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ABSTRACT Kidney illness constitutes a category of many serious persistent diseases that can affect an
individual. Early diagnosis of this condition is critical for effective therapy. Kidney tumours are the 2nd
most common type of urological tumour. They come in a variety of forms, the majority of which are
cancerous. In comparison to the laborious and lengthy conventional evaluation, deep learning’s autonomous
detection techniques may reduce diagnostic time, enhance the precision of tests, lower expenses, and
minimize the radiologist’s burden. It is difficult for clinicians to distinguish kidney cancers from renal
Computerized Tomography (CT) images. During an operation, the precise division of kidney tumours can
assist physicians in determining tumour intricacy and severity. However, due to their variety, segmenting
renal tumours mechanically might be challenging. Therefore, an intellectual kidney tumour segmentation
and classification model is implemented to recognize benign and malignant tumours at an early stage.
To execute this procedure, the input CT images are gathered from standard websites. Then these images are
given to the proposed 3D-Trans-Residual DenseUnet++ (3D-TR-DUnet++) network for the segmentation
process. With the help of the segmentation process, doctors can identify the normal and abnormal regions
in the kidney. The segmented images are then preceded by the classification stage. To classify kidney
tumours, a deep learning-based method called Adaptive and Attentive Residual Densenet with Gated
Recurrent Unit (AA-RD-GRU) is developed. Here, the parameters from this network are optimized via
the recommended Modified Crayfish Optimization Algorithm (MCOA). The precise segmentation and
classification of tumours in the kidney help to provide better treatments at the correct time. The segmentation
and classification results are contrasted with other deep learning networks as well as various optimization
algorithms.

INDEX TERMS Kidney tumour segmentation and classification, deep learning-based image analysis, 3D-
Trans-Residual DenseUnet++, adaptive and attentive based residual DenseNet with gated recurrent unit,
modified crayfish optimization algorithm.

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberta Palmeri .

I. INTRODUCTION
Kidneys are essential glands in the body’s urinary tract
because they excrete toxins from the circulatory system,
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regulate the equilibrium among body electrolytes and fluids,
regulate blood sugar levels, and participate in the production
of hormones [1]. It maintains the human body’s water and
electrolyte equilibrium by releasing and purifying waste.
It additionally secretes a variety of proteins and aids in
controlling high blood pressure. Cancer of the kidneys ranks
as one of the most prevalent ten cancers in both men and
women. The chance of developing cancer in the kidneys is
approximately 1 in every 75 (1.34%). Renal carcinoma (RC)
is a life-threatening urological illness affecting approximately
400,000 people each year [2]. Kidney illnesses are a major
public health concern around the world. In 2018, 175,000
people died of cancer of the kidneys, accounting for around
1.8% of total cancer fatalities worldwide [3]. Techniques
for evaluating kidney health are likely to help with the
progression of the disease, estimation, diagnosis, therapy, and
possibly early detection of kidney abnormalities. CT pro-
duces high-resolution pictures with significant anatomic
information [4]. As a result, it is important to determine the
extent of kidney problems. Kidney segments in CT scans
can help surgeons schedule surgeries; calculate total renal
size to predict renal function, and aid clinical physicists
or specialists with disease diagnosis and development [5].
Renal cell carcinoma (RCC) represents the third highest
illness incidence, first and second are prostate cancer and
bladder cancer. With newly identified 48,780 cases and
27,300 annual occasions for RCC-related mortality in the US
alone, RCC is considered to be the seventh-most prevalent
cancer among men and the ninth-highest frequent disease in
women [6]. On imaging, identifying benign kidney cancers
from aggressive carcinomas of renal cells might be difficult.
However, nearly all of the renal tumours are malignant.
The overwhelming majority of these kinds of tumours are
RCC [7]. The most frequent type of kidney RCC is distinct
cellular RCC, which accounts for roughly 80-90% of the
total kidney malignancies. Over the past twenty years, the
global prevalence has climbed by 2% every year. Kidney
tumours have grown more prevalent, and the illness can
progress for years without signs [8]. Over 50% of the
instances of carcinoma of renal cells may have been detected
by chance. Additionally, no underlying cause of cancer of
the kidneys has yet been identified. Tobacco use, being
overweight, inadequate nutrition, significant consumption of
alcohol, relatives with a heritage of high blood pressure, being
around irradiation and chlorine substances, and genetics are
all causes of sickness [9]. The role of a healthy kidney along
with kidney tumour symptoms and diagnosis is represented
in Fig. 1.

