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ABSTRACT Multi-label learning is a subfield of machine learning that addresses the issue of each instance
belonging to numerous class labels at the same time. However, in some real applications, we can only
receive a partial set of labels for each instance due to the difficulty and high cost of labeling data. The
vast majority of existing multi-label classification methods on missing labels rely on first- or second-order
label correlation learning to fill in the original label space while building multi-label learning models with
label-specific features; nevertheless, the single label correlation learning mechanism used in these methods
is insufficient to maintain the consistency of the feature-label space. To address this issue, we propose the
CLSML approach, which incorporates higher-order label correlation learning constraints in the classifier
trainingmodel to completemissing labels while training the classifier. In addition, to improve the consistency
of the feature-label space, we develop a two-stage second-order label correlation learning technique based on
cosine similarity to further confine the label output. Furthermore, we employ the l1-norm regularizer to learn
label-specific feature representations, followed by the l2,1-norm regularizer to constrain the row sparsity of
the classification matrix and select label-common features. Experimental results comparing ten cutting-edge
multi-label learning algorithms with missing labels on fourteen multi-label benchmark datasets demonstrate
the effectiveness of our suggested approach.

INDEX TERMS Multi-label learning, label correlations, missing labels, label-specific feature.

I. INTRODUCTION
In recent years, multi-label learning (MLL) play an increas-
ingly important role in our real-world applications. It tackles
with the issue that an instance in real-world might have multi-
ple semetic meanings simultaneously, which the single-label
learning cannot solve. A multi-label learning algorithm’s
main goal is typically predicting a set of correlated labels
for an unknown instance. In the past few years, multi-label
learning have been applied in a plenty of domains, such
as information retrieval [1], text categorization [2], image
recognition [3], music emotion classification [4], biological
informatics [5] and so on.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

Among all method of multi-label learning, it could
be usually categorized into Problem Transformation (PT)
approaches and Algorithm Adaption (AA) approaches. Prob-
lem Transformation (PT), as an intuitive and theoretically
simple approach, transforms amulti-label classification prob-
lem into either one or more single-label subproblems, which
could be solved by a single-label algorithm directly. The first-
order approach Binary Relevance (BR) [3], which fail to
consider the correlation information among different labels,
is the representative approach of PT. Internally adapted to
multi-label scenarios, algorithm adaptation (AA) approaches
train classifiers by learning the intrinsic correlations between
instance features and features, features and class labels,
and class labels and class labels. Because label corre-
lations characterize the dependency relationships between
different classes of labels, effective label correlations use

81170

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4272-3437
https://orcid.org/0000-0003-1280-5255
https://orcid.org/0000-0001-7104-1158
https://orcid.org/0000-0001-9027-298X


R. Li et al.: Learning Common and Label-Specific Features for Multi-Label Classification

can considerably improve label classification performance.
As a result, current multi-label classification approvals differ
in how they benefit from label correlations, such as the
second order strategy, whichmeasures pairwise dependencies
between labels, and the high order strategy, which evaluates
correlations between classes and within classes all labels.

Although label correlations estimations have been demon-
strated to improve the effectiveness of multi-label clas-
sification, there are certain potential issues that must be
handled in practice. The most significant is that, due to high
labeling costs, it is difficult in many real-world applications
to annotate enough labeled instances and collect complete
labeling information for each instance. This may result
in inaccurate and incorrect label correlations calculations.
As such, building an effective label filling mechanism to
datasets with missing labels is required. To accomplish this
purpose, it is logical to devise a special label correlation
calculation method that uses existing labels to fill in unknown
labels via the correlation relationship between labels. Several
such strategies, such as [6], [7], [8], [9], and [10], have
been proposed. These approaches are classified into two
categories. One approach is to fulfill the labels first, as shown
in [6] and [10]. Another approach is to incorporate label
recovery into training models, as illustrated in [7], [8],
and [9].
It is important to note that in multi-label learning,

an instance’s label is determined by its features, and each
class label could potentially be identified by the most relevant
and discriminative features associated with its own. For
example, the features of smell and taste might be used to
detect whether it is vinegar, which could be regarded label-
specific features of the vinegar. As consequently, feature
selection and extraction have become a hot topic of research
in multi-label learning and are being embedded in the training
of multi-label classifiers [7], [8], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21].

Following on the LSML [8], we include learning of the
label correlation matrix in model training and use it to
fill in missing labels while learning label-specific features
using the l1-norm regularizer. However, in [8], the learned
label correlations are employed to constrain the label-specific
features under the assumption that if two labels are strongly
correlated, they will share similar label-specific features.
Unfortunately, this assumption might not necessarily be true
in some cases, as seen in [11]. For this reason, at the data
preprocessing stage, we develop a particular label correlation
estimation employing the missing label set in advance,
similar to our proposed SMLMFC approach [10]. After
recovering unknown labels, the model’s label outputs are
constrained by the cosine similarity of the class labels, under
the assumption that two strongly related labels will yield
similar outputs [12].

Furthermore, many existing MLL algorithms only use
label-specific features while failing to consider common fea-
tures, which are important in multi-label learning. Common
features, which are a subset of features shared by all labels,

indicate common discrimination for all labels, whereas label-
specific features are discriminative for different labels. The
two kinds of features can be beneficial in improving classi-
fication performance. In this research, we therefore propose
CLSML, a novel strategy to learning common and label-
specific features simultaneously for multi-label classification
with missing labels. The following is a summary of this
paper’s contributions.
• Integrating label correlation matrix learning into model
training with the goal of recovering unknown labels
while developing label classifiers. To use label correla-
tion to constrain label output, a particular calculation of
label similarity estimation is designed during the data
preprocessing stage by employing missing label sets to
constrain label output.

• In our approach, the l1-norm and l2,1-norm regularizers
are concurrently incorporated to choose label-specific
and common features, respectively.

• Experiment results on fourteen multi-label benchmark
datasets show that our proposed method outperforms
state-of-the-art multi-label learning algorithms in multi-
label classification with missing labels.

II. RELATED WORK
Feature learning provides a new study direction for multi-
label classification by not only reducing feature size but
also removing irrelevant and redundant feature interference,
hence boosting classifier performance. Existing approaches
include label-specific feature learning, which learns a low-
dimensional feature representation for each category label,
and common feature learning, which learns features that are
comparable to all labels. Furthermore, the incompleteness of
training labels has a significant impact on the performance
of multi-label learning systems. As consequently, many
approaches for mitigating classifier performance loss due to
missing labels have been proposed. We summarize label-
specific and common feature learning, as well as multi-label
learning algorithms for missing labels, in the sections that
follow.

