic device were obtained.
Later the general passivity condition was extended to adapt
to both nondelayed and delayed nonlinear VEs by the authors
of [18]. The concrete impedance-controlled passivity condi-
tion was extended to incorporate delay in [19] and further
low-pass velocity filter in [20]. In addition, the passivity
condition for both nondelayed and delayed virtual stiffness
renderings considering the nonlinear Coulomb friction and
quantization effect was derived in [21] and [22]. While
these works concentrate on deriving the passivity constraints
under different situations, there are also efforts attempting
to keep the haptic device in the passivity constraint via
online adjustment. The passivity observer/passivity controller
(PO/PC) method [23] and the energy-bounding algorithm
(EBA) [24] were proposed to dissipate the excessive gen-
erated energy in real time by adjustable virtual damping
and intrinsic physical damping, respectively. Afterwards,
the authors of [25] presented a force-bounding approach
(FBA) to directly limit the control force in a range satisfying
the passivity condition, thereby ensuring stable interaction
with any VE (linear, nonlinear, delayed, etc.). Although
the passivity approach is celebrated for the advantages of
yielding simple results and exhibiting remarkable robustness,
its conservativeness is also well-known.

Another approach utilizing Strategy I is based on the
Llewellyn’s absolute stability criterion [26]. It can guarantee
the stability of the two-port network system by assuming the
two terminations are passive. Based on the virtual coupling
concept [27], the haptic device can be further divided into
two parts: the VE and the virtual coupling, which is a two-port
network connecting the human and theVE. Then by assuming
both the human and the VE are passive, Llewellyn’s absolute
stability criterion can be applied to the virtual coupling and
the stability of the interaction system is achieved, as done
in [28]. The requirement of the absolute stability is less
restrictive than that of the passivity since the former only
requires the haptic device would not make the passive human
unstable while the latter requires the haptic device to be

passive. Thus the constraint region resulted from the absolute
stability is larger than that of the passivity-based approach.

Recently, ISS [16] was introduced in the haptic area
to analyze the interaction stability [29], [30]. Since ISS
is equivalent to the dissipativity and passivity is a special
case of dissipativity, the stability of the interaction system
is guaranteed if assuming the human to be passive and
limiting the haptic device to be ISS. It is because the
interconnection of two dissipative systems is still dissipative
and thus stable [16]. ISS is less restrictive than passivity since
it allows some amount of output energy to be extracted from
the system while passivity allows none. Thus ISS imposes
a much looser constraint in comparison with the case of
passivity. In this respect, the study [31] relaxed the passivity
condition of the PO/PC method to the ISS condition by
permitting the generation of bounded energy, thus extending
the achievable impedance range.

The above three approaches raise stricter-than-stable
requirements on the haptic device since the interaction of
two merely stable systems does not guarantee the overall
stability. But there is also another approach [32] only requires
the stability of the haptic device (i.e. the uncoupled stability
approach) so that it renders the largest constraint region when
using Strategy I. This approach is based on the observations
that the human operator always helps stabilize the haptic
device, as investigated in [19], [22], and [32]. Therefore, the
interaction of a stable haptic device with a human operator
ensures the interaction stability.

Different from Strategy I, Strategy II integrates the
information of the human operator into the controlled plant,
thereby loosing the constraint of the haptic device. For
example, the human impedance was incorporated into the
plant model in [19] and [33] to expand the uncoupled stability
region and the passivity region, respectively. According to
the strong passivity theorem [16], if the shortage of passivity
(SOP) of one subsystem is less than the excess of passivity
(EOP) of the other subsystem, the overall system remains
passive and stable. Hence, the EOP of the human was
identified and utilized to achieve larger impedance rendering
in methods such as the PO/PC method [34] and the FBA
method [35]. Moreover, the bounded nature of the human
impedance was exploited to loose the constraint of the haptic
device when applying the absolute stability [36] or the small
gain theorem [37].

By comparing the above two strategies, we can see that
while Strategy II can provide larger stability region, it is
more complex since it requires to identify the information
of the human and should carefully adjust the controller if
the human behaves differently (e.g. suddenly releases the
haptic device) or changes to another one. On the contrary,
Strategy I is simpler and more robust to the human variation.
Furthermore, among all the approaches in Strategy I, the
uncoupled stability approach renders the largest region since
it only needs the stability of the haptic device without any
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further requirements, and thus is the main concern of this
article.

A. PRIOR WORK
Extensive works have contributed to the analysis of the
uncoupled stability of the haptic interaction. Despite ear-
lier works [17], [38] touching this issue by numerical
calculations, it was first analyzed theoretically in [32].
In this article, the haptic device was modeled as an
impedance-controlled damped system considering the factors
of sampling and discretization. The sampled-data system was
first transformed to the discrete-time domain and then the
continuous-time domain, where the classical Routh-Hurwitz
stability criterion was applied to get the stability constraint.
An approximate linear constraint was also proposed when
the virtual damping was sufficiently small. However, as real
parameters were used in the derivation, the resulting explicit
stability inequality was so complex that even the boundary
curve was hard to distinguish. Besides, since only a portion
of the Routh-Hurwitz stability criterion was utilized, the
resulting stability constraint was not accurate. When the plant
has large normalized physical damping (NPD) δ (an item
explained in Section II), a rendered impedance far inside
the stability boundary can lead to instability, as presented in
Section V. This happens because a linear stability inequality
is missing in Gil’s result when δ is large.
The authors in [39] noticed this additional linear stability

constraint through numerical calculations and reported that
it occurred when δ > 2.3. However, the reason is still
unclear. Another contribution of [39] was the introduction
of the normalized parameters (detailed in Section II), which
transformed the system from the real parameter space
to the normalized parameter space. This transformation
reduced the number of system parameters and greatly
simplified the stability analysis. Using this technique, [39]
and [40] extended the uncoupled stability analysis to the
impedance-controlled damped system with delay. While the
former numerically investigated the influences of δ and delay
on the stability boundary in a wide δ range, the latter proposed
an analytical approximate stability constraint with delay for
small δ and small virtual damping. However, there is still a
lack of a correct and explicit stability constraint applicable
for a wide range of δ.

Later on, other factors are included into the framework of
uncoupled stability analysis. In [19], the authors extended
the uncoupled stability analysis to the system with physical
stiffness by incorporating the physical inertia, damping,
and stiffness of the human operator into the controlled
plant. Through numerical analysis, they found that with
small physical stiffness, the stability region of the system
in the normalized space became larger. The work of [20]
included the velocity filter into the uncoupled stability
analysis, indicating that more aggressive low-pass filtering
(reducing the cut-off frequency or increasing the filter
order) reduced the stability region. Another effort [41]

compared the uncoupled stability constraints for various
discrete implementations of the impedance controller when
either position or velocity was sampled. It was found that
velocity-sampled approach provided a larger stability region.
The authors of [42] significantly expanded the uncoupled
stability region by using analog position feedback, but at
the cost of a more complex system configuration. Recently
in [43], the virtual mass control was included into the
framework of uncoupled stability analysis and the stability
constraints of all seven types of control combinations were
investigated.

Apart from analyzing the sampled-data system in the
discrete-time domain, there are also studies conducted in
the continuous-time domain. For instance, in [44], the
authors converted the discrete-time impedance controller to
its continuous-time equivalent and determined the stability
boundary using continuous-time analysis tools. The simula-
tions and experiments verified that the result applied for the
case where the virtual damping was small or the delay was
large when δ was small. But if the virtual damping is large and
no delay involves, the stability region is conservative. In light
of their study, the authors of [45] achieved an expanded
stability region by replacing the viscous friction model with
the Gaussian friction model.

According to the literature review, the correct uncoupled
stability constraint for large δ is still lacking. The existing
stability constraint may lead to instability behaviors in the
case of large δ. Besides, the analytical formulas showing
the influences of the physical parameters (control period,
physical damping, and physical inertia) on achievable
impedance range are in the absence. The existing conclusions
drawn from limited experiments might be questionable. For
example, the authors in [46] indicated that the larger the mass
the larger the stability region by performing the comparative
experiments with different masses. However, there are also
cases that the larger the inertia, the smaller the achievable
maximum stiffness, as experimentally shown in Section V.
Then in these cases, the intention to increase the maximum
stiffness will instead result in its unexpected reduction
if guided by existing conclusion. In this scenario, this
article derives the analytical uncoupled stability constraint
applicable for all NPDs, thereby eliminating the instabilities
that might induced by existing stability constraint. Besides,
the influences of the physical parameters on the achievable
impedance extremes are analytically investigated so that
accurate conclusions of these influences are obtained.

B. CONTRIBUTIONS
The contributions of this work are summarized as follows.
Firstly, the complete version of the uncoupled stability
constraint in the normalized parameter space is obtained,
whereas the existing stability constraint is only applicable
for low NPDs. It incorporates an additional linear constraint
and thus eliminates the instability behaviors that might be
instructed by the existing stability constraint. Furthermore,
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the complete stability constraint results in several new
insights that contradicts with traditional thinking.

Secondly, utilizing the newly established stability con-
straint, we formulate the analytical expressions for the achiev-
able impedance extremes within the normalized parameter
space, whereas the existing analytical expressions have not
yet been established. Additionally, linear approximation
formulas for several specific scenarios are provided.