II. WHY KIDNEY TUMOR SEGMENTATION AND
CLASSIFICATION FRAMEWORK IS REQUIRED?
The manual renal division is a laborious and time-consuming
task that might produce inconsistencies. Radiologists must
devote an enormous amount of energy to analyzing the
large number of CT scans [10]. Their expertise has a big

FIGURE 1. The role of a healthy kidney along with present tumour
symptoms and diagnosis.

impact on the effectiveness of segmentation. Furthermore,
human eyes may be unable to appropriately segment some
hazy regions. The careful labeling of numerous CT scans is
quite costly [11]. To meet medical demands, a computerized
kidney segmentation technique is necessary. Because of
the variability in position and roughness in the form of
problematic kidneys, effective segmentation of the renal
area using CT scans of the gastrointestinal tract is difficult.
Traditional kidney segment approaches rely heavily on
computational imaging methods [12]. Setting a threshold
to separate images into monochrome images is an effective
approach. Manually identifying cyst sites on such scans of
CT takes a significant amount of effort and time [13]. As a
result, deep learning techniques for semantically segmenting
have been created to find and define renal regions at the same
time [12]. These approaches enable automated and exact
renal and tumour segmentation, aiding disease evaluation
and treatment. It may additionally enhance labor as well as
the economy [14]. Lastly, the outcomes of these procedures
are reliable and highly precise. The paper’s organization is
described below. The significance of tumour segmentation is
described in section II. The prior related work is represented
and the problem statement is explained in Section III.
Challenges addressed and novel contributions are explored
in section IV. Innovative kidney tumour segmentation and
classification framework using an adaptive and attentive-
based deep learning network with an improved optimization
algorithm are shown in Section V. The development of
a deep-learning model for kidney tumour segmentation is
provided in Section VI. An adaptive and attentive-based deep
learning network for the kidney tumour classification model
is available in Section VII. Proposed classification methods
with analysis are explored in section VIII. The result and
discussion are offered in Section IX and the conclusion is
accessible in Section X.

III. LITERATURE SURVEY
A. RELATED WORKS
In 2022, causey et al. introduced the Kidney Tumor Seg-
mentation Competition (KiTS19) 2019 Arkansas AI-Campus
resolution approach [15]. A synopsis of the instruction,
evaluation, and verification outcomes for this significant
medical image processing problem was given by the built
model. After evaluating numerous model iterations, a group