A. COMMON AND LABEL-SPECIFIC FEATURES LEARNING
The first multi-label learning approach for label-specific
features, multi-label learning with label-specific features
[13] (LIFT), handles the multi-label learning problem in
two straightforward phases. It conducts a clustering analysis
on both positive and negative instances, and then uses
the clustering findings to generate the specific features.
Second, a classifier family is trained using the produced
label-specific features rather than the original features
from the training dataset. However, this technique derives
label-specific features via label-wise clustering multi-label
instances, which does not take label correlation information
into account to enhance generalization performance. Follow-
ing that, numerous multi-label learning algorithms for label-
specific features have been proposed in an effort to refine
the LIFT algorithm. For example, RFS-LIFT [14], which
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incorporates approximation quality to assess the significance
of a certain dimension and employs a forward greedy search
method, aims to choose a subset of the label-specific features
generated by LIFT using the fuzzy rough set approach. This
algorithm, however, fails to model label correlations. ML-
DFL [15] depends on a new spectral clustering approach
called Spectral Instance Alignment (SIA), which can build
the similarity matrix and then apply spectral clustering anal-
ysis to identify the closely located latent structures between
positive and negative instances for each label. LIFTAce [16]
adopts clustering ensemble techniques to more robustly and
effectively detect label-specific features. It not only relies on
a single clustering process run over the training data for each
class label, but also consolidates an ensemble of clustering
results to exploit label correlations for label-specific feature
learning. JFSC [17] integrates sparse feature selection and
multi-label classification into a single framework capable of
selecting the most discriminative features for each label and
learning an effective classification model. It also includes
a Fisher discriminant-based regularization term to minimize
the inner-class distance and maximize the intra-class distance
for each label.

In comparison to the preceding techniques, Huang et al.
presented the LLSF [18], which is based on the idea that each
label is only connected with a subset of the original feature
set. And it uses the linear regression model to pick label-
specific features. This technique has gained popularity since
it can readily discover which features are label-specific by
modeling the coefficent matrix. Many improved multi-label
learning algorithms for label-specific features have evolved
based on LLSF. Huang et al. [19] developed the LLSFDL,
which incorporates the label matrix predicted by LLSF into
the training set and subsequently learns both label-specific
feature and class-dependent labels using sparse stacking. The
LSML [8] approach combines missing label set recovery and
label-specific feature learning into a single framework. The
incomplete label data is then deployed to learn high-order
label correlations, which are then used to supplement the
incomplete label matrix and guide the construction of multi-
label classification models by learning label-specific data
representation for each class label iteratively.

The approaches described above solely focus on label-
specific feature learning while disregarding common fea-
tures, which are equally crucial for enhancing classifier
performance. SCMFS [20] exploits Coupled Matrix Fac-
torization to extract the shared common features by taking
into account the comprehensive data information between
the feature matrix and the label matrix. To minimize the
negative effects of incomplete label information in detecting
label correlations, the MIFS [21] decomposes the multi-label
information into a low-dimensional space, which is then
utilized for leading the process of selecting common features.
FSLCLC [9], introduced by Jiang et al., exploits low-rank
matrix factorization on the sparse sample-label association
matrix to compress labels and recover missing labels in the
compressed label space. In a joint objective function with

sparsity regularization, it recovers the missing labels while
also selecting common features. In CLML [11], common
and label-specific features are investigated simultaneously
in a framework, and the l1-norm and l2,1-norm regularizers
are used in selecting the corresponding features, resulting
in improved classification performance. In fact, numerous
research have demonstrated that l1-norm and l2,1-norm are
advantageous for extracting and identifying label-specific
features and shared common features, respectively, thereby
enhancing the performance of multi-label classification.

B. MULTI-LABEL LEARNING WITH MISSING LABELS
Many applications involving multi-label classification, espe-
cially when the label space is too big, make it difficult to mark
all of the class labels, and only a subset of labels may be
observed. Label incompleteness or missingness usually has
a negative impact on the performance of multi-label learning
algorithms. To be more explicit, it may affect the label
correlations learned from the label set of the training data,
which will further influence class imbalance and decision
functions. As a result, how to effectively carry out multi-label
learning with partial labels has become an urgent problem to
be solved. Many techniques to addressing this problem have
been offered in recent years, which can be classified into two
categories:
• Pre-processing techniques attempt to recover the incom-
plete label matrix before to learning a multi-label
classifier, and then make use of the newly recovered
label sets to train a multi-label classifier. Maxide [22]
speedups matrix completion with two side information
matrices, and assumes that the target matrix and the side
information matrices share the same latent information.
MLMG [23] recovers the incomplete label matrix based
on a mixed graph that integrates instance-level label
similarity and class co-occurrence as undirected edges
and semantic hierarchy between class labels as directed
edges. FastTag [24] relies on the assumption that
missing labels that have been observed can potentially
be linearly translated into complete labels that have
not been observed, and that this linear mapping can
then be learned using the idea of training a denoising
auto-encoder. In SMLMFC [10], it suggested a semi-
supervised multi-label learning technique (SMLMFC).
Specifically, SMLMFC develops a novel two-stage label
correlation approach based on the missing label set to
restory missing labels. SMILE [25] first employs a pre-
defined label correlation matrix estimated from partially
labeled cases to fill in the missing labels of training
instances. The known labels and replenished labels,
as well as unlabeled instances, are then used to train a
graph-based semi-supervised linear classifier.