Finally, we shift the stability analysis back to the real
parameter space, which offers more intuitive conclusions
comparing to the existing analyses conducted in the nor-
malized parameter space. Analytical expressions showing
the influences of the real physical parameters (control
period, physical damping, and physical inertia) on the
achievable impedance extremes are obtained for the first time.
While previous efforts only provide limited experimental
results and suggest monotonic behavior, it is found that
contrary to the conventional thinking, not all the influ-
ences are monotonic. Increasing the physical inertia results
in an ‘‘increase-decrease-increase’’ pattern of achievable
maximum stiffness. Similarly, reducing the control period,
increasing the physical damping or the physical inertia leads
to an ‘‘increase-decrease-increase’’ pattern of achievable
maximum damping. Therefore, when determining the real
physical parameters in the design of the haptic device with
the aim of achieving the largest possible impedance range at
the lowest possible cost, an overall consideration should be
conducted.

C. PAPER ORGANIZATION
The remainder of the article is organized as follows.
Section II describes the considered system and obtains
the stability constraint applicable for all NPDs in the
normalized space. Then analytical expressions for the
achievable impedance extremes within the same space are
formulated in Section III. Afterwards, Section IV returns to
the real parameter space to see the influences of the real
physical parameters on the achievable impedance extremes.
Simulations and experiments are presented in Section V,
verifying the aforementioned theories. Section VI concludes
this article and provides future research directions. At last, the
derivations of the properties of two newly defined functions,
the stability constraint in the normalized parameter space
and the monotonicity analysis of the function of achievable
maximum virtual damping v.s. δ are attached in three
appendices, respectively.

II. UNCOUPLED STABILITY ANALYSIS OF HAPTIC
INTERACTION IN NORMALIZED PARAMETER SPACE
In this section, the model of the impedance-controlled haptic
device is established in the real parameter space and then
transformed to the normalized parameter space. By using
two newly defined functions, we can simplify the stability
analysis and finally obtain the complete uncoupled stability
constraint.

FIGURE 1. Model of the impedance-controlled haptic device.

A. SYSTEM MODELING
In a haptic interaction scenario, incorporating all influencing
factors such as human dynamics and nonlinearities like
time discretization, position quantization, actuator saturation,
Coulomb friction, and loop delays would make stability
analysis infeasibly complex. Previous studies have shown
that Coulomb friction can dissipate the energy introduced
by quantization [21], [22], and human dynamics tend to
stabilize the system [19], [22], [32]. Thus, these factors
can be excluded. Additionally, actuator saturation and
loop delays are omitted so as to focus on the stability
conditions related to time discretization, which is often the
primary source of instability in haptic systems. Consequently,
the impedance-controlled haptic device is modeled as a
sampled-data system as shown in Fig. 1. The controlled plant
is a rigid body (m) with some physical damping (PD) (b). Its
position (x) is sampled with a sampling period T and sent to
the discrete impedance controller

H (z) = K + B
z− 1
Tz

, (1)

where K and B are the virtual stiffness (VS) and the virtual
damping (VD), respectively. Then the controller output Fc,
which passes through a zero-order hold (ZOH), is combined
with the human force Fh as the input of the plant, so as
to generate the motion. In this article, the parameters m
and T are assumed to be positive, while b is assumed to
be non-negative to include the case of the control of an
undamped plant (b = 0) for generality.
Though the system seems to be clear and simple, its

stability is not easy to analyze. The major difficulty lies in
its sampled-data nature which combines both the continuous
(the plant) and the discrete (the controller) parts. As a result,
neither the Routh-Hurwitz stability criterion developed for
the continuous-time system nor the Jury stability criterion
developed for the discrete-time system can be directly applied
to perform the stability analysis. But if we assume the human
force Fh to be constant during one sampling period [19],
the continuous-time plant can be transformed into the
discrete-time domain and then the sampled-date system
becomes a pure discrete-time system. Consequently, the
tools developed for the stability analysis of the discrete-time
system can be used.

Another difficulty in analyzing the stability is the numer-
ous parameters. The stability analysis eventually leads to
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a set of inequalities that all these system parameters must
satisfy. As shown in Fig. 1, there are five parameters: three
physical parameters m, b, and T , and two control parameters
K and B. With five parameters, the resulted inequalities
are inevitably cumbersome, as shown in [32]. This hinders
further investigations. To simplify the derivation process
and obtain a clear explicit constraint, the normalization rule
developed in [39] is adopted to group some of the real
parameters to reduce the amount of the analyzed parameters.

B. NORMALIZATION OF SYSTEM MODEL
The normalization rule developed in [39] reduces these
five real parameters to three dimensionless parameters:
the normalized physical damping (NPD) δ = bT/m,
the normalized virtual stiffness (NVS) α = KT 2/m, and the
normalized virtual damping (NVD) β = BT/m. It can be
seen that δ = 0 if and only if b = 0, indicating the case of
controlling an undamped plant. After the normalization, the
system has transformed from the real parameter space to the
normalized parameter space. The normalized characteristic
equation will be derived in the following.

First of all, the continuous part of the system, i.e. the plant
with ZOH, is discretized as

G(z) =
z− 1
z
Z

[
1

ms3 + bs2

]
=

T 2

2m
cδ1(δ)z+ cδ2(δ)

z2 − (1 + e−δ)z+ e−δ
, (2)

where

cδ1(δ) =


δ − 1 + e−δ

δ2

2

, if δ > 0,

lim
δ→0

δ − 1 + e−δ

δ2

2

= 1, if δ = 0,
(3)

and

cδ2(δ) =


1 − e−δ

− δe−δ

δ2

2

, if δ > 0,

lim
δ→0

1 − e−δ
− δe−δ

δ2

2

= 1, if δ = 0,
(4)

are two newly proposed functions of δ, defined for the
simplification of the stability derivation. Properties of these
two functions are derived in Appendix A. It is shown that both
of them are monotonically decreasing functions and in the
range (0, 1] when δ ∈ [0, ∞). Besides, cδ1(δ) ≥ cδ2(δ) and
‘‘=’’ is true if and only if δ = 0. For compactness, they are
represented by cδ1 and cδ2 in the following.
Then the system’s discrete-time closed-loop transfer

function can be obtained:

Gcl(z) =
G(z)

1 + H (z)G(z)
=
pn(z)
pd (z)

, (5)

where

pn(z) =
T 2

m
cδ1z2 +

T 2

m
cδ2z (6)

and

pd (z) = 2z3 + a1z2 + a2z− cδ2β (7)

in which

a1 = cδ1(α + β) − 2(1 + e−δ)

a2 = cδ2α + (cδ2 − cδ1)β + 2e−δ

are the numerator polynomial and the denominator poly-
nomial, respectively. Hence, the normalized characteristic
equation of the closed-loop system is

pd (z) = 0. (8)

This coincides with the results in [32] and [39] if no delay
involves, but has a simpler form due to the introduction of the
functions cδ1 and cδ2. The introduction of these two functions
not only simplifies the presentation of the transfer functions,
but also simplifies the derivation of the stability constraint,
as will be seen in the following subsection.

C. UNCOUPLED STABILITY ANALYSIS
The discrete-time system is stable if and only if all the
characteristic roots are inside the unit circle in the z-plane.
In [32] and [43], the discrete-time system was transformed to
the continuous-time domain to perform the stability analysis
by using the Routh-Hurwitz criterion. This method is quite
complicated, but it can obtain the same final results as the
method we used below. However, the authors only used
part of the Routh-Hurwitz criterion, resulting in a necessary
condition for the stability, which is applicable only to
situations with small δ. This happens perhaps because of the
complexity in the derivation. In the following, we will use
the Jury criterion, which is developed to directly analyze the
stability of the discrete-time system, to get the sufficient and
necessary condition for the system stability.

Applying the Jury stability criterion to the normalized
characteristic equation (8), we can get the stability constraint
of the normalized system:

pd (1) > 0
pd (−1) < 0
2 > cδ2|β|

4 − c2δ2β
2 > |2a2 + cδ2βa1|

. (9)

After some mathematical manipulations, the explicit con-
straint is derived in (10). The details of the derivation are
given in Appendix B.

β > −δ

0 < α < f (β)

α <
4(1 + e−δ)
cδ1 − cδ2

− 2β

(10)

where

f (β) =
−(cδ1 + cδ2)cδ2β2

+ 2(cδ1 + e−δcδ2)β + 4(1 − e−δ)
(cδ1β + 2)cδ2

(11)
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FIGURE 2. Unit step response of a first-order system. δ0 represents a
90.1% completion rate of the step response in one sampling period.

and α = f (β) represents a hyperbola in the β − α plane.
It is worth noting that the introduction of the intermediate
functions cδ1 and cδ2 greatly reduces the complexity of the
derivation.