85636 VOLUME 12, 2024



V. V. Patel et al.: Systematic Kidney Tumour Segmentation and Classification Framework

of U-Net representations was created as the basis for deep
learning. On both the final contest impartial test database and
the neighborhood testing dataset, the algorithm consistently
performed well. The model obtained kidney and carcinoma
segmented Dice values of 0.949 and tumours segment Dice
values of 0.601 for the initial local examination, and Dice
values of 0.9470 as well as 0.6099 for the last competi-
tive examination, correspondingly. In 2021, Hussain et al.
suggested a combined deep-learning strategy for (i) renal
identification in CT images and (ii) segmentation-free kidney
size estimate in CT scans [16]. A selection-convolutional
Neural Network (CNN) was employed in the localized
approach to calculate the kidney’s inferior-superior spanning
in the direction of axial rotation. The calculated span’s
longitudinal slicing was then employed in an integrated
longitudinal-axial Mask Region-Based CNN (Mask-RCNN)
that accepted the organ’s boundaries based on the axis
and longitudinal slices, resulting in an ultimate 3D organ
boundary box. In addition, a network of convolutions was
employed to calculate kidney quantity, bypassing the division
phase. An equation was also developed to approximate the
‘weight inaccuracy’ metrics derived from the ‘Srensen-Dice
factor.’ To verify the approach, 100 individuals’ CT scans
were taken using Vancouver General Hospital’s documents,
and 210 individuals’ CT images were retrieved through
the 2019 Renal Tumor Segment Challenge databases. The
approach had a 2.4mm renal barrier error in localization
and a 5% average capacity estimate error. In 2022, Hasiao
suggested kidney segmentation using an encoder-decoder
design [17]. A process of parameter optimization was
put into place, which involved building a mathematical
structure, choosing a loss rate and windows technique,
and augmenting the information. Using a Dice value of
0.969 based on the 2019 Renal and Organ Tumour Seg-
mentation Challenge database, the algorithm featuring an
encoding of EfficientNet-B5 with a decoding component
of a characteristic pyramid structure produced the best
results. The kidneys and cancer sizes, histological planes,
and voxel gaps of the suggested model were varied during
testing. In addition, segmentation anomalies were examined
through instances. Lastly, the generated model was assessed
using a five-fold cross-validation approach and the 3D-
IRCAD-01 database about the assessment criteria of the
Dice rating, recall, accuracy, and the intersection over Union
(IoU) rating. Overall, the trial findings demonstrated the
potential practical applications of the suggested kidney
segmentation algorithms in CT scans to support physicians
during preparation for surgery. In 2023, Pavarut et al.
created a powerful model that works better than the current
approach of employing single-modal healthcare pictures to
enhance the results of classification [18]. To do this, the
abundance of multidimensional information obtained from
Magnetic Resonance Imaging (MRI) and Contrast-Enhanced
CT (CECT), as well as their corresponding subgroups, was
used to identify which particular modalities or pair best

aids in categorization. The paper established an in-depth
analysis of the various multi-modal fusing strategies, using
the Area under the Curve (AUC) as the standard for assessing
efficiency. Furthermore, this work addressed the issue of
kidney tumour data not being easily accessible by employing
Conditional CycleGAN, a component of translated images
that translates across two distinct picture areas, to recover
a portion using the existing data. By using multi-modal
fusing methods and the suggested method for recovering
missed data, the study has produced better classification
outcomes than single-modal categorizationmethods. In 2019,
Yu et al. introduced Crossbar-Net, a cascaded adaptable
segmented network [19]. The technique blended two cutting-
edge plans: 1) The upward patching and the plane patching,
two perpendicular non-squared areas, were suggested as
the border patches. The kidney cancers’ global and local
appearances might be concurrently recorded by the crossbar
sections in both horizontal and vertical planes. 2) The
two sub-models (the vertical as well as horizontal parts)
were repeatedly learned in a transmitted learning manner
using the generated crossbar patchwork. The trained separate
models were urged to grow centered on the challenging
areas of cancer during learning (i.e., mis-segmented areas).
To be more precise, the sideways (vertical) sub-model
needed the assistance of the vertically horizontally sub-
model in order to divide the incorrectly divided areas.
As a result, before convergence, both sub-models might
function in concert to enhance themselves. In the study, the
approach was assessed on a genuine database of CT kidney
cancers; comprising 3500 CTs, gathered from 94 distinct
individuals. The findings showed that the method performed
better on the Dice similarity factor, real-positive fraction,
centroid geographical separation, and Hausdorff distance
tests compared to the cutting-edge segmentation techniques.
In 2021, [5] suggested using CNN for the segmentation and
categorization of kidney cancers to increase the precision
of kidney tumour segment and categorization and to aid
medical professionals in the detection. Kidney tumour
classification and segmentation were combined to create
the assignment using the Two-Task Neural Network (2D-
SCNet). According to the suggested structure, segmentation
might assist the system in concentrating on specific char-
acteristics and areas of interest (ROI), while categorization
might offer input on the net’s overall knowledge of the
environment. Each job increases previous knowledge of
one another and works together to boost system learning.
When the classification and segmentation of 2D-SCNet were
combined, the correctness rate for both benign and cancerous
classifications could exceed 99.5%. The cross-validation
findings demonstrated that kidney tumour classification and
segmentation activities might be performed effectively by
the 2D-SCNet technique. In 2020, [20] Several cutting-edge
neural network algorithms have been developed to identify
kidney or carcinoma regions in CT scans automatically.
To increase precision, only the design of the neural network
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changed in the majority of these models. Preparing the data,
nevertheless, proved to be an essential step in enhancing
the outcomes. The pre-processing techniques that must be
used before analyzing medical pictures in a model based on
neural networks were methodically covered in this paper.
According to the results of the study, the suggested methods
for pre-processing or algorithms considerably increase the
precision rate when compared to the scenario in which
data preliminary processing was not done. The suggested
medical imaging processing techniques as well as deep
models for learning made efficiency appropriate for clinical
tasks requiring less computing power. Accurate tumour
identification and automated kidney capacity computation
were accomplished with cost-effectiveness and efficiency. In
2020, Ruan et al. created a Multi-Branch Featured Sharing
Generating Adversarial Network (MB-FSGAN) to quantify
and classify renal cancers on CT at the same time [21].
The components of MB-FSGAN were the Features Sharing
Generating Adversarial Network (FSGAN), Location of
The Region of Interest (LROI), and multiple scales feature
extractor (MSFE). Strong semantic data was produced by
MSFE on feature graphs of various scales, and this is very
useful for identifying tiny tumour targets. The tumour’s
area significance was retrieved by the LROI, significantly
lowering the system’s temporal cost. Through combined
instruction and adversarial acquiring knowledge, FSGAN
efficiently exploited the parallels and contrasts among the
two linked tasks, appropriately segmenting and quantifying
kidney cancers. The outcomes demonstrated the network’s
dependable operation, efficacy, and promise as a therapeutic
tool.

