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ABSTRACT This paper proposes a data-driven robust scheduling method for power systems incorporating
variable energy. Robust kernel density estimation (RKDE) is combined with distributionally robust optimiza-
tion (DRO) to address the uncertainties of renewable energy and possible outliers during data collection and
transmission. RKDE is employed to infer the potential probability distribution. In this process, the outliers
will be assigned a very small weight so that they hardly affect the probability density curve. Subsequently,
the distribution derived from RKDE serves as the center of a distributional ambiguity set, with distances
between distributions measured using theWasserstein metric. Since RKDE converges to the true distribution
quickly with the expansion of sample data, the proposed approach is less conservative than the empirical
distribution-based DRO (EDRO). Moreover, compared with general KDE, RKDE has a unique advantage in
suppressing the influence of outliers and improving the accuracy of distribution estimation. To demonstrate
the superiority of the proposed approach, we present tests on Case-118 and Case-1888rte systems from
MATPOWER 6.0. Numerical results indicate that the proposed approach exhibits lower conservatism and
superior outlier suppression capability when compared to EDRO and KDE-based DRO (KDRO).

INDEX TERMS Data-driven, robust optimization, power system scheduling, renewable energy, uncertainty,
data errors.

NOMENCLATURE
Sets
I , J Set of thermal units and renewable genera-

tors.
Ib, Jb Set of all thermal units and renewable gen-

erators at bus b.
B,L,T Set of buses, transmission lines and time

periods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Bellan .

Parameters
ai, bi, ci Generation cost coefficients of unit i.
Cmn Capacity of transmission line linking bus m

and n.
CUi/CDi Upward/downward reserve price of unit i.
K b
mn Load shift factor from bus b to line linking

bus m and n.
PLbt Load at bus b in time t .
Pwjt Predicted value of renewable source j in

time t.
P̄i/Pi Maximum/minimum output of unit i.
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RUi/RDi Ramp-up/ramp-down limit of unit i.
RU i/RDi Start-up ramp-up/shut-down ramp-down

limit of unit i.
SUi/SDi Start-up/shut-down cost of unit i.
TUi/TDi Minimum up/down time of unit i.
r̄it/rit Upward/downward reserve limit of unit i.

Variables
dit On/off status of units: ‘1’if unit i is on, ‘0’ if

unit i is off.
Pit Base-point output of unit i in time t.
uit Start-up status of units: ‘1’if unit i is started

up in time t , ‘0’ otherwise.
vit Shut-down status of unit s: ‘1’if unit i is shut

down in time t , ‘0’ otherwise.
αit Participation factor of unit i in time t.
ζ̃jt Prediction error of renewable source j in

time t .
ζt Total prediction error of all renewable

sources in time t .

I. INTRODUCTION
In recent years, volatile renewable energy is making up a
rapidly growing share in power systems. The resulting uncer-
tainties bring enormous risks to the stable operation of power
systems [1]. In addition to the various uncertainties, the
inevitable data errors in the process of renewable energy data
acquisition and transmission also bring great difficulties to
accurate power scheduling. Exploring approaches to address
the above issues is a constant challenge for researchers.

For the optimal scheduling of power systems under uncer-
tainties, most scholars focus on coping with uncertainty [2]
but rarely consider the data errors. To deal with uncertain-
ties, stochastic programming (SP) [3]is one of the popular
methods that researchers have invested in. It usually assumes
uncertainties following a typical distribution and solves the
model by constructing massive scenarios [4] or chance con-
straints [5]. In contrast with SP, robust optimization (RO)
does not need to knowwhat probability distribution the uncer-
tainties follow [6], [7], but constructs a set containing the
worst scenario [8]. The objective is tominimize the cost under
the worst realization [9]. Both of the above two methods can
effectively describe the uncertainties, but SP is aggressive
while RO is conservative [10], [11], which limits their effec-
tiveness and economics when applied to actual scheduling
problems.