• Synchronized techniques, which combine label matrix
recovery and multi-label classifier construction, seek
to recover the missing label while simultaneously
training a multi-label classifier. However, the missing
label entries are typically unknown in advance. Weak
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label learning [26] (WELL), which first derives a
similarity matrix from the feature space, and on the
assumption that similar instances frequently share the
same characteristic of linked labels, the prediction
of missing labels is embedded while the classifier is
learning. Large-scale multi-label learning with missing
labels(LEML) [27] directly addresses the missing label
problem by considering the multi-label problem in a
generic empirical risk minimization (ERM) paradigm.
GLOCAL [28] solves multi-label learning with missing
labels by modeling global and local label correlations,
learning a latent label representation, and optimizing
label manifolds. MLLRC [29] was proposed by Xu et al.
It adopts a low rank structure to capture complex
label correlations and integrates the framework that
learns the supplemental label matrix by exploiting
label correlations while simultaneously training the
multi-label model. MLR-GL [30] provide a multi-label
learning framework based on the idea of label ranking.
To deal with missing labels, it extends multi-label
ranking by employing the group lasso technique to
combine errors in ranking the assigned classes against
the unassigned classes. Furthermore, by penalizing
ranking errors selectively, it may be able to determine
which unassigned class is truly the missing correct class
assignment. The label enrichment matrix is used in
HNOML [31] to explore the underlying correlations
between distinct classes in order to recover the missing
label. The ML-LEML [32] algorithm extracts the low-
dimensional shared subspace to exploit latent correla-
tions between features and labels, and then estimates
missing labels using low rank and sparse features. LSML
[8] learns high-order label correlations from incomplete
training data and then applies them to supplement the
incomplete label matrix, which is then used to drive
the formulation of multi-label classification models by
iteratively learning label-specific data representation for
each class label. MLLCRS-ML [33] not only considers
label-specific features but also utilize the structural
property of data and pairwise label correlation (both
positive and negative label correlations) to replenish
the missing labels. Utilizing the class imbalance sensi-
tive weights and auxiliary label correlations, CIMML
[34] introduce a weighted squared loss function with
discriminatory label weights which guides the missing
label completion and learns the multi-label classifier
efficiently. the proposed model uses missing label
sensitive discriminator label-specific weights for multi-
label learning with missing labels. It also utilizes label
correlations and instance similarity for missing label
recovery and building classifier for new data. LRMML
[35] proposes a unified framework to capture the
label correlations, which utilize both auxiliary label
matrix and the low rank constraints on estimated labels.
Besides, it also enforces maximal separation among
different label subspaces for better label differentiation.

TABLE 1. Definitions of symbols.

It recovers missing labels and trains the classifier by
building an auxiliary label matrix and imposing low and
high rank constraints on label subspace. To deal with
the issues emerging from incomplete labels and high-
dimensional input space, SGMML [36] propose a multi-
label learning approach based on identifying the label-
specific features and constraining them with a sparse
global structure. The sparse structural constraint helps
maintain the typical characteristics of the multi-label
learning data. Besides, it also constructs supplementary
label correlations to assist missing label recovery as part
of the optimization problem, and learns label-specific
features and constrain them with sparse global structure
for multi-label learning with missing labels.

III. PROPOSED METHOD
In this section, we will first discuss how to model multi-
label classificationmethods utilizing both common and label-
specific characteristics, and then we will build two forms
of label correlation estimation. To augment the partial label
matrix, one is incorporated in the model and obtained during
model training. The second form of correlation is proposed
for constraining label output on the assumption that two class
labels are strongly correlated and that the associated output
is also similar. This correlation’s design is comparable to our
proposed SMLMFC [10]approach. Finally, we will go over
the suggested CLSML model and accelerated approximate
optimization approach in depth.

A. PRELIMINARIES
Let D = {(xi, yi)}ni=1 be the training data set with n instances,
d dimensions and l class labels, where xi ∈ Rd depicts the
i-th instance and yi ∈ {0, 1}l stands for the corresponding
label vector. yik = 1 (k = 1, 2, . . . , l) means instance xi
is with k-th class label, while yik = 0 (k = 1, 2, . . . , l)
indicates the unknown status of the corresponding class k .
Table 1 summarizes the symbol definitions used in this article
for clarity.

B. MULTI-LABEL LEARNING WITH COMMON AND
LABEL-SPECIFIC FEATURES
Because the linear regression model offers the characteristics
of fast training and prediction speed, interpretable results,
and straightforward explanation, we chose it as the classifier.
Based on the assumption that each class label is only
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determined by a subset of specific features from the original
feature set of a given data set, we introduce l1-norm
regularizer to extract label-specific features, because l1-norm
could shrink some elements to zero and these label-specific
features are determined by the non-zero entries of each wi ∈
Rd , so it could be utilized to select to label-specific features.
Furthermore, the addition of the l2,1-norm forces the sparsity
of the row vector in W , which is favourable to choosing
common features shared by all labels. The proposed model
can be expressed as follows:

min
W

1
2
∥XW−Y∥2F + λ1∥W∥1 + λ2∥W∥2,1, (1)

where W indicates the coefficient matrix obtained in the
regression model, and wi = [w1i,w2i, . . . ,wdi]T ∈

Rd indicates the coefficient vector of i-th label, and the
discriminative weight of the i-th feature to the j-th label
denote aswij. Besides, the sparsity of column and row vectors
in the coefficient matrix W is controlled by λ1 and λ2,
respectively.

C. MULTI-LABEL LEARNING WITH MISSING LABELS
At present, the great majority of multi-label learning methods
are predicated on the assumption that all class labels of each
training instance are known. In the real world, however, it is
difficult to collect complete label information for each train
instance due to the large personnel and material resources
required to annotate instance labels. As a consequence,
learning effective label correlations from incomplete label
sets and augmenting incomplete label matrix has proven an
effective technique to address this problem. This motivates
us to include a learning mechanism for label correlations
in Eq. (1) to replenish these missing labels. First, let C l×l

represents the label correlation matrix, and Cij represents the
degree of correlation between labels i and j. According to
LSML [8], which is based on the presumption that missing
labels can be reconstructed by exploiting correlations with
other labels, the objective function can be represented as

min
W ,C

1
2
∥XW − YC∥2F +

α

2
∥YC−Y∥2F + β∥C∥1

+ λ1∥W∥1 + λ2∥W∥2,1. (2)

Note that one class label may be correlated with only a subset
of class labels, thus, we add the l1-norm regularizer over C to
learn sparse label dependencies.

D. INCORPORATING LABEL CORRELATION
Considering that improving classification performance can
be achieved by fully utilizing the correlations between labels
to steer the learning process. The objective function need to
incorporate label correlation constraints as a result of this.
In order to improve the consistency of the feature-label space,
a two-stage second-order label correlation learning technique
based on cosine similarity is developed to further confine the
label output. Due to the fact that in some cases the assumption
‘‘if labels i and j are strongly correlated, the corresponding

coefficient vectors wi and wj will be similar’’ is not true [11].
In light of this, we construct the correlation constraint under
the premise that ‘‘if two labels are strongly correlated, the
corresponding outputs of these two labels are highly similar.
’’ Drawing on the idea of SMLMFC method [10], we first
introduce the label correlation estimator by the between-class
label distribution prior, then use it to refill the label matrix and
calculate the cosine similarity of the labels. The following
two formulas are put to work to reconstruct the label to
calculate cosine similarity.

L(c1, c2) =
| Yc1 ∩ Yc2 | +s
| Yc1 | +2s

, c1, c2 = 1, 2 . . . , l, (3)

where L ∈ Rl×l , and Yc1 is the set of labeled instances
annotated with c1, | Yc1 | is the number of labeled instances
annotated with c1. | Yc1 ∩ Yc2 | represents the number of
labeled instances annotated with both c1 and c2, and s > 0 is
a smoothness parameter which can avoid label imbalance
to some extent. The meaning of such a construction L can
be found in [10]. It is observed that L is asymmetric, so it
cannot be used directly as the label correlations, but rather to
augment the incomplete label matrix with the help of it.