B. PROBLEM STATEMENTS OF PRIOR WORKS
Kidney tumour classification is a vital component of diag-
nostic imaging and treatment. Conventional kidney tumour
segmentation and classificationmodels face more challenges.
Table 1 explores the features and challenges of the conven-
tional kidney tumour segmentation and classification models.
Ensemble of U-Net [15] computing cost of this method is
less and the outcomes are more accurate and comparable
to ground true photographs. However, this approach makes
extensive use of volumetric variables. Cascaded Regression
Neural Nets [16] effectively recognizes and diagnoses the
dimension and position of malignant cells and performs
accurate quantifying and segmentation on renal cancers.
However, this system is inconsistent during development
and processes at a more gradual pace. Encoder-decoder [20]
can catch components flowing at a quicker frequency
despite tiny kernels. However, this architecture necessitates
a greater memory need and processing expense. Conditional
CycleGAN [18] produces high-accuracy segmented data and
proves more resilient. However, the occurrence of renal
hollows, artery walls, and venous complicates segmentation.
Crossbar-Net [19] quickly extracts important properties of
various magnitudes and dimensions. But it has a reduced

memory. As a result, it fails to grow effectively on larger
systems. 2D-SCNet [5] requires less computing time and
resources to be trained, but this technique is not appropriate
for bad-quality CT scans or inaccurate information. CNN [20]
process is easy, has a higher reproducibility, and yields the
amount of fluid from a renal in an organized and affordable
manner. However, it is only intended for the identification
of renal lesions using CT images. As a result, it’s unable to
effectively partition various organs with separate modalities.
MB-FSGAN [21] improves the field of receptivity. But the
whole process is delayed. So, we designed a novel kidney
tumour segmentation and classification model to alleviate the
issues.

IV. NOVEL FRAMEWORK OF IMAGE SEGMENTATION
AND CLASSIFICATION TO THE STATE OF THE ART FOR
KIDNEY TUMOR DETECTION
A. RESEARCH QUESTION AND CHALLENGES ADDRESSED
IN THE CURRENT PAPER
Kidney feature extraction using CT scans often relies on
strong shifts in intensity between voxels that surround
the kidney margin [22]. Nevertheless, when obtaining CT
images,multiple issues like poor contrast, sound, opaqueness,
and anisotropic may occur. If uncertain voxels emerge around
unit borders, segmentation outcomes will be affected. The
attributes obtained do not entirely represent the contour of
the kidneys. Furthermore, the efficiency of malignancies
and the textural similarity between tumours and kidneys
might make diagnosis difficult. As a consequence, practical
tasks continue to be difficult [23]. To address these issues,
conceptual segmentation techniques based on Convolutional
Neural Networks (CNNs) have been developed. Modified
CNNs can require more data for training to conduct precise
segmentation eliminating the need for human interaction. The
preparation of data is critical in the procedure of segmentation
to create better-trained algorithms [24].