To strike a balance between aggressive and conservative
performance, stochastic scenarios are integrated with robust
optimization in [12]. Subsequently, researchers propose dis-
tributionally robust optimization (DRO), which focuses on
the utilization of historical data information, such as the
cumulative distribution [13], mean and variance [14], etc.
In [15], DRO is integrated with interval optimization to
solve the optimal power flow for integrated electricity and
natural gas systems. In [16], the N -k security criterion and

moment information of contingency are used to form a dis-
tributionally robust contingency-constrained framework for
unit commitment. In [17], the Kullback-Leibler divergence
is applied to establish a min-max-min distributionally robust
model. In [18], the Wasserstein metric is used to construct a
data-driven distributionally robust unit commitment model.

The mining and utilization of historical data is very com-
mon in SP, RO and DRO. In addition to the above measures,
nonparametric statistical methods are often introduced into
the field of uncertainty characterization, e.g. kernel den-
sity estimation (KDE). KDE is a well-known nonparametric
approach to estimate the potential distribution of stochastic
load or wind power. It has been widely used in proba-
bilistic load flow [19], optimal stochastic scheduling [20],
short-term wind power prediction [21], load curve classifica-
tion [22], etc. Beyond that, to address the optimal scheduling
operation of power systems with high penetration of renew-
able, KDE is applied to interval optimization in [23]. In [24],
KDE-based robust optimization is applied to the problem of
electric vehicle charging station location, it is used to reduce
the conservatism of the robust optimization. In [25], KDE
is combined with clustering to form a data-driven stochastic
robust optimization approach for sustainable utility systems.
Since KDE is determined based on historical data, the error
caused by selecting a particular probability distribution can
be avoided. Moreover, KDE has the ability to converge to the
true distribution, thereby reducing the conservatism of robust
optimization.

The methods mentioned above rely on historical data,
assuming it is completely accurate. However, during the
process of collecting and transmitting massive amounts of
data, there will inevitably be some errors (i.e., contaminated
samples), which can impact the accuracy of these methods.
Considering this situation, this paper proposes a robust kernel
density estimation (RKDE) [26] based distributionally robust
scheduling method for power systems under uncertainty.
RKDE could estimate the true distribution as much as pos-
sible while suppressing the outliers. On the one hand, RKDE
inherits the advantages of KDE, that is, it can converge to
the real probability density quickly as the data size increases.
On the other hand, different from KDE, RKDE assigns dif-
ferent weight values to the kernel functions corresponding to
the sample data. In this process, the outliers will be assigned
a smaller weight, so as to ensure the accuracy of the proba-
bility density estimation. In view of this, the combination of
RKDE and theWasserstein metric is helpful in constructing a
compact distributional ambiguity set and achieving a reason-
able description of renewable energy uncertainty. Crucially,
it is beneficial to reduce the conservatism of the model and
improve the immunity to outliers.

The main contributions of this research work are aggre-
gated as follows:

(1) A RKDE-based data-driven distributionally robust
scheduling method for power systems is developed in this
paper. RKDE is adopted to mine the probabilistic information
of renewable energy. In contrast with general KDE, it is able
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to weaken the influence of outliers in the historical data and
deduce the reliable probability density.

(2) RKDE is integrated with Wasserstein distance. The
distances of distributions are measured by the Wasserstein
metric, and the distribution estimated by RKDE is taken as
the center of the distributional ambiguity set, which is con-
structed based on the support space deduced by RKDE. The
proposed approach ensures the convergence of the ambiguity
set towards the real distribution with less conservatism than
empirical distribution-based DRO.

(3) The proposed method, namely RKDE-based DRO
(RDRO), is compared with empirical distribution-based DRO
(EDRO) and KDE-based DRO (KDRO) using test systems.
Simulation results reveal that the presented method is more
reliable and less conservative. Besides, it has a good ability
to suppress the outliers.

The rest of the paper is organized as follows. Section II
depicts the proposed approach, the construction of sup-
port space and the distributional ambiguity set. Section III
describes the construction and reformulation of the pro-
posed scheduling model. Section IV presents numerical
results on the Case-118 and Case-1888rte systems from
MATPOWER 6.0. Finally, the conclusions are drawn
in Section V.