ỹik =

{
yiL(·, k), if ik = 0,
1, otherwise,

(4)

where i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , l}. To ensure ỹik ∈
[0, 1], ỹik is normalized as ỹik/maxk∈{1,2,...,c}ỹik for yik = 0.
Intuitively, If ỹik is assigned a large value, then label k has
strong correlations with these labels that have already been
annotated to the i-th instance, meaning that k is most likely
a missing label. Let L̃ = [ỹ1, ỹ2, . . . , ỹn]T , then we compute
the cosine similarity of paired labels by L̃ and construct the
following constrained regular term.

l∑
i,j

Sij∥(XW )i − (XW )j∥ = tr((XW )L1(XW )T ), (5)

where Sij ∈ S l×l , obtained by calculating the cosine similarity
between the i-th and j-th columns of L, reveal the degree of
label correlation between labels i and j, (XW )i denotes the
i-th column of XW , and L1 = S∗ − S indicates the l × l
label Laplacian matrix of S. S∗ii =

∑l
j Sij. After adding this

regularizer, the final optimization formulation can be written
as Eq. (6).

min
W ,C

1
2
∥XW−YC∥2F +

α

2
∥YC−Y∥2F + β∥C∥1

+ λ1∥W∥1 + λ2∥W∥2,1
+ λ3tr((XW )L1(XW )T ). (6)

Eq. (6), similar to the LSML method, learns higher-
order label correlations from incomplete training data and
uses them to augment incomplete label matrices, guiding
the construction of a multi-label classification model by
iteratively learning the label-specific data representation for
each class label using the l1-norm. However, it also considers
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the importance of learning label-common features using the
l2,1-norm, which is not available in the LSML approach.
In addition, Eq. (6) includes a second-order label correlation
constraint term to ensure that the features selected for highly
correlated labels are also consistent, and the computation of
these label correlations is based on the SMLMFC approach,
which is Eqs. (3) and (4).

E. OPTIMIZATION
Because of the presence of l2,1-norm and l1-norm regular-
ization terms, the optimization problem of our suggested
objective function Eq. (6) is convex but non-smooth. To solve
this problem, we can first make the ∥W∥2,1 released by
tr(W TAW ) through [37], where A represents the d × d
diagonal matrix, and Aii = 1

2∥wi∥2
indicates the i-th diagonal

value in A. Then, we employ the accelerated proximal
gradient descent (APG) method to solve the non-smooth
optimization problem that includes the l1-norm regularization
term. For simplicity, let θ = (W ,C), and then the
optimization model Eq. (6) can be re-expressed as

min
θ
F(θ ) = f (θ )+ g(θ ), (7)

where

f (θ ) =
1
2
∥XW−YC∥2F +

α

2
∥YC−Y∥2F + λ2tr(W TAW )

+ λ3tr((XW )L1(XW )T ), (8)

and

g(θ) = λ1∥W∥1 + β∥C∥1. (9)

Here g(θ ) is convex but not smooth, while f (θ ) is convex
and smooth, and f (θ ) has a Lipschitz continuous gradient,
i.e., ∥▽f (θ1) − ▽f (θ2)∥2F ≤ Lf ∥θ1 − θ2∥, in which
Lf is the lipschitz constant, θ1 = (W1,C1) and θ2 =

(W2,C2). Proximal gradient algorithms minimize a sequence
of separable quadratic approximations to F(θ ), denoted as

Q(θ , θ (t)) = f (θ (t))+
〈
▽f (θ (t)), θ − θ (t)

〉
+
Lf
2
∥θ − θ (t)∥2F + g(θ ), (10)

where θ (t) = (W (t),C (t)). Let G(t)
= θ (t) − 1

Lf
▽f (θ (t)), then

the optimization of θ can be optimized by

θ t+1 = argmin
θ

Q(θ , θ (t))

= argmin
θ

g(θ )+
Lf
2
∥θ − G(t)

∥
2
F . (11)

According to the work in [40], the convergence rate can be
improved to O(t−2) on setting θ (t) = θ t +

bt−1−1
bt

(θ t − θ t−1)
for a sequence bt satisfying b2t+1 − bt+1 ≤ b2t , where θ t is
the result of θ at the t-th iteration. There are two parameters
in each iteration, and we update one variable while fixing the
other.

1) UPDATING W
We can begin by calculating ▽W f (θ ) from Eq. (8), as shown
below.

▽W f (θ ) = XTXW − XTYC + λ2AW + λ3XTXWL1. (12)

With C fixed, Eq. (11) can optimize the coefficient matrixW
as follows.

Wt+1 = argmin
W

1
2
∥W − G(t)

W ∥
2
F +

λ1

Lf
∥W∥1, (13)

where G(t)
W = W (t)

−
1
Lf

▽W f (W ,C). Noting that Eq. (13)
contains a l1-norm regularization term,Wt+1 is generated by
soft-thresholding the entries of G(t)

W as

Wt+1 = S λ1
Lf

[G(t)
W ] = argmin

W

λ1

Lf
∥W∥1 +

1
2
∥W − G(t)

W ∥
2
F ,

(14)

where Sϵ[·] represents the soft-thresholding operator. For any
ω ∈ R, Sϵ[ω] is defined as

Sϵ[ω] =


ϵ − µ, if ϵ > µ,

ϵ + µ, if ϵ < µ,

0, otherwise.

(15)

2) UPDATING C
According to Eq. (8), we can calculate ▽C f (θ ) as follows.

▽C f (θ ) = (1+ α)Y TYC − Y TXW − αY TY . (16)

To update C with fixed W , the coefficient matrix C can be
optimized by Eq. (11).

C = argmin
C

1
2
∥C − G(t)

C ∥
2
F +

β

Lf
∥C∥1, (17)

where G(t)
C = C (t)

−
1
Lf

▽C f (W ,C). Then, similarly to
Eq. (14), C can be updated with the following equation.