Moreover, with δ0 ≈ 2.311 being the solution of (58),
the stability constraint (10) can be further divided into the
following two cases:

1) if δ ≤ δ0 {
β > −δ

0 < α < f (β)
, (12)

2) if δ > δ0 
β > −δ

0 < α < f (β)

α <
4(1 + e−δ)
cδ1 − cδ2

− 2β

. (13)

Since the NPD δ is the ratio of the control period (T )
to the mechanical time constant of the plant (τm = m/b),
it also represents the completion rate of the step response
in one sampling period. As indicated in Fig. 2, if δ is small
(e.g. δ = 0.01), i.e. the completion rate is low, the speed
increases linearly in one sampling period. If δ is large (e.g.
δ = 100), the transient period is so short that the speed
can be considered as a constant in one sampling period. If δ

is in between, the response of the speed in one sampling
period is the typical step response of a first-order system with
different completion rate. δ0, which indicates T is δ0 times
τm, represents the completion rate of 90.1%. Therefore,
the results (12) and (13) imply that when δ > δ0, i.e.
the completion rate is more than 90.1%, there will be an
additional linear inequality constraining the stability region
from the right. Fig. 3 and Fig. 4 show the stability constraints
under different values of δ. Specifically, Fig. 3 shows the
stability region on a larger scale, while Fig. 4 focuses on the
cases around δ0.
Remark 1: The stability constraint obtained in previous

works [32], [43] is (12), which is only applicable for the
case δ ≤ δ0. When it is used to analyze the stability of a
system with large NPD, the control parameters satisfying it
could lead to instability, as verified through simulations and
experiments in Section V. This situation becomes even worse

FIGURE 3. Stability constraint (12) and (13) (the dark green region) with
the comparison with that in [43] (the dark green region plus the light
green region) under different values of δ. (a) δ = 2 ≤ δ0, (b) δ = 3 > δ0,
(c) δ = 5 > δ0, and (d) δ = 20 > δ0.

FIGURE 4. Stability constraint around δ0.

when the NPD is larger, as shown in Fig. 3. This occurs
because their result lacks a linear constraint (the third inequal-
ity in (13)) that constrains the stability region from the right
when δ > δ0. In [39], this linear constraint was discovered
by numerical calculations. It was found that when δ > 2.3,
a line with a slope of −0.5 (in the α − β plane) appeared
limiting the stable region. In fact, it is precisely the boundary
line of the third inequality in (13). The newly proposed
stability constraints (12) and (13) extend the applicability to
cover all NPDs, thereby addressing the limitations of previous
analyses. The additional linear constraint complicates the
analysis of the stability boundaries, as will be seen in the next
subsection.

D. DISCUSSIONS ON STABILITY REGION
The primary concern is how the stability region changes
with the physical properties of the system. Fig. 3 and Fig. 4
illustrate that generally, a larger NPD leads to an expanded
stability region. Yet, a notable exception exists. As Fig. 4
demonstrates, when δ is slightly larger than δ0, while the
stability region expands in other directions with an increase
in δ, its right side first contracts and then expands due to
the previously mentioned additional linear constraint. This
results in an unusual phenomenon that a system may be
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FIGURE 5. Comparison of the uncoupled stability (the green region plus
the blue region) and the passivity (the blue region) when δ is large
enough.

stable at lower NPD but unstable at higher NPD, challenging
the conventional belief that greater damping ensures more
stability.

Another noteworthy point is that for large enough NPD,
the stability region still positions the passivity region as
conservative, challenging the conclusion drawn by Colgate
and Schenkel [17]. When δ → ∞, the stability region
simplifies to a triangular shape as defined by:{

β > −δ

0 <
α

2
< δ − β

. (14)

Transformed into the real parameter space, this implies:B > −b

0 <
KT
2

< b− B
. (15)

Comparing it to the passivity constraint (16), as shown in
Fig. 5, the finding in [17] that the uncoupled stability region
converges on the passivity region when δ is large enough is
only applies to the case B > 0. When examining the whole
uncoupled stability region, passivity is still conservative.

0 <
KT
2

< b− |B|. (16)

In addition, the uncoupled stability criterion allows for a
higher mmax-NVS1 value, up to twice that of the passivity
constraint when δ → ∞.
Moreover, in scenarios where NPD is negligible (i.e.

δ → 0), diverging from previously used complex numerical
calculations or various approximation techniques [38], [40],
[47], we introduce a simpler and direct method. This method
treats such scenarios as merely special cases of the general
stability constraint, giving two simplified stability constraints
based on the necessity of large NVD:

i) If large NVD is necessary, the stability constraint of
zero NPD can effectively represent those of near-zero NPDs,
since changes of stability regions are minimal for δ → 0.
Substituting δ = 0 into (12), the stability constraint of zero

1Mmax-NVS represents the maximum NVS the haptic device can render,
while max-NVS represents the maximum NVS when implementing certain
NVD. In other words, mmax-NVS is the maximum of the max-NVS. Other
mmin-xx/min-xx or mmax-xx/max-xx follows the same logic.

FIGURE 6. Stability constraint when δ = 0.

FIGURE 7. Comparison between the linear stability condition (18) and the
exact stability constraint (12) when δ = 0.001.

NPD can be obtained: β > 0

0 < α <
−2β2

+ 4β
β + 2

. (17)

This is a complete constraint related to α and β, with Fig. 6
illustrating the stability region.

ii) If only small NVD is necessary (i.e. β → 0), a linear
stability constraint serves as an effective simplification. This
is based on the observation of the near-linear α-β relationship
in these cases, as evidenced by the dashed curve in Fig. 7,
plotting the exact stability constraint for δ = 0.001 and
β → 0. According to i), Fig. 7 can be viewed as the
zoom-out of the origin in Fig. 6. Substituting δ → 0 and
β → 0 into (12) yields a stability constraint with a linear
upper boundary

0 <
α

2
< δ + β. (18)

It is a simple local constraint related to α and β, as illustrated
by the solid line in Fig. 7, plotting this constraint for δ =

0.001. An important conclusion in this case is that the NVD
and the NPD affect the stability in an exactly the same
manner. Note, however, the linear stability condition (18)
and the corresponding conclusion hold only for the scenario
where both the NPD and the NVD are small, which is a
very small area comparing to the whole stability region.
Otherwise, either of them breaks, the conclusion is invalid.
For example, if only NPD is small, Fig. 6 shows that when
β is large (e.g. β > 1), increasing NVD leads to a decrease
of NVS. Conversely, if only NVD is small, Section III-B-I)
demonstrates that the increase of NVS along NPD is no
longer linear, but in a more complex manner.
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Furthermore, keeping the NPD constant, we examine the
mutual impacts between NVD and NVS on each other’s
range. Fig. 3 shows that increasing the NVS narrows the NVD
range. Conversely, NVD’s impact on NVS range is more
complex: initially, increasing NVD expands the NVS range
up to mmax-NVS, then it shrinks. Additionally, each NVD
increase contributes diminishingly to NVS range, since the
derivative α′(β) decreases. Notably, it’s observed for the first
time that there are cases where adding positive NVD linearly
reduces the range of NVS and only decreasing the NVD to
negative values can increase the range of NVS. As detailed in
Section III-B-I), these cases occur when δ > δ2 ≈ 3.721.

III. ACHIEVABLE IMPEDANCE EXTREMES IN
NORMALIZED PARAMETER SPACE
This section investigates the range of the achievable NVS and
NVD of the haptic device.

A. LOWER IMPEDANCE EXTREMES
Fig. 3 indicates that the mmin-NVS should be larger than
0 (i.e. K > 0), indicating a non-negative apparent stiffness
(AS). Similarly, themmin-NVD should be larger than−δ (i.e.
B > −b), indicating a non-negative apparent damping (AD,
which equals PD plus VD). Both cases are understandable
since negative stiffness or damping will lead to physical
instability.

In addition, while the mmin-NVS may occur with many
values of NVD, the mmin-NVD occurs only at α = 0 (except
for the case δ → ∞). This implies that if some stiffness effect
is favorable, there must be certain AD effect accompanied.
In other words, the emulation of a pure stiffness is impossible.

B. HIGHER IMPEDANCE EXTREMES
1) MMAX-NVS OF THE HAPTIC DEVICE
The mmax-NVS of the haptic device is investigated in this
subsection. The corresponding NVD is also given.

The mmax-NVS is the α component of the upmost point
in the stability region. We can see from Fig. 3 that if
δ is small, the mmax-NVS achieves at the upmost point
of the hyperbolic constraint (see Fig. 3(a) and (b)); while
if δ is large, the mmax-NVS achieves at the intersection
point of the linear constraint and the hyperbolic constraint
(see Fig. 3(c) and (d)). The demarcation case occurs when
the intersection point of the linear constraint and the
hyperbolic constraint coincides with the uppermost point of
the hyperbolic constraint.

As the equation of the hyperbolic constraint is α = f (β)
with α > 0 and β > −δ, the upmost point is the point that
satisfies f ′(β) = 0. Note it as (α1, β1), then it can be solved
to be:

α1 =

2
[
cδ1 + cδ2 −

√
cδ2

(
e−δcδ1 + cδ2

)]2
c2δ1cδ2

, (19)

FIGURE 8. (a) Mmax-NVS and (b) the corresponding NVD and NAD.