II. DATA-DRIVEN SCHEDULING METHOD WITH OUTLIER
SUPPRESSION CAPABILITY
A. FRAMEWORK OF THE PROPOSED DATA-DRIVEN
APPROACH
In empirical distribution-based DRO (EDRO) [27], the sup-
port of uncertainties is obtained through inference. The
stochastic variables are first converted into standard forms
via sample mean and variance. Then the minimum inter-
val of standard forms satisfying a given confidence value
is calculated, and the support space is deduced by this.
Nevertheless, this approach will lead to a loose estimate of
the limits of uncertain variables, resulting in an excessively
conservative support space. Conversely, RKDE can converge
to the real probability density as the data size increases.
In this paper, it is used to extract the distribution from the
historical data of renewable energy. A more compact support
could be constructed by the confidence interval of the derived
distribution.

The flow chart of the proposed data-driven approach
with outlier suppression capability is shown in Fig. 1.
Cumulative density is extracted from the contaminated
sample to serve as the central distribution of the distribu-
tional ambiguity set. In this process, the outliers contribute
very little because they are assigned a small weight by
RKDE. Since the derived cumulative density can almost
be regarded as the real distribution, its confidence interval
can be used as the support space of uncertainties to reduce
conservatism. Using the Wasserstein distance as a mea-
sure between distributions, an ambiguity set of distributions
with low conservatism and immunity data anomalies can
be constructed.

FIGURE 1. Flow chart of the proposed data-driven approach.

B. SUPPORT SPACE OF VOLATILE RENEWABLE ENERGY
The probability density of renewable energy generation is

fRKDE (ξ ) =

N∑
i=1

wiKh(ξ, ξi), ξi ∈ Rd

=

N∑
i=1

wi
(
2πh2

)−d/2
exp

(
−

∥ξ − ξi∥
2

2h2

)
(1)

where fRKDE (·) is the probability density function deduced by
RKDE, ξ represents uncertainties, as the prediction errors of
renewable energy,Kh is a Gaussian kernel with a bandwidth h,
and wi is a weight factor of Gaussian kernels corresponding
to the samples.

For RKDE, the bandwidth and weights of Gaussian kernels
are very important in the derivation of probability den-
sity. This paper adopts the biased cross-validation approach
(BCVA) to calculate the optimal value of the bandwidth. The
details of BCVA are shown below.

BCVA(h) =

√
1

(4πn2h2)
+

h4

4n2

N∑
i(i̸=j)

N∑
j

[K (4)
√
2h
(ξi − ξj)]

(2)

where K (d)
b (·) represents a d-dimensional Gaussian kernel

with a bandwidth b as

K (4)
√
2 h

(ξ ) =

[
ξ4

(
√
2h)9

−
6ξ2

(
√
2 h)2

+
3

(
√
2h)5

]
1

√
2π

e−
ξ2

4h2

(3)
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The optimal value of bandwidth h̃ is determined by mini-
mizing BCVA(h).

h̃ = argmin
h

BCVA(h) (4)

The weights ŵi of Gaussian kernels are calculated by the
kernelized iteratively re-weighted least squares (KIRWLS)
approach. For details, please see the [26]. After that, we get
the probability density function

fRKDE (ξ ) =

N∑
i=1

ŵiKh(ξ, ξi) (5)

Then the cumulative density FRKDE (ξ ), alpha quantile
functionF−1

RKDE (α) and the support space of renewable energy
S can be expressed as

FRKDE (ξ ) =

∫
+∞

−∞

fRKDE (ξ )dξ (6)

F−1
RKDE (α) = min {ξ ∈ R|FRKDE (ξ ) ≥ α} (7)

S =

{
ξ |

ξ ≤ ξi ≤ ξ̄ , ξ = F−1
RKDE (

1−α
2 )

ξ̄ = F−1
RKDE (

1+α
2 ), ∀i ∈ [1,N ]

}
(8)

where ξ̄ , ξ represent the upper and lower limits of ξi, α

indicates the confidence level.

C. AMBIGUITY SET OF DISTRIBUTIONS
The ambiguity set consists of distributions, the distances
between which are measured by the Wasserstein metric. For
a sample set containing N prediction errors of renewable
energy {ξ1, ξ2, · · · , ξN }, the Wasserstein distance between
the RKDE-based distribution FRKDE and the true distribution
Ftrue can be defined as

W(FRKDE ,Ftrue) = inf
5

{∫
Sd(ξ, ξ̃ )5(dξ, d ξ̃ ),

ξ ∼ FRKDE , ξ̃ ∼ Ftrue
}

(9)

where 5 represents the joint distribution of ξ and ξ̃ .
A set of distributions over a distance dw and centered at the

RKDE-based distribution constitute the ambiguity set F.