Ct+1 = S β
Lf
[G(t)

C ] = argmin
C

β

Lf
∥C∥1 +

1
2
∥C − G(t)

C ∥
2
F ,

(18)

3) LIPSCHITZ CONSTANT LF
We estimate the Lipschitz constant Lf in this subsection.With
θ1 = (W1,C1) and θ2 = (W2,C2), we get

∥∇f (θ1)−∇f (θ2)∥2F
= ∥XTX1W + λ2A1W + λ3XT X1WL1∥2F
+ ∥(1+ α)Y TY1C − Y TX1W∥2F
≤ 3∥XTX1W∥2F + 3∥λ2A1W∥2F + 3∥λ3XTX1WL1∥2F
+ 2∥(1+ α)Y TY1C∥2F + 2∥Y TX1W∥2F
≤ 3(∥XTX∥22 + ∥λ2A∥

2
2 + ∥λ3X

TX∥22∥L1∥
2
2)∥1W∥

2
F

+ 2∥(1+ α)Y TY∥22∥1C∥
2
F + 2∥Y TX∥22∥1W∥

2
F , (19)
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TABLE 2. Statistics of Datasets.

TABLE 3. Friedman Statistics FF and the Critical Value of Each Evaluation
Metric.

where 1W = W1−W2, 1C = C1−C2. Then, the Lipschitz
constant is formulated as

Lf ={
3
(
σ 2
max(λ2A)+ (1+ (λ3)2σ 2

max(L1))σ
2
max(X

TX )
)

+ 2
(
σ 2
max((1+ α)Y TY ))+ σ 2

max(Y
TX )

)} 1
2

(20)

where σ 2
max(·) denotes maximum singular value operator of

the matrix. To ensure Lf as a constant value, we fix the
value of A, which is determined by the initial value of W .
Algorithm 1 summarizes the overall optimization steps of the
proposed approach CLSML.

IV. EXPERIMENTS
A. DATASETS
On 14 multi-label benchmark datasets,1 we compare our
proposed method to 10 outstanding multi-label methods to
illustrate its effectiveness. Table 2 summarizes the specific
information for each dataset, including the number of
instances, features, labels, and cardinality (the average
number of labels per instance).

B. EVALUATION METRICS
To validate the effectiveness of our proposed method, we use
seven popular evaluation metrics, [42], [43], [44] which

1These datasets can be download from
http://mulan.sourceforge.net/datasets-mlc.html
http://cometa.ujaen.es
http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html

Algorithm 1 CLSML: Learning Common and Label-
Specific Features for Multi-Label Classification With Miss-
ing Labels
Require:

Training data matrix X ∈ Rn×d , label matrix Y ∈ Rn×l ,
and trade-off parameters α, β, λ1, λ2, λ3.

Ensure: Coefficient matrix W ∈ Rd×l and the label
correlation matrix C ∈ Rl×l .

1: initializeW0, W1← (XTX + γ I )−1XTY ;
2: C0, C1← zeros(l, l), b0, b1← 1, k ← 1;
3: Calculate the cosine correlation matrix S corresponding

to labels;
4: Calculate the Lipschitz constant Lf ;
5: repeat:

Calculate the diagonal matrix A;
W (k)

← Wk +
bk−1−1
bk

(Wk −Wk−1);

C (k)
← Ck +

bk−1−1
bk

(Ck − Ck−1);

G(k)
W ← W (k)

−
1
Lf
(∇fW (W (k),C (k)));

Wk+1← S λ1
Lf

(G(k)
W );

G(k)
C ← C (k)

−
1
Lf
(∇fC (W (k),C (k)));

Ck+1← S β
Lf
(G(k)

C );

k ← k + 1;

bk−1← bk , bk+1←
1+

√
4b2k+1

2 ;
untill: converge;

6: W ← Wk , C ← Ck .

are often divided into example-based metrics and ranking-
based metrics. Hamming Loss and Micro F1 are a couple of
example-based metrics, while Average Precision, One-Error,
Ranking Loss, and Coverage are indications of ranking-
based metrics. For each evaluation metric, ‘‘↑’’ indicates
that the higher the value, the better the performance, and
‘‘↓’’ suggests that the lower the value, the better the
performance.

Given a multi-label test set D = {(xi, yi)}
m
i=1. Let � =

{xi : i = 1, . . . ,m} be the feature set, and 2 be the label
set containing l labels. Where yi ∈ {0, 1}

l is the ground-truth
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TABLE 4. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.1.

label set of the test instance xi, and h(xi) is the set of predicted
labels for the i-th instance xi.

1) HAMMING LOSS
(HM) evaluates the frequency of an instance-label pair being
misclassified, that is, a label not belonging to the instance is
predicted or a label belonging to the instance is not predicted,
denoted as

HM =
1
m

m∑
i=1

∥∥h(xi)⊕ yi
∥∥
1

l
, (21)

where⊕ indicates the symmetric difference between two sets,
and ∥ · ∥1 is the l1-norm. The smaller the value, the better the
performance.

2) MICRO F1
(Mi) calculates the F1 score on the predictions of different
labels as a whole, it evaluates both micro average of precision
and micro average of recall with equal importance.

Mi =
2

∑m
i=1

∑l
j=1(h(xi)j)yij∑m

i=1
∑l

j=1 h(xi)j +
∑m

i=1
∑l

j=1 yij
, (22)

where h(xi)j is the j-th element of h(xi). The larger the value,
the better the performance.

These ranking-based metrics rely on the real value output
function f : � × 2 → R of each algorithm. For (xi, y) ∈
� × 2, f (xi, y) means the confidence score that xi marked
as label y. f (·, ·) can be transformed into a ranking function
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TABLE 5. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.1.

rankf (·, ·) ∈ {1, 2, . . . , l}, satisfying that if f (xi, y) >

f (xi, y′), then rankf (xi, y) < rankf (xi, y′).

3) AVERAGE PRECISION
(AP) evaluates the average fraction of relevant labels ranked
higher than a particular relevant label

AP =
1
m

m∑
i=1

1∣∣yi∣∣
∑
y∈yi

∣∣{y′ ∈ yi : rankf (xi, y′) ≤ rankf (xi, y)}∣∣
rankf (xi, y)

,

(23)

where |·| is the cardinality of a set. The larger the value, the
better the performance.

4) ONE ERROR
(OE) evaluates how many times the top-ranked label is not in
the set of ground-truth labels of the instance.

OE =
1
m

m∑
i=1

δ([argmax
y∈y

f (xi, y)] /∈ yi), (24)

where δ(z) is an indicator function that returns 1 if z is
true and 0 otherwise. The smaller the value, the better the
performance.

5) RANKING LOSS
(RL) evaluates the fraction of reversely ordered label pairs,
i.e. an irrelevant label is ranked higher than a relevant label,
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TABLE 6. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.2.

denoted as

RL =
1
m

m∑
i=1

∣∣(ya, yb) ∈ yi × ŷi : f (xi, ya) ≤ f (xi, yb)∣∣∣∣yi∣∣ ∣∣ŷi∣∣ ,

(25)

where (ya, yb) is the pair class label for an instance xi, ŷi is the
complementary set of yi and yi is the known label set of the i-
th instance. The smaller the value, the better the performance.