β1 = −
2
cδ1

1 −

√
e−δcδ1 + cδ2

cδ2

 . (20)

The intersection point of the linear constraint and the
hyperbolic constraint has been derived in (66) in Appendix B.
Note it as (α2, β2), then

α2 =
8[cδ1 − (2 + e−δ)cδ2]

(cδ1 − cδ2)2
, (21)

β2 =
2[(3 + e−δ)cδ2 − (1 − e−δ)cδ1]

(cδ1 − cδ2)2
. (22)

The critical case happens when (α1, β1) and (α2, β2) are
the same point. Numerically solving the equation

β1 = β2, (23)

we can get the critical NPD δ1 ≈ 3.659. Therefore, the
mmax-NVS that the haptic device can render is

αmmax =

{
α1, if δ ≤ δ1,

α2, otherwise,
(24)

with the corresponding NVD being

βαmmax =

{
β1, if δ ≤ δ1,

β2, otherwise.
(25)

The figure of the mmax-NVS v.s. NPD is shown in Fig. 8(a),
while the corresponding NVD and NAD v.s. NPD is shown
in Fig. 8(b).

From Fig. 8 we can see that the larger the NPD, the
larger the mmax-NVS. Besides, it is worth noting that when
achieving the mmax-NVS, the NVD is not always positive.
Specifically, as derived in Remark 2, when δ > δ2 ≈ 3.721,
the NVD should be negative to achieve the mmax-NVS.
Additionally, in order to achieve the mmax-NVS, though the
NPD varies significantly along the variation of δ, the NAD is
bounded in (0, 4), and approaches 0 when δ → ∞.
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When δ → 0, from (24) and (25), we can know that
αmmax → 12 − 8

√
2 (≈ 0.686) with βαmmax → 2

√
2 − 2

(≈ 0.828). Moreover, when δ → ∞, from (14) we can get

αmmax → 4δ, βαmmax → −δ. (26)

It can be seen that in order to achieve the mmax-NVS, the
NVD should cancel out all the NPD. In other words, if one
wants to achieve the NVS as large as possible when δ → ∞,
the NAD has to be as small as possible. On the other hand,
if δ is not that large (e.g. δ > 10), it can be derived from (24)
that 4δ + 4 is a more accurate approximation of αmmax while
4δ is conservative, as shown in Fig. 8(a).
Remark 2: The following examines to what extent the

mmax-NVS of the impedance control is larger than that of
the PSC.

Substituting β = 0 into the stability constraint of the
impedance control (10), we can get the stability constraint
of the PSC (H (z) = K ):

0 < α < min
{
2(1 − e−δ)

cδ2
,
4(1 + e−δ)
cδ1 − cδ2

}
(27)

By numerical calculations, we can obtain that when
δ ≤ δ2 ≈ 3.721

2(1 − e−δ)
cδ2

≤
4(1 + e−δ)
cδ1 − cδ2

. (28)

Therefore, (27) can be further divided into:
0 < α <

2(1 − e−δ)
cδ2

, if δ ≤ δ2,

0 < α <
4(1 + e−δ)
cδ1 − cδ2

, if δ > δ2.

(29)

As the additional linear stability appearing from right, while
it influences the general case from δ0, it influences the PSC
(the intersection of the general case and the α axis) from δ2.
Fig. 9(a) shows the stability region of the PSC, which is under
the dashed curve.

For comparison, the mmax-NVS of the impedance control
is also plotted in Fig. 9(a) as a solid line. Although both
curves increase monotonically along δ, the mmax-NVS of
impedance control is larger than that of the PSC. It indicates
that NVD plays a positive role in enlarging the mmax-NVS,
unlike the negative role played by NVS in enlarging the
mmax-NVD, as discussed in Section II-D. In particular, when
δ is small, from Fig. 9(b) it can be seen that, adding damping
control can greatly increase the mmax-NVS comparing to
the PSC. When δ is large, adding damping control can also
achieve at least two times the mmax-NVS of the PSC. But for
a short interval before δ2, the mmax-NVSs of the impedance
control and the PSC are close, since in these cases the NVDs
to achieve the mmax-NVSs are around 0.

2) MMAX-NVD OF THE HAPTIC DEVICE
Given that both the mmin-NVD and the mmax-NVD occur
when the NVS equals zero, as illustrated in Fig. 3, the
achievable damping range of the impedance control is also

FIGURE 9. (a) Comparison of the mmax-NVSs between the impedance
control and the PSC. (b) The ratio of the latter to the former.

the range of the pure damping control (i.e. α = 0). The
applications of the pure damping control can be found in areas
where energy-storing property is undesirable [48], [49].

From (10) we know that α = 0 does not satisfy the
stability constraint. But if we substitute α → 0 into the
stability constraint (10), we can get the approximate stability
constraint of the pure damping control H (z) = B z−1

Tz ,
as shown in (30).

−δ < β < min
{

2
cδ2

,
2(1 + e−δ)
cδ1 − cδ2

}
(30)

As derived in Appendix B-A,

2
cδ2

≤
2(1 + e−δ)
cδ1 − cδ2

, if δ ≤ δ0. (31)

Therefore, (30) can be further detailed to:
−δ < β <

2
cδ2

, if δ ≤ δ0,

−δ < β <
2(1 + e−δ)
cδ1 − cδ2

, if δ > δ0.

(32)

The stability regions of the NVD and the NAD of the
pure damping control, i.e. the achievable NVD and NAD
range of the haptic device, are shown in Fig. 10(a) and (b),
respectively.

From Fig. 10(a), it can be seen that generally the larger
the NPD, the larger the mmax-NVD, except for the values
slightly larger than δ0. The mmax-NVD decreases a little bit
in this interval due to the appearance of the additional linear
constraint. Thus if one wants to use a small δ to achieve
the mmax-NVD as large as possible, δ0 is the best choice.
Besides, when δ → 0, βmmax →

4
3δ + 2. Accordingly,

different from the PSC case, even though there is no physical
damping, the system can emulate certain damping effect.
Moreover, when δ → ∞, from (14), we can easily know that
βmmax → δ, indicating a linear dependency between βmmax
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FIGURE 10. Achievable (a) NVD and (b) NAD extremes of the haptic
device.

and δ when δ is large. But if δ is not that large (e.g. δ > 10),
it can be derived from (32) that δ + 2 is a more accurate
approximation while δ is conservative, as shown in Fig. 10(a).
All the conclusions are suitable for the mmax-NAD, except
an additional δ should be added. One thing is notable that the
mmax-NAD the haptic device can render is at least 2 times
the NPD.

IV. ACHIEVABLE IMPEDANCE EXTREMES IN REAL
PARAMETER SPACE
By far we have resolved the uncoupled stability problem
in the normalized parameter space by showing what the
stability region is and how it changes when δ varies. However,
in practice, the relationships of parameters in the real param-
eter space are the ultimate concern. Nevertheless, directly
extending conclusions from the normalized parameter space
to the real parameter space tends to lead to inaccurate results.
For example, in Section II it has been shown that in general
an increase in δ corresponds to a larger stability region.
Therefore, based on δ =

bT
m , it tends to believe that the larger

the T the larger the stability region or the smaller the m the
larger the stability region. However, contrary to the former
conclusion, practical experiences have shown that increasing
the control period actually reduces the stability region. As for
the latter one, it is still an open issue. But there has been
a study [46] indicating that increasing the m increases the
stability region by performing the comparative experiments
with different masses. Therefore, it is necessary to figure out
how physical parameters influence the stability region in the
real parameter space, which is the focus of this section.

However, since there are five parameters related in the real
parameter space, it is not easy to get the compact expressions
of K and B v.s. m, b, and T like (12) and (13) as done in
the normalized parameter space. Instead, the influences of m,
b, and T on achievable impedance extremes are analyzed.
Furthermore, there is no need discussing mmin-VS and
mmin-VD since from (12) and (13) we know that α > 0 and
β > −δ, indicating K > 0 and B > −b, regardless of m

and T . Therefore in the following will see how the physical
parameters m, b, and T influence the mmax-VS and the
mmax-VD.

A. MMAX-VS AND ITS RELATIONSHIP WITH M, B, AND T
The direct method to analyze the influence of m, b, and
T on Kmmax is to substitute αmmax = KmmaxT 2/m and
δ = bT/m into (24) to get the functionsKmmax(m),Kmmax(b),
and Kmmax(T ). However, the process is quite complex. In the
followingwe choose δ as the intermediate variable to simplify
the analysis.

According to the normalization rule, we can get the
following composite functions:

Kmmax[δ(b)] =
m
T 2αmmax, (33)

Kmmax[δ(T )] =
b2

m
αmmax

δ2
, (34)

Kmmax[δ(m)] =
b
T

αmmax

δ
. (35)

Clarifying the influences of δ(m), δ(b), and δ(T ) on Kmmax
can help understand the influences of m, b, and T on
Kmmax according to the composite function monotonicity
determination principles.