F = {F ∈ ℜ(S)|W(FRKDE ,F) ≤ dw} (10)

Given a confidence level ℓ, the value of distance dw could
be calculated by the following steps [27].

F[W(FRKDE ,F) ≤ dw]

≥ 1 − exp(−Nd2w/ε2) (11)

ℓ = 1 − exp(−Nd2w/ε2) (12)

dw = ε(ln((1 − ℓ)−1)/N )0.5 (13)

ε ≈ 2 min
λ>0,λ∈R

(
1
2λ

(
1 + ln(N−1

N∑
i=1

eλ∥ξi−µ∥ 2
)

))0.5

(14)

where µ is the sample mean and λ is a positive real number.

III. SCHEDULING MODEL CONSTRUCTION
AND REFORMULATION
A min-max model for power scheduling under uncertainty is
established, which aims tominimize the operation costs under
the worst distribution.

min SUiuit+SDivit+max
F∈Fs

EF (CUir̄it+ CDirit+f (P, ζ ))

(15)

s.t. f (P, ζ ) = ai(Pit + αitζt )2 + bi(Pit + αitζt ) + ci) (16)

TUi(dit − di(t−1)) ≤

TUi−1∑
k=0

di(t+k), ∀i ∈ I , ∀t ∈ T (17)

TDi(dit − di(t−1))≤
TDi−1∑
k=0

(1 − di(t+k)), ∀i ∈ I , ∀t ∈ T

(18)

dit − di(t−1) − uit ≤ 0, ∀i ∈ I , ∀t ∈ T (19)

− dit + di(t−1) − vit ≤ 0, ∀i ∈ I , ∀t ∈ T (20)

dit , uit , vit ∈ {0, 1} , ∀i ∈ I , ∀t ∈ T (21)∑
i∈I

(Pit + αitζt ) +

∑
j∈J

(Pwjt + ζ̃jt ) =

∑
b∈B

PLbt , ∀t ∈ T

(22)

ditPi + rit ≤ Pit ≤ dit P̄i − r̄it , ∀i ∈ I , ∀t ∈ T (23)

(Pit + r̄it ) − (Pi(t−1) − ri(t−1)) ≤ (2 − di(t−1) − dit )

RU i + (1 + di(t−1) − dit )RUi, ∀i ∈ I , ∀t ∈ T (24)

(Pi(t−1) + r̄i(t−1)) − (Pit − rit ) ≤ (2 − di(t−1) − dit )

RDi + (1 − di(t−1) + dit )RDi, ∀i ∈ I , ∀t ∈ T (25)∑
i∈I

αit = 1, 0 ≤ αit ≤ sit , ∀i ∈ I , ∀t ∈ T (26)

− rit ≤ αitζt ≤ r̄it , r̄it , rit ≥ 0, ∀i ∈ I , ∀t ∈ T (27)

ζt =

∑
j∈J

ζ̃jt , ∀t ∈ T (28)

− Cmn ≤

∑
b∈B

K b
mn

∑
i∈Ib

(Pit + αitζt )+
∑
j∈Jb

(Pwjt+

ζ̃jt ) − PLbt
)

≤ Cmn, ∀i ∈ I , ∀t ∈ T , (i, j) ∈ L (29)

Constraint (15) aims to minimize the start-up and shut-
down costs, the expected reserve and generation costs of
units. Constraints (16) represent the generation cost of ther-
mal units. Formulas (17) and (18) indicate the minimum
up-time and down-time of thermal units. Equations (19)
and (20) indicate the mathematical relationship of three
binary variables. Constraints (22) represent the balance
between load and power supply. Constraints (23) enforce
the output limits of thermal units. Constraints (24) describe
the ramp-up limits for unit start-up and continuous oper-
ation. Constraints (25) describe the ramp-down limits for
unit shut-down and continuous operation. Constraints (26)
indicate that the sum of participation factors of all online
thermal units is equal to one. Constraints (27) indicate that
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the renewable energy power fluctuation borne by thermal
units cannot exceed the reserve capacity. Constraint (28) is
the total prediction error of all renewable sources at time t .
Constraints (29) are the line limits of transmission power.
To facilitate the calculation of the proposed model, the

expected reserve and generation costs under the worst dis-
tribution are reformulated into the following form [13].