6) COVERAGE
evaluates howmany steps are needed, on average, to go down
the label ranking list to cover all the ground-truth labels of the

instance.

Coverage =
1
m

m∑
i=1

max
y∈yi

rankf (xi, y)− 1. (26)

The smaller the value, the better the performance.

7) MACRO AUC
(AUC) evaluates the average of AUC of all the class labels.

AUC =
1
l

l∑
j=1

|{(x′, x′′) ∈ Zj × Zj : f (x′, lj) ≥ f (x′′, lj)}|

|Zj||Zj|
,

(27)
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TABLE 7. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.2.

where Zj = {xi|lj ∈ yi, 1 ≤ i ≤ l}, Zj = {xi|lj /∈ yi, 1 ≤
i ≤ l} indicates the set of test instances with(without) label
lj. The larger the value, the better the performance.

C. COMPARISON METHODS
To confirm the effectiveness of the CLSML approach,
we compare it to the ten top performance-related algorithms
listed below.

GLOCAL [28]: In order to deal with both the full-label
and the missing-label cases, GLOCAL employs both global
and local correlations in the development of a manifold
regularization term for learning a latent label representation.
The value of model parameter λ = 1, λ1 to λ5 are tuned in
{2−5, 2−4, . . . , 21}.

JLCLS [38]: JLCLS provides a multi-label learning
algorithm for joint label completion and label-specific
features to address the issue of less consideration in the
impact of label marking errors or defaults in datasets.
By combining joint label completion with label-specific
features, it develops a new multi-label learning algorithm
framework. The alternating iteration method is used to obtain
the completion matrix and label-specific features. Model
parameters α, β and θ are tuned in {2−10, 2−9, . . . , 210}.
LLSF [18]: During the binary training stage, inconsistency

occurs when an instance belongs to more than one class
label and can be treated as both a positive and negative
instance simultaneously. LLSF attempts to overcome the
inconsistency problem by learning label-specific features for
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TABLE 8. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.3.

each label. It then assumes that each label is only associated
with a fraction of the original feature set and that any two
strongly correlated class labels can share more information
than two uncorrelated or weakly correlated ones. The value
of parameters α and β are tuned in {2−10, 2−9, . . . , 210}, and
the value of threshold τ is set to 0.5.
CIMML [34]: It proposes Class Imbalance aware Missing

labels Multi-label Learning, which handles class imbalance
issue by constructing a label weight matrix with weight
estimation guided by how frequently a label is present, absent,
and unobserved. Model parameters λC ,λR,λW ,λL ,λI and β

are searched in {10−5, 10−4, . . . , 103}.
SGMML [36]: To deal with the issues emerging

from incomplete labels and high-dimensional input space,

SGMML propose a multi-label learning approach based on
identifying the label-specific features and constraining them
with a sparse global structure. The sparse structural constraint
helps maintain the typical characteristics of the multi-label
learning data. Besides, it also constructs supplementary label
correlations to assist missing label recovery as part of the
optimization problem,and learns label-specific features and
constrain them with sparse global structure for multi-label
learning with missing labels. The value of parameters λs are
searched in {10−5, 10−4, . . . , 103}.

LRMML [35]: It proposed a unified framework to capture
the label correlations, which utilize both auxiliary label
matrix and the low rank constraints on estimated labels.
Besides, it also enforces maximal separation among different
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TABLE 9. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.3.

label subspaces for better label differentiation and recovers
missing labels and trains the classifier by building an auxil-
iary label matrix and imposing low and high rank constraints
on label subspace. δ is set as 0.005 and the hyperparameters
λR,λL and λT are searched in {10−10, 10−9, . . . , 105}.

SMILE [25]: Semi-supervised multi-label classification
using incomplete label information for the whole name,
estimating label correlations from partially labeled instances,
and replenishing missing labels. Then it constructs a neigh-
borhood graph using labeled and unlabeled instances. Finally,
the known labels and renewed labels of labeled instances
are combined to train a graph-based semi-supervised linear
classifier. Based on the recommendations in the publication,

the parameters α, s and the number of nearest neighbors k are
set to 0.35, 0.5 and 5, respectively.

CLML [11]: It suggests an innovative method for learning
common and label-specific features for multi-label classi-
fication using correlation information obtained from labels
and instances. First, it introduces the regularizers l2,1-norm
and l1-norm to simultaneously learn common and label-
specific features. Second, it constrains label correlations
on label outputs rather than the coefficient matrix by
employing a regularizer. Finally, the k-nearest neighbor
approach is adopted to take instance correlations into account.
Values of all parameters α, γ , λ1 and λ2 are tuned in
{2−10, 2−9, . . . , 210}, respectively.
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TABLE 10. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.4.

LSF-CI [39]: With both correlation information in label
space and correlation information in feature space taken into
account, it learns label-specific features for each label. The
k neighborhood graph model is used in LSF-CI to compute
instance correlations in feature space, and cosine similarity
is used to compute label correlations in label space. Label
correlations are then included under the assumption that
the similarity between coefficient vectors Wi and Wj may
be high if label yi is strongly correlated with label yj, and
an instance correlation regular term is also included under
the assumption that their corresponding predicted labels
generated through the coefficient matrix may be similar if the
two instances are strongly correlated in the original feature
space. Following that, the classification coefficient matrixW

is learned. Values of parameters α, γ and η are seached in
{2−10, 2−9, . . . , 210} respectively, and the value of threshold
τ is set to 0.5. Besides, its additional parameter β is seached in
{2−12, 2−11, . . . , 212}, and the number of nearest neighbors k
is 10.

LSML [8]: It presents a novel framework for incorporating
both label correlations and classification coefficient matrix
into learning models. While filling the missing labels, the
framework can extract label-specific features. The value for
All parameters are turned in {10−5, 10−4, . . . , 103}.

D. COMPARATIVE EXPERIMENTS AND ANALYSIS
In our experiments, we evaluate the performance of each
algorithm using five-fold cross-validations, i.e., 80% of each
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TABLE 11. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.4.

randomly generated dataset as the training component and the
remaining 20% as the testing part, repeated five times. The
missing rate of class labels is set from 10% to 60% for each
data set, with a step size of 10%. According to the pre-set
missing rate, we randomly remove the observed labels from
the training data. To avoid an empty class or instance with
no positive labels, at least one instance is preserved for each
class label, and each instance requires at least one positive
class label.