The impact of b on Kmmax is relatively easy to obtain.
Equation (33) shows that the monotonicity of Kmmax with
respect to δ is the same with that of αmmax to δ. Thus the curve
of Kmmax to b is with the same shape of αmmax to δ except for
the vertical scale by m

T 2 and the horizontal scale by T
m . The

curve whenm = 1 kg and T = 0.01 s is plotted in Fig. 11(a).
The variation analysis follows a similar approach as the one
presented in Section III-B-I), and thus is omitted here.
Then we will see how T influences Kmmax. For (34),

through numerical calculations, it is easy to check that

∂Kmmax

∂δ
≤ 0, if δ ∈ [0, ∞). (36)

Thus, Kmmax v.s. δ is a monotonically decreasing function.
Consequently, Kmmax v.s. T is a monotonically decreasing
function. Besides, it is easy to get Kmmax(0) = ∞ and
Kmmax(∞) = 0. Fig. 11(b) gives the curve of Kmmax v.s. T
when b = 10 Ns/m and m = 1 kg. The result shows that
reducing the control period T will increase Kmmax and thus
is an effective way to achieve high VS. However, this will
also amplifies the negative impact of other factors, such as
the current loop dynamic characteristics, which may limit the
mmax-VS. Therefore, reducing T should be cautious.

While the effect of T on Kmmax is straightforward, the
effect of m on Kmmax is more complex. For (35), through
numerical calculations, we can find that

∂Kmmax

∂δ

{
≤ 0, if δ ∈ [0, δK1) ∪ (δK2, ∞),
≥ 0, if δ ∈ (δK1, δK2),

(37)

where δK1 ≈ 1.044 and δK2 ≈ 5.775. Thus, Kmmax v.s. δ

is a monotonically decreasing function when δ ∈ [0, δK1) ∪

(δK2, ∞) and a monotonically increasing function when
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δ ∈ (δK1, δK2). Consequently, Kmmax is a monotonically
increasing function with respect to m when m ∈ [0,mK2) ∪

(mK1, ∞) and a monotonically decreasing function when
m ∈ (mK2,mK1), where mK2 =

bT
δK2

and mK1 =
bT
δK1

.
The local maximum is Kmmax(mK2) ≈ 4.509b/T , while
the local minimum is Kmmax(mK1) ≈ 2.637b/T . Besides,
Kmmax(0) = 4b/T and Kmmax(∞) = ∞. Fig. 11(c) gives the
curve of Kmmax v.s. m when b = 10 Ns/m and T = 0.01 s.
The result shows that in general, the larger the m the larger
the Kmmax. But when m ∈ (mK2,mK1), the larger the m the
smaller the Kmmax.
This can be better understood by referring to Fig. 8(a),

which shows the monotonic relationship between the
mmax-NVS and the NPD in the normalized parameter space.
The non-monotonic behavior in the real parameter space
is reflected in the slope of Fig. 8(a), as described below.
When the mass m is small (i.e., δ is large), according
to the discussions in Section III-B-I), 4δ + 4 accurately
approximates αmmax. Transformed into the real parameter
space, this becomes:

KmmaxT 2

m
≈

4bT
m

+ 4, (38)

i.e.,

Kmmax ≈ 4m+ 4bT . (39)

Therefore, the larger the mass m, the larger the maximum
achievable stiffness Kmmax. This corresponds to the first
increase interval [0,mK2). As the mass m increases (i.e., the
NPD δ decreases), the curve’s slope becomes steeper, and the
intercept on the α axis becomes negative. Assume it is:

KmmaxT 2

m
≈
lkbT
m

− lb, (40)

i.e.,

Kmmax ≈ −lbm+ lkbT , (41)

where lk > 0 and lb > 0 are the slope and intercept,
respectively. Thus, the larger the mass m, the smaller the
maximum achievable stiffness Kmmax. This corresponds to
the decreasing interval (mK2,mK1). As the mass m continues
to increase (i.e., the NPD δ decreases), the curve’s slope
becomes smoother, and the intercept on the α axis becomes
positive again. Consequently, the larger the massm, the larger
the maximum achievable stiffness Kmmax. This corresponds
to the final increasing interval (mK1, ∞). More details on this
point are verified by the experiment in Section V-B-III).

B. MMAX-VD AND ITS RELATIONSHIP WITH M, B, AND T
Similar to the last subsection, δ is chosen to be the
intermediate variable to simplify the analysis of the influence
ofm, b, and T on Bmmax. According to the normalization rule,
we can get the following composite functions:

Bmmax[δ(b)] =
m
T

βmax, (42)

FIGURE 11. Kmmax v.s. (a) b when m = 1 kg and T = 0.01 s, (b) T when
b = 10 Ns/m and m = 1 kg, and (c) m when b = 10 Ns/m and T = 0.01 s.

Bmmax[δ(T )] = Bmmax[δ(m)] = b
βmmax

δ
. (43)

Similar to the analysis of the influence of b on Kmmax, the
curve of Bmmax v.s. b is with the same shape of βmmax v.s. δ
except for the vertical scale by m

T and the horizontal scale by
T
m . The curve when m = 1 kg and T = 0.01 s is plotted in
Fig. 12(a).

Then we will see how T and m influence mmax-VD
and mmax-AD. According to Appendix C, Bmmax(δ) is a
monotonically decreasing function in (0, δB) and (δ0, ∞) and
a monotonically increasing function in (δB, δ0) when b is a
constant value, where δB ≈ 1.793. Consequently, the effect
of T and m on Bmmax can be obtained as shown in Table 1
(in which TB =

m
b δB, T0 =

m
b δ0, m0 =

bT
δ0
, mB =

bT
δB
).

Fig. 12(b) and (c) gives the curves ofBmmax v.s. T andmwhen
b = 10 Ns/m, m = 1 kg and b = 10 Ns/m, T = 0.01 s,
respectively. From Table 1 and Fig. 12 we can see that if the
control period T is very large, the system can only add the VD
no more than the PD. When T becomes smaller, in general,
Bmmax increases, except for a short interval T ∈ (TB,T0)
where decreasing T decreases Bmmax. The influence of m is
opposite. If m is very small, the system can only add the VD
no more than the PD. When m becomes larger, in general,
Bmmax increases, except for a short interval m ∈ (m0,mB)
where increasing m decreases Bmmax. In addition, since b
remains constant when analyzing the influences of T and m,
the analysis of the mmax-AD v.s. T and m is the same with
the mmax-VD v.s. T and m except for a vertical offset b.

In conclusion, we have developed formulas that, for the
first time, reveal how the control period, physical damping,
and physical inertia influence the mmax-VS and mmax-VD.
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TABLE 1. Variations of Bmmax along m and T .

FIGURE 12. Bmmax v.s. (a) b when m = 1 kg and T = 0.01 s, (b) T when
b = 10 Ns/m, m = 1 kg, and (c) m when b = 10 Ns/m, T = 0.01 s.

Our findings align with the intuitive expectation of mono-
tonic increasing impacts that reducing the control period
and increasing physical damping have on the mmax-VS.
However, they also unveil unexpected ‘increase-decrease-
increase’ impacts that increasing physical inertia has on the
mmax-VS, and that reducing the control period, increasing
physical damping, or increasing physical inertia has on the
mmax-VD, challenging traditional views.

V. SIMULATIONS AND EXPERIMENTS
This section will present simulations and experiments to
verify the aforementioned theories.

A. SIMULATIONS
The simulation model is shown in Fig. 13, in which m =

0.1 kg, T = 0.01 s, b = 23, 30, and 50 Ns/m representing
δ = 2.3, 3, and 5, respectively. The original equilibrium of
the virtual stiffness is 0. In order to excite the system, the
equilibrium position of the virtual stiffness x0 is set to 1 m,
i.e. the reference force F0 is set to K . Then if the system is
stable, the final position will be 1 m.

Fig. 14 shows the stability boundaries with different δ,
in which 12 points are chosen to run the simulation to

FIGURE 13. Simulation of the impedance-controlled haptic device.

FIGURE 14. Points chosen for the stability boundary verification.
(a) δ = 2.3, (b) δ = 3, and (c) δ = 5.

see the system stability. The chosen point values and the
corresponding response results are displayed in Fig. 15. It can
be seen that responses of the points inside the stable region
are stable and responses of the points outside the stable region
are unstable, verifying the stability constraint (12) and (13).
Besides, points 6, 8, 10, and 12 are inside the stable region

of the traditional stable constraint [32], [43], but from Fig. 15
we know that the responses of these points are unstable. Thus,
the traditional stable constraint as shown in [32] and [43] is
only necessary for they do not include the additional linear
stability constraint when δ > δ0. The stability constraint
developed in this article clearly indicates these points are
unstable and thus is necessary and sufficient.

What’s more, consider the points 2 and 8, which have the
same NVD and NVS but with different NPDs. The result that
point 2 with smaller NPD is stable but point 8 with larger
NPD is unstable indicates that it is not all the case that the
larger the NPD, the larger the stability region. As discussed
in Section II, this unusual phenomenon happens only if δ is
slightly larger than δ0, in which case the rendered impedance
should be carefully considered.

Furthermore, points 5-8 and points 9-12 show that when
the NVD reaches a certain threshold, it happens that the larger
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FIGURE 15. Responses of the points chosen in Fig. 14 (S - stable; US - unstable).

the NVD, the smaller the max-NVS. In addition, points 9-12
also indicates that when δ > δ2 as long as the NVD is
positive, the max-NVS decreases linearly with the increase
of the NVD. Thus if one wants to achieve the mmax-NVS,
the NVD should be negative. This phenomenon is reported
for the first time.