B. NOVEL CONTRIBUTION OF THE PAPER
Improved and cleaned data, together with the ground truth
and training database can increase segmentation accuracy in
some applications related to medicine. So, an effective kidney
tumour segmentation model has been developed to alleviate
such challenges, and its contributions are given as follows:.

• Proposed Design of the kidney tumour segmentation and
classification model using a deep learning strategy aids
in accurately identifying, treating, and evaluating kidney
tumours.

• Judiciary claimedmore specific assessments of tumours,
the effective 3D-TR-DUnet++-based kidney tumour
segmentation model is developed by comprising the
DenseUnet++ with transformer network for accurately
segmenting the affected area to make the classification
process easier. Additionally, this process increases the
quality of the image and also minimizes the processing
time.
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TABLE 1. Features and challenges of conventional kidney tumour segmentation and classification models.

• To correctly detect and classify various forms of kidney
tumour, a novel AA-RD-GRU-based kidney tumour
classification system is designed by embedding the
residual DenseNet with GRU. This helps to increase
the survival of the patients through early identification,
making use of parameter optimization. In addition, this
suggested AA-RD-GRU networks help to minimize the
error rates of the process.

• To enhance the accuracy, the MCOA algorithm is
implemented by modifying the conventional Crayfish
Optimization Algorithm (COA) for tuning parameters
like hidden neurons, number of epochs, and step
per epoch in the AA-RD-GRU-based kidney tumour
classification system.

• To confirm the usefulness of the designed model, the
performance is compared and explored with various
state-of-the-art schemes based on segmentation and
classification performance on kidney tumours and
proved its superiority.

V. AN INNOVATIVE KIDNEY TUMOR SEGMENTATION
AND CLASSIFICATION FRAMEWORK USING ADAPTIVE
AND ATTENTIVE-BASED DEEP LEARNING NETWORK
A. IMPLEMENTED KIDNEY TUMOR SEGMENTATION AND
CLASSIFICATION FRAMEWORK
Kidney tumour classification is a vital component of
diagnostic imaging and treatment. It involves evaluating
clinical images, including CT images, to identify the kinds
and features of kidney cancers. Yet, this effort presents

a unique variety of obstacles. A problem is the variation
in cancer appearances. Kidney tumors may differ in size,
form, and appearance, rendering it hard to create a universal
categorization model. Tumors may possess traits with non-
tumor entities, confounding the categorization procedure.
Another problem is the high incidence of uncommon or
unusual tumor subgroups. While many kidney tumors can
be classified into basic kinds, there are a few cases wherein
tumors have distinct traits that cannot be categorized easily
into established classification methods. Identifying and cor-
rectly distinguishing these unusual variants can be difficult,
and specialized knowledge and an in-depth comprehension
of tumor biology are needed. Furthermore, the accessibility
of the information labeled for training is a barrier. Accurate
models of classification require a big database of labeled
images. Yet, collecting enough labeled information for
kidney tumor classification may prove laborious and costly.
Limited availability of labeled data can impede the creation
and evaluation of effective classification systems. In addition,
verifying the ability to be generalized and the consistency of
categorization models is essential. Various imaging modali-
ties, collection techniques, and resolution variations all have
a bearing on the classification efficiency of algorithms. It is
critical to create systems that accurately identify kidney
tumours across multiple diagnostic systems and scenarios.
In summary, kidney tumor classification confronts obstacles
such as tumor variation, rare variants, labeled availability
of data, generalization, and the incorporation of new tech-
nology. To address these problems, healthcare providers,
investigators, and technologies will need to work together
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FIGURE 2. Schematic illustration of the proposed kidney tumour
segmentation and classification system.