Tables 4-15 report the mean values for each competing
algorithm under different evaluations over 14 multi-label
datasets with varying missing rates. Meanwhile, to conduct
an achievements investigation into the relative performance
of the comparing algorithms from a statistical perspective,

we adopt the Friedman test [41]. At the significance
level α = 0.05, the null hypothesis of indistinguishable
performance among all comparison methods is rejected
for each evaluation metric. The Friedman statistics FF for
each evaluation measure and critical value are shown in
Table 3, illustrating that values of FF greater than the critical
value produce significant differences between competing
algorithms.

As a consequence, CLSML is considered to be the control
technique, and the Bonferroni-Dunn test is employed as
a post-hoc test for assessing if the average significant
difference between any pair of algorithms exceeds the critical

difference CD (CD = qα

√
k(k+1)
6N , where k = 11, N = 14,

qα = 3.3536, CD = 4.2040). Fig. 1 depicts the CD diagrams
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TABLE 12. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.5.

for each evaluation metric. The comparison methods with red
lines connecting to CLSML in each subgraph have a distance
less than CD from CLSML, showing statistical similarity
with CLSML under the respective evaluation criteria. The
performance of our proposed approach CLSML is described
in depth below.
• Tables 4–15 present the experimental findings from
11 methods on 14 different datasets. The best exper-
imental findings are shown in bold in the results.
According to these findings, CLSML is optimal in more
than five evaluation metrics on five datasets and best in
more than four evaluation metrics on fourteen datasets
with missing rates ranging from 0.1 to 0.6. CLSML
surpasses all comparison algorithms in terms of Ranking

Loss, Coverage, and Macro AUC, but Average Precison
is perfect on all datasets except the ‘‘Rcv1subset5’’ and
‘‘Languagelog’’ datasets. The exceptional performance
of our suggested method demonstrates the effectiveness
of learning common and label-specific features, as well
as the superiority of label space recovery via sparse high-
order label correlations. Simultaneously, we found that
on all 14 datasets, under HL evaluation, our method was
only slightly lower than the optimal method by 0.001-
0.002. When the missing label rate is in the range from
0.3 to 0.6, the GLOCAL method has the best HL evalu-
ation, which is partly attributed to the GLOCALmethod
considering both global and local label correlations.
When the missing rate is between 0.1 and 0.2, HL better
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TABLE 13. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.5.

methods such as CLML, CIMML and JLCLS all
consider example correlation, indicating the important
role of local and example correlation in feature selection.
This is also an aspect that we need to consider in our
further work.

• According to the Bonferroni-Dunn posterior results for
7 evaluation metrics on 14 datasets (Fig. 1), CLSML is
statistically ranked first in four metrics, including aver-
age precision, ranking loss, coverage, and AUC, fifth in
Micro F1 and One Error, and seventh in Hamming loss,
respectively. Besides, we found that LLSF ranks last
among the seven indicators, indicating that considering
only label correlation constraints on matrixW and label
specific features is far from enough. LSFCI is inferior

to our proposed method in all metrics except HM,
possibly due to only considering instance correlation
and label specific features, while ignoring high-order
label correlation and common features. Our approach is
more competitive compared to LSML in four metrics,
but slightly inferior in threemetrics with little difference,
indicating that it is useful to consider both second-
order label correlation constraints on the output space
and common features simultaneously. We can see that
CLML performs exceptionally well in metrics such as
HL, Mi, and OE, and is also highly competitive in other
indices. The fundamental explanation for this is that
HL and Micro F1 are example-based metrics, whereas
CLML includes not just instance correlations but also
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TABLE 14. Experimental Results of All Comparing Learning Algorithm (mean) on first Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.6.

common and label-specific features. CIMML ranks first
in the Mi metric and overall high in other metrics,
possibly because CIMML considers instance relevance
on the basis of LSML. LRMML is highly competitive
in metrics other than HM, indicating that its use of
auxiliary label matrices and forced maximum separation
between different label subspaces help to recover
missing labels and better distinguish labels. Although
SGMML considers both global sparsity constraints and
high-order label correlations, its overall ranking on
seven metrics is lower, possibly because SGMML only
uses row sparsity l2,1-norm constraints and ignores the
overall constraints of l1-norm. GLOCAL is far ahead in
HM, but relatively weak in other indicators, indicating

that considering only global and local correlations
is no longer sufficient to meet most needs. JLCLS
considers both high-order label correlation and label
specific features, but fail to consider common features
and second-order label correlation constraints on the
output space. Therefore, the overall ranking of the seven
indicators is weak.

• Extensive investigations show that the incompleteness
of class labels has a considerable impact on the perfor-
mance of multi-label classifiers, and techniques dealing
with missing labels usually outperform unprocessed
ones in most scenarios. For example, the performance
of LLSF drops rapidly when the missing rate increases,
because LLSF fails to rebuild the missing labels. While
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TABLE 15. Experimental Results of All Comparing Learning Algorithm (mean) on last Seven Datasets in terms of Seven Evaluation Metrics, while
misRate=0.6.

the efficacy of these techniques for modeling missing
labels, such as LSML, SMILE, JLCLS, CIMML,
LRMML and GLOCAL, declines rather slowly as
the missing rate increases. In contrast, the overall
performance of our suggested method greatly surpasses
all contrasting algorithms. This conclusion is attributed
to the modeling of missing label recovery by using
label correlations and learning common as well as label-
specific features between class labels. When the missing
rate is low, our proposed methods in Mi and OE cannot
compete with most algorithms. However, as the missing
rate rises, our method gradually closes the gap with
other algorithms, and it has achieved transcendence on
multiple datasets, including Stackex_chess and Social.

According to the experimental results and analyses,
we can conclude that our proposed approach outper-
forms other well-established multi-label classification
algorithms in addressing multi-label learning with
missing labels.

E. ANALYSIS OF ABLATION EXPERIMENTS
1) ANALYSIS OF ABLATION EXPERIMENT ON L1-NORM AND
L2,1-NORM
Although the l2,1-norm can be understood as a combination of
the l1-norm and the l2-norm, and it can select differentiating
features for all instances with joint sparsity, its disadvantages
are equally clear. It disregards the labels’ distinguishing
characteristics or the redundant correlation of features [11].
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FIGURE 1. Comparing CLSML against other competing algorithms with Bonferroni-Dunn test.

FIGURE 2. Analysis of ablation experiments for label correlation on Rcv1subset1 dataset while missing rate from 0.1 to 0.6.

FIGURE 3. Analysis of ablation experiments for label correlation on Stackex_chess dataset while missing rate from 0.1 to 0.6.

The l1 norm allows the coefficients of some of the features
to be lowered to zero, resulting in indirect feature selection,
and it is appropriate for situations when the features are

correlated. So, we integrate the l1- and l2-norms to learn
label-specific and common properties. To demonstrate that
the combination of these two norms may yield the best
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FIGURE 4. Analysis of ablation experiments for l1-norm and l2,1-norm on Stackex_cs dataset while missing rate from 0.1 to 0.6.