Moreover, the responses of point 3 and point 4 indicate that
the system with negative NAS or negative NAD is unstable if
there is no interaction with the environment. The comparison
of point 9 and point 11 shows that using the NVD item can
achieve higher mmax-NVS than the PSC.

B. EXPERIMENTS
Three experiments are implemented to verify the aforemen-
tioned theories. The first two verify the stability boundaries in
the normalized space when δ < δ0 and δ > δ0, respectively.
The ‘‘increase-decrease-increase’’ pattern in the variation
of the mmax-VS alongm is presented in the third experiment,
verifying the discussions given in Section IV.
The experimental platform is shown in Fig. 16. The

controller is TI DRV8301-HC-EVM board attached with
microcontroller unit TMS320F28035. The current control
period is 25 us for fast current reference ability. Both the
drive motor (right) and the load motor (left) are the Maxon
EC-4pole 30 PM motors and are connected through a
coupling. The characteristics and the differences of the plants

FIGURE 16. Experimental platform.

will be introduced in every experiment. The inertia in the
following analysis will be represented by the symbol J .

1) STABILITY BOUNDARY VERIFICATION WHEN NPD δ < δ0
Two experiments are implemented to do the verification. The
NPD is close to 0 in the first experiment and close to δ0 in the
second.

To make the NPD get close to 0, the load motor keeps
open circuit. In fact a single motor would be enough. But
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FIGURE 17. Comparison of the experimental and theoretical stability
boundaries when δ < δ0. (a) δ = 0.013, close to 0. (b) δ = 2.049, close
to δ0.

for the comparison of the following experiments, the same
deployment is implemented. In this system, the overall
physical damping is identified as b = 13.93×10−6 Nms/rad,
the inertia is identified as J = 85.78 × 10−7 kgm2, and the
control period is set to be T = 0.008 s. Thus, the normalized
damping δ = 0.013, close to 0.

To make the NPD get close to δ0, the load motor’s power
lines are short-circuited. Since in the load motor, the torque
is proportional to the current, the current is proportional to
the back electromotive force (back-EMF) and the back-EMF
is proportional to the speed, the torque is proportional to
the speed. Thus, the load motor provides the driven motor
viscous friction. After identification, the physical damping is
b = 2.197× 10−3 Nms/rad, 158 times than the case of open
circuit. With the inertia and the control period keeping the
same, the normalized damping δ = 2.049, close to δ0.
During the experiments, a set of constant NVDs including

the theoretical NVD to the mmax-NVS are fixed to see
the corresponding max-NVSs and at last, set constant NVS
α = 0.001 to see the corresponding min-NVD (i.e. the
approximate mmin-NVD) and max-NVD (i.e. the approx-
imate mmax-NVD). The resulting experimental stability
boundaries are transformed to the normalized parameter
space and plotted in the solid line in Fig. 17(a) and (b),
respectively. In each subfigure, the dashed line displays the
theoretical stability boundary of the corresponding δ.
According to Fig. 17, we can see that the experimental

stability boundaries match the theoretical boundaries very
well under both cases, thus indicating the accuracy of the
theory.

For comparison, the theoretical boundary when δ = 0 is
also plotted in Fig. 17(a) and (b) in the dotted line. It is close

FIGURE 18. Comparison of the experimental and theoretical stability
boundaries when δ = 5.122 > δ0.

to the theoretical and experimental stability boundaries for
the case where δ approaches 0, as shown in Fig. 17(a). Thus
we can use the stability boundary of δ = 0 to approximate
that of small δ. But when δ is much larger than 0, as shown
in Fig. 17(b), the difference are very large. In this case, the
approximation is no longer held. Both experimental results
verify the discussions given in Section II-D.
By comparing Fig. 17(a) and (b), it is evident that

increasing the NPD leads to a considerable expansion of
the stability region in the normalized parameter space. Since
the control period and the inertia are the same in both
cases, the results also indicate that increasing the physical
damping generally results in a larger stability region in the
real parameter space. In practice, there are kinds of methods
increasing the physical damping of the system to render larger
impedance [50], [51], [52], [53].

2) STABILITY BOUNDARY VERIFICATION WHEN NPD δ > δ0
Set the control period of the deployment with the load motor
short-circuited to T = 0.02 s, then the NPD is δ = 5.122,
which is larger than δ0. The resulting experimental stability
boundary in the normalized parameter space is plotted as the
solid line in Fig. 18. The dashed line displays the theoretical
stability boundary when δ = 5.122. It can be seen that
the experimental stability boundary matches the theoretical
boundary very well, thus indicating the accuracy of the theory
when δ > δ0.

For comparison, the theoretical boundary of work [43] (i.e.
the stability constraint without the linear constraint when
δ > δ0) is also plotted in the same figure in dotted line.
Three points, as indicated by the diamond mark, are chosen
to see the experimental responses. They locate far inside the
stability boundary of work [43] but beyond the theoretical
boundary in this article. The experimental responses of all
these three points are unstable even with a step of only 5◦ in
angular position, as shown in Fig. 19. This implies that points
inside the theoretical stability boundary of [43] could be
unstable, indicating the inaccuracy of the theoretical stability
boundary of [43] when δ > δ0. This is because it does not
consider the linear constraint when δ > δ0.
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FIGURE 19. Experimental responses of the three points diamond marked
in Fig. 18. (a) β = −1.5, α = 23. (b) β = 4, α = 15. (c) β = 10, α = 5.

TABLE 2. Comparison of the experimental max-NVSs of PSC and the
experimental mmax-NVSs.

Besides, comparing the max-NVSs of PSC and the
mmax-NVSs of all the above three cases in Table 2, we can
see that comparing to PSC, adding the item of the NVD
can increase the mmax-NVS the system can render. When
δ = 0.013, the mmax-NVS increases by a factor of up to
24.837 times. Furthermore, it can also be seen that when
δ < δ2 positive NVD leads to the mmax-NVS while when
δ > δ2 negative NVD leads to the mmax-NVS. In addition,
the differences of NADs are not that much as NVDs. These
observations verify the discussions in Section III-B-I).
Moreover, comparing the experimental stability bound-

aries of the case δ = 2.049 and the case δ = 5.122 in
the normalized parameter space in Fig. 20(a), we can see
that the case δ = 5.122 has a wider stability region. Then,
as m and b are the same for both cases, it seems to suggest
that the larger the T the larger the stability region. However,
if we compare their stability boundaries in the real parameter
space, as shown in Fig. 20(b), we can see that the case
δ = 5.122 actually has a narrower stability region. This
is different from the situation mentioned in Section V-B-I),
where increasing b enlarges both the stability region in the
normalized parameter space and the stability region in the
real parameter space. Therefore, although both can lead to an

FIGURE 20. Comparison of the stability region when T is different in
(a) the normalized parameter space and (b) the real parameter space.

FIGURE 21. Influence of the inertia on the mmax-VS. (a) The load motor
is open circuit. (b) The load motor is short-circuited.

expansion of δ and thus the stability region in the normalized
parameter space, increasing T reduces the stability region in
the real parameter space, while increasing b, on the contrary,
results in an expansion of the stability region in the real
parameter space. This can be perplexing for many. Since
the relationships of the real parameters are the ultimate
concern, we have to explore the stability region variations
in the real parameter space, as discussed in Section IV and
experimentally verified in the next subsection.

3) INFLUENCE OF THE INERTIA ON MMAX-VS
In order to verify the influence of the inertia on the mmax-
VS, we add extra inertia on the coupling. By doing so, the
inertia changed to J2 = 102.29×10−7 kgm2, J3 = 172.43×

10−7 kgm2, and J4 = 283.21 × 10−7 kgm2. Both cases
where the load motor is open circuit and short-circuited are
experimented with these three new inertia. The control period
T = 0.008 s. Set the constant NVD to the corresponding
βαmmax to see the mmax-NVS. The results, together with
the mmax-VSs obtained in Experiment 1) (J1 = 85.78 ×

10−7 kgm2), are plotted in real units in Fig. 21.
From Fig. 21, it can be seen that the influence of the

physical inertia on the mmax-VS is not simply monotonically
increasing or decreasing.When the loadmotor is open circuit,
as the inertia is much larger than JK1 = 1.07 × 10−7 kgm2,
the mmax-VS is larger when the inertia is larger. However,
when the load motor is short-circuited, the variation exhibits
an ‘‘increase-decrease-increase’’ pattern. For clarity, critical
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FIGURE 22. Illustration of (a) the emulated five-position knob switch and
(b) the virtual stiffness and equilibrium position (EP) planning used for its
implementation.

inertia JK2 = 30.43 × 10−7 kgm2 and JK1 = 168.40 ×

10−7 kgm2 are also marked in the figure. It can be seen
from the figure that even though the inertia J2 is larger than
J1, the mmax-VS is lower. The situation of J3 to J2 is the
same. It is because these inertia are in the decreasing interval
(JK2, JK1). Afterwards when the inertia becomes larger to J4,
the mmax-VS is higher since the inertia is in the increasing
interval (JK1, ∞). This verifies the discussion in Section IV
thatKmmax v.s. J is a monotonically increasing function when
J ∈ [0, JK2) ∪ (JK1, ∞) and a monotonically decreasing
function when J ∈ (JK2, JK1).