to create solid and trustworthy classification algorithms that
can help in the precise assessment and planning of therapy
for renal carcinoma sufferers. As a result, an intellectual
kidney tumour segmentation and classification system is
employed to identify benign and malignant tumours at their
earliest stages. Fig. 2 displays a schematic illustration of
the proposed kidney tumour segmentation and classification
system. The designed deep learning-assisted kidney tumour
segmentation and classification system is used for effectively
classifying the kidney tumour through the segmentation
process. The proposed model provides reliable tumour
classification outcomes and thus helps in choosing patients
for clinical testing, resulting in effective kidneymalignancies.
Initially, the input CT images originated from regular
websites. The images are subsequently entered into the
established 3D-TR-DUnet++ system for segmentation. The
segmentation procedure allowed clinicians to detect normal
and pathological sections in the kidney. The segmented
images then proceed to the classification phase. To classify
kidney tumours, a deep learning-based technique AA-RD-
GRU is developed. The parameters in the developed AA-RD-
GRU system like hidden neurons, epochs, and step per epoch
are optimized using the suggested MCOA to enhance the
accuracy. The exact segmentation and classification of kidney
tumours assist in getting rid of more effective medicines

at the appropriate time. The segmentation and classification
outcomes are comparedwith different deep learning networks
and optimized functioning strategies.

B. KIDNEY TUMOR CT IMAGE DATASET
The images needed for performing the developed model
are shown as follows. The images are taken from Kits19-2
dataset. This database contains 2 specific files, (i) imaging
(985.66 MB) and (ii) segmentation (123.21 MB). The size of
the file is 53.76 GB. The images are garnered via Dataset-
2 (‘‘KiTS21 database’’). This file has code employed for
processing and importing information from the system. The
collected images are provided in Table 2 and indicated by the
term KiTGarT .

C. PARAMETER OPTIMIZATION SUPPORTED BY
INTRODUCED MCOA
The MCOA algorithm is designed to enhance the per-
formance of the developed kidney tumour segmentation
and classification model through optimization. The MCOA
is developed based on the conventional COA. The COA
is notable for its effectiveness in resolving complicated
optimization issues by emulating crayfish behavior in their
native environment, as well as its capacity to seek worldwide
optimal, which implies it can discover the optimal answer
out of all conceivable options. It is resilient and capable
of solving optimization issues with many different factors,
restrictions, and targets. However, it may take a considerable
number of repetitions to reach an ideal solution, particularly
for complicated issues. This will result in longer calculation
instances, and efficiency might be susceptible to starting
conditions, implying that various starting points may produce
outcomes that vary. For such pros and cons, we introduced
a modified form of COA named MCOA; this tunes the
parameters like hidden neurons, epochs, and step per
epochs in the developed AA-RD-GRU model for increasing
accuracy. Eq. 1 aids in updating the random value using the
adaptive concept.

Rnd =
ET(OT
AT

) (1)

Here, the terms ET , AT , and OT define the bestfit, worstfit,
and meanfit respectively.

D. CRAYFISH OPTIMIZATION ALGORITHM (COA)
Crayfish scavenging vacation time, and aggressive behav-
ior influenced COA [25]. The exploiting phase of COA
constitutes the hunting phase, while the searching stage is
the peak summer vacation phase. The crawfish colonies
are defined at the beginning of the procedure to reflect
the properties of swarm-based optimization. The term Bm
corresponds to the nth crayfish’s status, suggesting the
solution. Here,

(
Bm =

{
Bm,1,Bm,2, ..Bm,Dm

})
serves as the

optimization problem’s distinctive number, referred to as
dimensionality). The term Bm uses a function called j(.) to
find a solution that’s frequently referred to as the value of
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TABLE 2. Collected sample CT images.