FIGURE 5. Analysis of ablation experiments for l1-norm and l2,1-norm on Rcv1subset3 dataset while missing rate from 0.1 to 0.6.

classification model performance, we present the l2,1-norm
and l1-norm ablation experiments.

By conducting experiments on three different scenarios as
shown in Figs. 4–6: λ1 ̸= 0 and λ2 = 0, λ1 = 0 and
λ2 ̸= 0, and λ1 ̸= 0 and λ2 ̸= 0, where λ1 controls the l1-
norm and λ2 controls the l2,1-norm, it is obviously that only
when λ1 and λ2 are not equal to 0, the performance is optimal.
λ1 ̸= 0 and λ2 = 0 comes second, while λ1 = 0 and λ2 ̸= 0 is
the worst. This result proves that l2,1-norm cannot replace

l1-norm in forcing row sparsity to select labels-specific
features, and for constraints on both row sparsity and column
sparsity, using only l1- norm cannot achieve the desired effect.

2) ANALYSIS OF ABLATION EXPERIMENT ON TWO-STAGE
SECOND-ORDER LABEL CORRELATIONS
Learning high-order correlations in the training stage can
greatly improve the performance of classification models,
it is equally important to add a label correlation constraint to
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FIGURE 6. Analysis of ablation experiments for l1-norm and l2,1-norm on Science dataset while missing rate from 0.1 to 0.6.

FIGURE 7. Sensitivity analysis of parameters on Stackex_chess dataset with missing rate 0.5.

the output of the model. In order to improve the consistency
of the feature-label space, a two-stage second-order label
correlation learning technique based on cosine similarity
is developed to further constraint the label output, where
it is controlled by λ3. To demonstrate its effectiveness,
we introduce ablation experiments on two-stage second-order
label correlations and its results are shown in Figs. 2–3, where
λ3 = 0 represents that the model has only learned high-order

label correlations without considering the two-stage second-
order label correlations. It is obvious that learning the
labels correlations of both high-order and second-order
simultaneously can improve the model performance.

F. SENSITIVITY ANALYSIS OF PARAMETERS
We have five parameters in the proposed approach: α, β,
λ1, λ2, and λ3. Control the loss between the recovered
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FIGURE 8. Sensitivity analysis of parameters on computers dataset while missing rate 0.3.

FIGURE 9. Sensitivity analysis of parameters on Stackex_cs dataset while missing rate 0.1.

label matrix and the original incomplete label matrix with
parameter α. β governs the sparsity of label correlations
between different class labels. The weights of label-specific
features and common features components in the coefficient
matrix are represented by λ1 and λ2, respectively. λ3 regulates
the contributions of label correlations, and all parameter
values are specified from [10−5, 10−4, . . . , 102, 103]. Next,
we conduct the sensitivity analysis of CLSML parameters on

three datasets with varying label missing rates. We tune one
parameter by a step 101, while keeping other parameters at
their optimal settings.

The experimental results shown in Figs. 7–9 demonstrate
that the parameters α, λ2, and λ3 have the greatest influence
on CLSML performance. Among these, α and λ2 have
a considerable impact on model performance, however,
the impact of λ3 on the model is primarily dependent
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FIGURE 10. CLSML’s objective function values of CLSML with respect to the number of iterations over four datasets.

on datasets. The best results are usually obtained when
α is more than approximately 102 and λ2 is less than
about 100.
Obviously, decreasing the value of α or increasing the

value of λ2 reduces the algorithm’s performance. This is
due to the fact that if the value of λ2 is large enough,
the l2,1-norm regularization term dominates in the model,
increasing the row sparsity of the coefficient matrix, causing
the coefficient matrix to come close to the zero matrix and so
losing classification performance. If the value of α is small
enough, it indicates that the higher-order label correlation
matrix obtained through learning is unable to successfully
rebuild the label matrix, resulting in poor performance.
The other two parameters, on the other hand, are quite
robust to the model’s performance over the range of values
[10−5, 10−4, . . . , 102, 104].

G. TIME COMPLEXITY ANALYSIS
Our proposed algorithm’s time complexity is related to
two primary components: initialization and iterations. The
time-consuming complexity of initializing W during the
initialization phase is O(nd2 + d3 + ndl + d2l), where n is
the number of instances, d is the number of features, and l
is the number of class labels. Calculating label correlations
by cosine similarity takes O(nl2). Furthermore, the time-
dependent complexity of computing Lf is O(d3 + l3).
The time cost is dominated during the iteration phase by
calculating the gradient of f (W ) and f (C), which can be
expressed as O(d2n + ndl + d2l + l2d) and O(nl2 +

l3 + ndl + dl2). CLSML’s overall time complexity is thus
O((1+ t)(l3 + d2l + nd2 + ndl)+ (n+ d)tl2 + d3).
Fig. 10 shows that the objective function values on the four

datasets decline rapidly as the number of iterations increases.
On the Recreation, Science, Social, and Stackex_cs datasets,
the changes in the objective function values stabilize after
120, 150, 160, and 150 iterations, respectively.

V. CONCLUSION
The multi-label classification matrix’s columns and rows
determine the specific and common feature weights corre-
sponding to the class labels, while the l1-norm and l2,1-
norm constrain the global sparsity and row sparsity of
the matrix, respectively, determining their important roles
in multi-label feature selection and extraction techniques.
In this paper, we first use the l1-norm and l2,1-norm
regular terms to constrain the classification weight matrix.
We then incorporate the higher-order label correlation matrix
learning constraints into the framework of the constructed
classifier training model to learn the label complement matrix
through the training process. Furthermore, we develop a
label-completion strategy to estimate missing labels and
build a second-order label correlation matrix with cosine
similarity to further constrain the label outputs, resulting in
two label correlation constraints embedded in the model.
This effectively improves and corrects the inconsistency in
the feature-label space caused by a single label correlation
constraint used in most current multi-label learning methods
with missing labels.
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Experiments are carried out on fourteen benchmark
datasets to compare our method to ten well-established
multi-label classification algorithms, and the results show
that for different missing label rates, our proposed method
outperforms the other comparative methods in terms of
overall performance, with the exception of Hamming Loss.
When the missing label rate for Hamming Loss is between
0.3 and 0.6, the GLOCAL approach has a large advantage,
which can be explained by the fact that Glocal takes into
account both the global and local label correlations. This
also drives us to conduct further research in which we will
investigate local label correlation and instance correlation in
order to improve the model’s performance on example-based
metrics.
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