f (ζt ) = a′ζ 2
t + b′ζt + c′

= CUir̄it + CDirit + f (P, ζ )

a′
=

∑
t∈T

∑
i∈I

aiα2
it

b′
=

∑
t∈T

∑
i∈I

2aiPitαit + biαit

c′ =

∑
t∈T

∑
i∈I

(aiP2it + biPit + ci) + CUir̄it + CDirit

(30)

Then the equivalent expression in ‘‘min’’ form is obtained
as

max
F∈Fs

EF (CUir̄it + CDirit + f (P, ζ ))

=


min

λ≥0,ϑ∈R
λ · dw +

1
N

∑
k∈N

ϑk

s.t.f (ζ ) + λ(ζ − ζk ) ≤ ϑk , ∀k ≤ N
f (ζ̄ ) − λ(ζ̄ − ζk ) ≤ ϑk , ∀k ≤ N
f (ζk ) ≤ ϑk , ∀k ≤ N

(31)

Since the computational complexity of (31) is positively
correlated with the size of samples, the following approxi-
mate equivalence is adopted to improve the computational
efficiency. For more details of the model reformulation please
see Appendix A, which provides a comprehensive derivation
process. 

inf
λ≥0,ϑ∈R

λ · dw +
1
N

∑
k∈N

f (ζk )

s.t.f ′(ζ̄ ) ≤ λ

−f ′(ζ ) ≤ λ

λ = max(f ′(ζ̄ ), −f ′(ζ ))

(32)

IV. COMPUTATIONAL RESULTS
A. PARAMETER SETTING
Numerical calculations were carried out on the Case-118 and
Case-1888rte systems from MATPOWER 6.0, they repre-
sent the IEEE 118-bus transmission system and the French
very high voltage transmission grid with 1888 buses, respec-
tively [28]. Four wind farms rated at 400 MW are connected
to buses 12, 49, 59 and 89 for Case-118. Six wind farms
rated at 400 MW are connected to buses 355, 707, 921,
1628, 1651 and 1785 for Case-1888rte. The prediction errors,
predicted and actual values of wind power are derived from
TENNET [29], since the values are too large, they are reduced
by 100 times for calculation. Load data and generator param-
eters can be obtained from MATPOWER 6.0 toolbox. Half,
eighty and forty percent of the linear term coefficients of the

TABLE 1. Technical details of three methods.

TABLE 2. Calculation time of RKDE processing time series.

FIGURE 2. The radii of ambiguity set for both uncontaminated and
contaminated samples in Case 118.

quadratic cost curves are taken as the reserve, start-up and
shut-down costs of thermal units, respectively. Fifty outliers
are generated from a continuous uniform distribution over
the interval [25], [29]. Since the data of wind farms are
concentrated in [−39, 25], the values in [25] and [29] are
suitable to be used as outliers. Given that the normal sample
size is above 1920 and there are usually not too many outliers,
we set the number of outliers to fifty. The proposedmodel was
solved by the Cplex solver through GAMS.

To verify the superiority of the proposed data-driven
method in terms of statistical regularity and outlier suppres-
sion, we present tests on EDRO, KDRO and RDRO. The
technical details of the above three methods and the calcu-
lation time of RKDE processing time series are shown in
Table 1 and Table 2.

B. VERIFICATION OF STATISTICAL REGULARITY
As shown in Fig. 2 and Fig. 3, the radii of ambiguity
set obtained by three methods tend to decrease with the
expansion of sample size, which is true for both uncontami-
nated and contaminated samples.

This is because the empirical, KDE-based and RKDE-
based distributions all tend to the real distribution with
more available data at hand. So the radii gradually shrink.
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FIGURE 3. The radii of ambiguity set for both uncontaminated and
contaminated samples in Case 1888rte.