4) GENERALITY TEST: VARIABLE IMPEDANCE VIRTUAL KNOB
SWITCH
In the following variable impedance control experiment,
we emulate a five-position knob switch to demonstrate
the generality and practical applicability of our theoretical
findings.

The multi-position knob switch, known for its widespread
use and user-friendly design, enables effortless management
of state transitions in devices or systems. We emulate a
five-position knob switch, as depicted in Fig. 22(a), through
a straightforward virtual spring mechanism (Fig. 22(b)).
Each switch position is flanked by positive and negative
stiffnesses, providing users with clear, detent tactile feedback.
Additionally, virtual walls are established at both ends of the
range, restricting the knob’s rotation.

In the emulation endeavor, the deployment with the load
motor short-circuited and T = 0.02 s, is employed. This
is necessitated by the inadequacies found in the deployment
with the load motor open-circuited, which only allows for
a mmax-VS of 0.0874 Nm/rad, equating to a torque of
merely 0.0172 Nm at π/16 rad. Such capability falls short
of producing clearly distinguishable switch sensations. Given
the NPD now is δ = 5.122, exceeding θ0 as highlighted
in Section II, the stability constraint derived from existing
theories [32], [43] becomes inapplicable. This is attributed to
their suggestion of an overly wide stiffness range, potentially
leading to instability and creating safety hazards. In contrast,
our proposed theoretical framework is capable of offering

FIGURE 23. Comparison of planned and actual stiffness variations during
the clockwise rotation of the virtual knob switch, with stiffness planned
based on (a) proposed stability constraint and (b) existing stability
constraint [43].

an accurate stiffness range for all NPDs including such a
scenario.

The mmax-VS for this deployment is 0.49 Nm/rad,
obtained by setting the VD to −1.36 × 10−3 Nms/rad,
as detailed in Section III. Accordingly, we set the end stiffness
(ES) at 0.4 Nm/rad (approximately 80% of the mmax-VS)
and the intermediate peak stiffness (IPS) at 0.25 Nm/rad
(approximately 50% of the mmax-VS) to emulate the tactile
sensation of a physical knob switch. Rotating the virtual knob
switch clockwise from Position 1 yields the actual stiffness
variation shown in Fig. 23(a). The results affirm that the
system is stable and aligns with the design objectives. For
comparison, another emulation of the virtual knob switch is
conducted based on the existing stability constraint [43]. The
settings for this emulation are: 0.58 Nm/rad for mmax-VS,
0.03 × 10−3 Nms/rad for the VD to achieve mmax-VS,
0.46 Nm/rad for ES, and 0.29 Nm/rad for IPS. The
planned and actual stiffness variations corresponding to these
settings are presented in Fig. 23(b). The figure reveals that
while the system is stable and follows the planned stiffness
variation during the intermediate process, the interaction with
the virtual wall exhibits oscillatory behavior. This result is
attributed to the ES designed based on [43] exceeding the
stability boundary of this deployment.

Furthermore, based on the analysis in Section IV, the
mmax-VS for this deployment can be increased by reduc-
ing the control period, increasing the physical damping,
or decreasing the physical inertia to J ′

K2 = 76.09 ×

10−7 kgm2. While the first two methods are well-known
to researchers, the third one presents a novel approach,
challenging the traditional belief that higher inertia leads
to greater mmax-VS [46]. This recommendation emerges
from the observation that the current inertia lies within
the ‘‘decrease’’ phase of the ‘‘increase-decrease-increase’’
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pattern, indicating an increase in mmax-VS through inertia
reduction. The optimal result is obtained by decreasing the
inertia to J ′

K2, as further reduction negatively impacts the
mmax-VS. On the flip side, while it is technically possible to
increase the inertia for a higher mmax-VS, such an increment
should reach at least 1943 × 10−7 kgm2, at which point the
mmax-VS is equivalent to that of J ′

K2. However, since this
increase amplifies J ′

K2 by twenty-sixfold, the benefits do not
justify the drawbacks. Therefore, reducing the inertia to J ′

K2
is identified as the preferred approach.

VI. CONCLUSION AND FUTURE WORK
This paper presents the complete analytical uncoupled
stability constraint for impedance-controlled haptic devices
in the normalized parameter space. Unlike the existing
constraint, which may lead to instability when δ > δ0,
the proposed constraint is applicable for all NPDs. The
uniqueness is the revealing of a linear constraint when δ > δ0
so that unstable points can be excluded. This noticeable
discovery also brings in new insights. Though in general
the larger the NPD the larger the stability region, there are
exceptional cases where enlarging the NPD might lead to
instability. This happens when δ is slightly larger than δ0.
Besides, adding positive NVD does not necessarily result in
higher max-NVS. When δ > δ2, the mmax-NVS occurs at
negative NVD.

Furthermore, this study delves deeper into the real param-
eter space to examine the impacts of physical parameters
on achievable impedance extremes. This is crucial because
our primary focus is on drawing accurate conclusions in the
real parameter space, which has been lacking in existing
analyses or experiments. For the first time, we derive
formulas for the mmax-VS and mmax-VD as functions of
control period, physical damping, and physical inertia. It is
shown that while it is intuitive that reducing the control
period and increasing the physical damping will enlarge
the mmax-VS, the other four contradict with the traditional
impressions. Specifically, increasing the physical inertia
will lead to an ‘‘increase-decrease-increase’’ pattern of the
mmax-VS. Similarly, reducing the control period, increasing
the physical damping or the physical inertia will lead to
an ‘‘increase-decrease-increase’’ pattern of the mmax-VD.
With the accurate uncoupled stability constraint and influence
curves of physical parameters on achievable impedance
extremes, the proposed approach serves as a crucial basis
for the stability analysis and controller design of practical
haptic interaction systems, ensuring safe physical human-
robot interaction.

Future research related to the framework of the uncoupled
stability will take other factors such as the characteristics of
the current loop, the velocity filter, the encoder resolution,
and the Coulomb friction into account. The theoretical
requirement of the environment that ensures the stability of
the overall system when interacting with a stable device is
also worthy to be investigated.

APPENDIX A
DERIVATION OF PROPERTIES OF Cδ1(δ) AND Cδ2(δ)
This appendix derives several properties of the intermediate
functions cδ1(δ) and cδ2(δ), as defined in (3) and (4),
respectively. Both of them are monotonically decreasing
functions and in the range (0, 1] when δ ∈ [0, ∞). Besides,
cδ1(δ) ≥ cδ2(δ) and ‘‘=’’ is true if and only if δ = 0.

A. BOTH Cδ1(δ) AND Cδ2(δ) ARE MONOTONICALLY
DECREASING FUNCTIONS AND IN RANGE (0, 1]
When δ ∈ (0, ∞), the derivative function of cδ1(δ) is

c′δ1(δ) =
−(δ + 2)e−δ

− (δ − 2)
δ3

2

. (44)

Let

h1(δ) = −(δ + 2)e−δ
− (δ − 2), (45)

then its first and second derivative functions are

h′

1(δ) = (δ + 1)e−δ
− 1, (46)

h′′

1(δ) = −δe−δ. (47)

Since h′′

1(δ) < 0 when δ ∈ (0, ∞), the following inequalities
can be obtained successively:

h′

1(δ) < h′

1(0) = 0, (48)

h1(δ) < h1(0) = 0, (49)

c′δ1(δ) < 0. (50)

Thus, cδ1(δ) is a monotonically decreasing function when δ ∈

(0, ∞) and

0 = cδ1(∞) < cδ1(δ) < cδ1(0) = 1. (51)

Therefore, considering that cδ1(δ) = 1 when δ = 0, the proof
of the properties of cδ1(δ) is completed.
Similarly, we find that cδ2(δ) is also a monotonically

decreasing function and in the range (0, 1] when δ ∈ [0, ∞).

B. Cδ1(δ) ≥ Cδ2(δ) AND ‘‘=’’ IS TRUE IF AND ONLY IF δ = 0
When δ ∈ (0, ∞), the difference of these two functions is

cδ1(δ) − cδ2(δ) =
(δ + 2)e−δ

+ (δ − 2)
δ2

2

. (52)

From (49), we know that

(δ + 2)e−δ
+ (δ − 2) > 0. (53)

Thus, when δ ∈ (0, ∞),

cδ1(δ) > cδ2(δ). (54)

Therefore, considering that cδ1(δ) = cδ2(δ) = 1 when δ = 0,
the proof is completed.

APPENDIX B
DERIVATION OF STABILITY CONSTRAINT
This appendix derives the explicit stability constraint (10)
and the more detailed cases (12) and (13). Since the case
δ = 0 can be easily verified, we will assume δ ̸= 0 in the
following.
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A. INTERSECTION AREA CONSTRAINED BY FIRST THREE
INEQUALITIES OF (9)
Substituting 1 and −1 into the denominator polynomial (7),
we can get

pd (1) = (cδ1 + cδ2)α

pd (−1) = (cδ1 − cδ2)(α + 2β) − 4(1 + e−δ). (55)

As derived in Appendix A, cδ1 > 0, cδ2 > 0, and cδ1 > cδ2
when δ > 0, thus the first three inequalities of (9) simplify to

α > 0

α + 2β <
4(1 + e−δ)
cδ1 − cδ2

|β| <
2
cδ2

. (56)

It is easy to verify that, without considering the inequality
β < 2

cδ2
, constraint (56) bounded a triangular area in the β−α

plane. Since the vertical line β =
2
cδ2

could be to the right of
the triangular area or could intersect it, the constraint (56) can
be further divided into two cases.