FIGURE 4. Upper bounds (UB) and lower bounds (LB) of the support
space with increasing sample size for Case 118.

FIGURE 5. Upper bounds (UB) and lower bounds (LB) of the support
space with increasing sample size for Case 1888rte.

Furthermore, due to the interference of abnormal data, the
radii under contaminated samples will be larger, which will
improve the conservatism of the model.

Fig. 4 and Fig. 5 depict the impacts of sample size on
the bounds of the support space. Since the characteristics

FIGURE 6. Operating costs of KDRO and RDRO with different sizes of the
uncontaminated sample.

of the support space of contaminated samples are similar to
those of the uncontaminated samples, only the results of the
uncontaminated samples are analyzed here. As depicted in
Figs. 4 and 5, the upper bounds (UB) of support by the three
methods have a decreasing trend with increasing sample size.
The lower bounds (LB) show an opposite trend. It indicates
that the support spaces of the three methods shrink with the
increasing sample size, which conforms to the statistical laws.
As the distributions by KDE and RKDE are closer to the
real distribution, their support space is smaller than that of
EDRO. Since RKDE allocates different samples with diverse
weights, it is closer to the real distribution, so its support space
is smaller than that of KDE.

C. VERIFICATION OF OUTLIER SUPPRESSION ABILITY
From the results in Section IV-B, we know that the results
of RDRO and KDRO are superior to EDRO. In order to
further verify the outlier suppression ability of the proposed
approach, the results of RDRO and KDRO are discussed
below.

The objective values obtained by KDRO and RDRO are
shown in Fig. 6 and Fig. 7. As the sample size increases,
the distributions derived by KDE and RKDE are close to the
real distribution and the conservatism of the model declines,
leading to a reduction in operating costs of both KDRO and
RDRO. In addition, for the contaminated samples, due to the
interference of erroneous data, the cost curve rises. How-
ever, there is a significant increase in the objective value for
KDRO, while it is not obvious in RDRO due to its immunity
to outliers.

In addition, it should be noted that for both KDE and
RKDE, their parameters fluctuate with increasing data size,
resulting in some fluctuations in the objective value, which is
determined by the data-driven feature of thesemethods. How-
ever, with increasing data size, the objective value stabilizes.

Fig. 8 and Fig. 9 describe the support size of uncertainties
for both uncontaminated and contaminated samples. Evi-
dently, in either case, the support space of RDRO is smaller
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FIGURE 7. Operating costs of KDRO and RDRO with different sizes of the
contaminated sample.

FIGURE 8. Support size of uncertainties for both uncontaminated and
contaminated samples for Case 118.

FIGURE 9. Support size of uncertainties for both uncontaminated and
contaminated samples for Case 1888rte.

than that of KDRO, thus the conservatism is effectively
reduced. More importantly, since it is affected by outliers,
the support space by KDE will increase after the sample
is contaminated, leading to excessive conservatism. But for
RKDE, there is almost no change. The reason for this is

FIGURE 10. Radius increment of the contaminated sample relative to the
uncontaminated sample by KDRO and RDRO.

TABLE 3. Calculation time of EDRO, KDRO and RDRO on case 118 for
uncontaminated samples (US) and contaminated samples (CS).

TABLE 4. Calculation time of EDRO, KDRO and RDRO on case 1888rte for
uncontaminated samples (US) and contaminated samples (CS).

that when deducing the probability distribution using RKDE,
the outliers are assigned a very small weight, which has a
minimal impact on the estimation of probability density.

The results shown in Fig. 10 are the radius increment of
the ambiguity set of the contaminated sample relative to the
uncontaminated sample by KDRO and RDRO. Due to the
influence of outliers, the radii of the contaminated samples
have an increment, but RDRO is less affected, so its increment
is almost negligible. Although both KDE and RKDEmethods
converge to the real distribution with increasing data size,
RKDE weakens the influence of outliers in the process of
probability density estimation, so it has a stronger ability to
suppress contaminated data.