For clarity, the upper boundary line of the area constrained
by the second inequality is denoted by l1. The intersection
point of l1 and the horizontal β axis, i.e. the right vertex of the
triangle, is ( 2(1+e

−δ)
cδ1−cδ2

, 0). Assuming the vertical line β =
2
cδ2

is to the right of the triangular area, we have

2(1 + e−δ)
cδ1 − cδ2

<
2
cδ2

. (57)

It can be simplified to

(1 + δ)
(
1 + e−δ

)2
> 4. (58)

The exact solution of the inequality is difficult to obtain, but
a numerical solution can be acquired. It is δ > δ0, where
δ0 ≈ 2.311. Hence, (56) can be divided into the following
two cases:

1) if δ ≤ δ0
α > 0

−
2
cδ2

< β < min
{

2
cδ2

,
2(1 + e−δ)
cδ1 − cδ2

−
α

2

}
,

(59)

2) if δ > δ0 α > 0

−
2
cδ2

< β <
2(1 + e−δ)
cδ1 − cδ2

−
α

2

(60)

indicating a trapezoidal area and a triangular area, respec-
tively. Fig. 24 shows the resulted intersection areas for both
cases.

FIGURE 24. Intersection area constrained by the first three inequalities
of (9). (a) δ = 2 ≤ δ0, (b) δ = 3 > δ0.

FIGURE 25. Intersection area constrained by all the four inequalities
of (9). (a) δ = 2 ≤ δ0, (b) δ = 3 > δ0.

B. SIMPLIFICATION OF THE FOURTH INEQUALITY OF (9)
The fourth inequality of (9) can be changed to the intersection
of the inequalities

(cδ1 − cδ2)cδ2β2
+ cδ1cδ2αβ

+ 2cδ2α − 2(cδ1 + e−δcδ2)β + 4(1 + e−δ) > 0 (61)

and

(cδ1 + cδ2)cδ2β2
+ cδ1cδ2αβ

+ 2cδ2α − 2(cδ1 + e−δcδ2)β − 4(1 − e−δ) < 0. (62)

The symbols c1 and c2 are used to represent the boundary
curves of (61) and (62), respectively. It is worth noting
that both c1 and c2 are second-order curves. Therefore,
their shapes and positions can be determined based on the
second-order curve theory. After calculations, it is found that
they are hyperbolas with centers in the second quadrant.
Additionally, for both of them, the slope of the real axis
is negative and the slope of the imaginary axis is positive.
The resulted shapes and positions of c1 and c2 are shown in
Fig. 25.
Besides, since no solution exists when substituting β =

−
2
cδ1

into either c1 or c2, the branches of both c1 and c2 are
separated by the vertical line β = −

2
cδ1

. Then with f (β)
defined in (11) and

g(β)=
−(cδ1−cδ2)cδ2β2

+2(cδ1 + e−δcδ2)β − 4(1 + e−δ)
(cδ1β + 2)cδ2

,

(63)
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the intersection of inequalities (61) and (62) can be simplified
to 

g(β) < α < f (β), if β > −
2
cδ1

,

f (β) < α < g(β), if β < −
2
cδ1

.

(64)

The purple shadow regions in Fig. 25 illustrate this.
What’s more, taking the result of the last subsection into

account, constraint (64) can be further simplified.

1) THE SECOND CASE OF (64) IS DISCARDED
Combining the equations of l1 and c2, we can get their
intersection points:(

−
2
cδ2

,
4(cδ1 + e−δcδ2)
cδ2(cδ1 − cδ2)

)
(65)

and(
2[(3 + e−δ)cδ2 − (1 − e−δ)cδ1]

(cδ1 − cδ2)2
,
8[cδ1 − (2 + e−δ)cδ2]

(cδ1 − cδ2)2

)
.

(66)

It is easy to check that

−
2
cδ2

< −
2
cδ1

(67)

and

2[(3 + e−δ)cδ2 − (1 − e−δ)cδ1]
(cδ1 − cδ2)2

> −
2
cδ1

. (68)

Thus the intersection points are located in the left branch
and right branch of c2, respectively. Then for points with
β ∈

(
−

2
cδ2

, − 2
cδ1

)
, the requirements to be under l1 and above

c2 are in conflict, as shown in Fig. 25. Therefore, the second
case of (64) has no intersection with the area constrained
by (56) and thus is discarded.

2) SIMPLIFICATION OF THE FIRST CASE OF (64)
By setting α = 0 in (61), we can get the intersection points
of c1 and the β axis:

(
2
cδ2

, 0
)
and

(
2(1+e−δ)
cδ1−cδ2

, 0
)
. Then for

points with β ∈

(
−

2
cδ1

,min
{

2
cδ2

,
2(1+e−δ)
cδ1−cδ2

})
, g(β) < 0.

Therefore, the left inequality α > g(β) in the first case of (64)
is redundant to the first inequality α > 0 in (56).

In addition, by setting α = 0 in (62), we can get the
intersection points of c2 and the β axis: (−δ, 0) and

(
2
cδ2

, 0
)
.

Then for a point satisfying both α > 0 and α < f (β), its β

coordinate is in
(
−δ, 2

cδ2

)
. Hence, the condition β > −

2
cδ1

in

the first case of (64) can be replaced by β > −δ.
To conclude, taking the result of Appendix B-A into

account, the fourth inequality of (9) can be simplified to

β > −δ and α < f (β). (69)

C. EXPLICIT STABILITY CONSTRAINT OF THE SYSTEM
While the result in Appendix B-A help simplify the fourth
inequality of (9) in the last subsection, the simplified
fourth inequality (69) can, in turn, simplify the result in
Appendix B-A and derive the explicit stability constraint of
the system.

From the last subsection, we know that for a point
satisfying (69), its β coordinate is in

(
−δ, 2

cδ2

)
. Thus it

is in (− 2
cδ2

, 2
cδ2

). Therefore, the third inequality of (56)
is redundant. Consequently, the stability constraint (10) is
acquired.

Furthermore, it is easy to check that when δ ≤ δ0, the only
intersection point of l1 and the right branch of c2 (i.e. the
point (66)) is at the right-down position to the point

(
2
cδ2

, 0
)
,

which is the right intersection point of the right branch of
c2 and the β axis. Thus the line l1 is above the right branch
of c2 when α > 0. Therefore, the second inequality of (56)
is redundant when δ ≤ δ0. Consequently, two detailed cases
of the system stability constraint (12) and (13) are acquired.
The dark green shadow regions in Fig. 25 illustrate this.

APPENDIX C
DERIVATIONS IN SECTION IV-B
This appendix analyzes the monotonicity of Bmmax v.s. δ

when b is a constant value.
1) If δ ≤ δ0

B′
mmax(δ) = b

1 − e−δ
− δe−δ

− δ2e−δ

(1 − e−δ − δe−δ)2
. (70)

Let

g1(δ) = 1 − e−δ
− δe−δ

− δ2e−δ, (71)

then its derivative function is

g′

1(δ) = δ(δ − 1)e−δ. (72)

Thus,

g′

1(δ)

{
< 0, if δ ∈ (0, 1),
> 0, if δ ∈ (1, ∞).

(73)

Therefore, g1(δ) is monotonically decreasing in (0, 1)
and monotonically increasing in (1,∞). Since g1(0) =

0, g1(∞) = 1, there is another zero in (0, ∞). Through
numerical calculations, we can obtain the zero to be
δB ≈ 1.793. Consequently,

B′
mmax(δ)

{
< 0, if δ ∈ (0, δB),
> 0, if δ ∈ (δB, δ0).

(74)

Hence, Bmmax(δ) is a monotonically decreasing func-
tion for δ ∈ (0, δB) and a monotonically increasing
function for δ ∈ (δB, δ0). The minimum value is
Bmin(δB) ≈ 3.351b.

2) If δ > δ0

B′
mmax(δ) = −2b

1 − 2δe−δ
− e−2δ

[(δ − 2) + (δ + 2)e−δ]2
. (75)
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Let

g2(δ) = 1 − 2δe−δ
− e−2δ, (76)

then its derivative function is

g′

2(δ) = 2(−1 + δ + e−δ)e−δ. (77)

Since g′

2(δ) > 0 when δ ∈ (0, ∞), we can know

g2(δ) > g2(0) = 0. (78)

Thus,

B′
mmax < 0, if δ > δ0. (79)

Therefore, Bmmax(δ) is a monotonically decreasing
function when δ > δ0 and

Bmmax(δ) > Bmmax(δ0) ≈ 3.440b (80)

In summary, when b is a constant value, Bmmax is a
monotonically decreasing function in (0, δB) and (δ0, ∞) and
a monotonically increasing function in (δB, δ0). The local
minimum is Bmmax(δB) ≈ 3.351b, while the local maximum
is Bmmax(δ0) ≈ 3.440b. In addition, Bmmax(0) = ∞ and
Bmmax(∞) = b.
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