Table 3 and Table 4 reveal the calculation time by EDRO,
KDRO and RDRO on Case 118 and Case 1888rte. As the
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sample size becomes larger, the amount of data processing
increases, resulting in longer calculation times. It is worth
noting that there is no significant difference in the calculation
time among the three methods, but the numerical results of
RDRO are relatively better, for both the uncontaminated and
contaminated samples.

V. CONCLUSION
In the collection and transmission of renewable energy data,
outliers are inevitable. Since empirical distributions are used
in EDRO, the influence of outliers cannot be reduced. As for
the KDE-based KDRO, since KDE gives the same weight
to all data in the density estimation, it cannot weaken the
influence of outliers either. The proposed data-driven robust
approach integrates RKDE into distributionally robust opti-
mization theory to estimate the central distribution. In this
process, contaminated sample data are assigned very small
weights, thus reducing their contribution to density esti-
mation. Moreover, RKDE can converge to the true density
quickly as more data are available, so that it can achieve
robustness with low conservatism. By means of the calcu-
lations on case-118 and case-1888rte systems, the following
conclusions can be drawn from the test results. Firstly, the
proposedmethod is less conservative than EDRO and KDRO,
so the radius of ambiguity set, support size and total schedul-
ing costs are smaller. Secondly, the proposed method can
effectively overcome the influence of outliers, make density
estimation more accurate, and avoid the decision deviation
caused by the contaminated sample.

APPENDIX
MODEL REFORMULATION PROCESS
The model reformation requires the following theorem:

max
F∈Fs

EF {F(ζ )}

= min
λ≥0

{
λ · ε +

1
N

N∑
k=1

max
ζ∈S

F(ζ ) − λ

∥∥∥ζ − ζ̂k

∥∥∥
1

}
(33)

The objective function F(•) can be transformed into a func-
tion with regard to wind power prediction errors.

EF (CUir̄it + CDir it + f (P, ζ ))

= EF (CUir̄it + CDir it + ai(Pit + αitζt )2

+ bi(Pit + αitζt ) + ci))

= EF (f (ζt ))

=



f (ζt ) = a′ζ 2
t + b′ζt + c′

a′
=

∑
t∈T

∑
i∈I

aiα2
it

b′
=

∑
t∈T

∑
i∈I

2aiPitαit + biαit

c′ =

∑
t∈T

∑
i∈I

(aiP2it + biPit + ci) + CUir̄it + CDirit

(34)

Combining the theorem in (33), (34) can be transformed into
the following form:

max
F∈Fs

EF (f (ζt ))

=


min

λ≥0,ϑ∈R
λ · dw + 1/N

∑
k∈N

ϑk

s.t. max
λ≥0,ϑ∈R

(f (ζt ) − λ · |ζ − ζk |) ≤ ϑk , ∀k ≤ N

=



min
λ≥0,ϑ∈R

λ · dw + 1/N
∑
k∈N

ϑk

s.t.f (ζ ) + λ(ζ − ζk ) ≤ ϑk , ∀k ≤ N
f (ζ̄ ) − λ(ζ̄ − ζk ) ≤ ϑk , ∀k ≤ N
f (ζk ) ≤ ϑk , ∀k ≤ N

(35)

In (35), the number of constraints is three times the number
of samples, namely 3N . In order to improve the calculation
efficiency, we take f (ζk ) = ϑk , then the following expression
can be obtained:{

f (ζ ) + λ(ζ − ζk ) ≤ f (ζk ), ∀ζk ∈ [ζ, ζ̄ ]
f (ζ̄ ) − λ(ζ̄ − ζk ) ≤ f (ζk ), ∀ζk ∈ [ζ, ζ̄ ]

(36)

where 
λ ≥ −

f (ζk ) − f (ζ )
ζk − ζ

= −f ′(ζ )

λ ≥
f (ζ̄ ) − f (ζk )

ζ̄ − ζk
= f ′(ζ̄ )

(37)

Eventually, the approximate equivalent expression can be
formed, as shown in (38), with a significantly reduced com-
putational complexity.

inf
λ≥0,ϑ∈R

λ · dw +
1
N

∑
k∈N

f (ζk )

s.t.f ′(ζ̄ ) ≤ λ

−f ′(ζ ) ≤ λ

λ = max(f ′(ζ̄ ), −f ′(ζ ))

(38)
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