fitness. The temperature, which is a randomized parameter
that indicates the outside temperature of the habitat where the
person is placed, governs COA exploitation and exploration.
COA will proceed to the summertime vacation phase or
competitive stage if its humidity rises excessively. Modify
the updated solution throughout the summertime vacation
phase based on the person’s location Bm and the cavern
locationBShd . COAwill move into the hunting phase once the
humidity is adequate. The placement of a meal is the perfect
spot, referred to as the best option, during the hunting phase.
The present solution FtNsm (the solution produced by Bm)
and the optimum solution FtNsFuD (the solution acquired by
the optimum solution) are used to calculate the dimensions
of the meal. Whenever food consumed is appropriate, the
crayfish receive novel strategies based on their location
Bm, dietary continuous t , and feed location BFuD updates.
Whenever the meal becomes huge, the crayfish will tear
things apart with its clawed leg before eating with both of
its other moving feet alternatively. Then the cosine and sine
equations are utilized to recreate crayfish alternate eating
habits. Crayfish regulate their food intake. Heat influences
the consumption of food, which has an advantageous
dispersion.

E. START THE POPULATION
Each crayfish within a multimodal optimization issue has a
1 × Dm vector. Every row in the matrix indicates an issue
that needs a solution. Every value Bm in an array of numbers
(Bm,1,Bm,2, ..Bm,Dm) has to fall within the top and bottom
bounds. COA is initialized by randomly generating a set of
potential solutions B within the available space. The number
of people R and dimensionsDm are used to choose a potential
solution B. Eq. 2 depicts the setup of the COA method.

B = [B1,B2, ..BR] =



B1,1 · · · B1,n · · · B1,Dm
... · · ·

... · · ·
...

Bm,1 · · · Bm,n · · · Bm,Dm
... · · ·

... · · ·
...

BR,1 · · · BR,n · · · BR,Dm

 (2)

Here, the term B represents the starting population status,
R represents the assortment of people, Dm represents the
population scale, Bm,n represents the location of each person
m in the nth scale and Bm,n value is calculated using Eq. 3.

Bm,n = pfn + (yfn − pfn) × Rnd (3)

Here, the term pfn signifies the nth dimension’s bottom
bound yfn is the nth dimension’s top bound, and Rnd is an
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arbitrary number. This Rnd gets updated using the adaptive
concept in Eq. 1.

F. TEMPERATURE AND INTAKE OF CRAYFISH
Temperature changes influence crayfish movement and cause
them to progress through several phases. Eq. 4 defines
temperature. Whenever a temperature rises above 30°C, the
crayfish will look for a cool location to spend summertime.
Crayfish will engage in foraging behavior at the optimum
temp. Temperature influences how much crayfish feed.
Crayfish feed well at temperatures around 15 and 30 degrees
Celsius. As a result, the daily consumption quantity of
crayfish may be estimated to the typical distribution, and the
nutrition dose is temperature dependent. Since crayfish have
a significant foraging tendency around 20 and 30 degrees
Celsius. As a result, COA defines a temperature range of 20 to
35°C. Eq. 5 depicts a mathematical representation of crayfish
intake.

Tp = Rnd × 15 + 20 (4)

Here, the term Tp is a measure of the surroundings in which
the crayfish is found.

t = G1 ×

(
1

√
2 × π × σ

× exp

(
−
(Tp − µ)2

2σ 2

))
(5)

Between them, µ relates to the optimal temperature for
crayfish, while the term σ andG1 are used to regulate crayfish
consumption at various degrees.

G. SUMMER RESORT PHASE
When a certain temperature exceeds 30, the heat is excessive.
At this point, the crayfish will decide to spend the warmer
months in the cavern. The Bsde cavern is defined in the Eq. 6.

BSde =
(BK + BP)

2
(6)

Here, the term BK indicates the best position gained at this
point by the number of repetitions, and BP reflects the best
spot in the present population. Crayfish fighting for tunnels
happens randomly. If Rnd < 0.5, there are no additional
crawfish fighting for caverns, and the crawfish will head into
the cave straight for their summer break. Applying Eq. 7, the
crayfish will make its way into the cavern for their summer
vacation around that point.

Bx+1
m,n = Bxm,n + G2 × Rnd

(
BSde − Bxm,n

)
(7)

Here, the term G2 indicates a declining curve, as stated
in Eq. 8, where x denotes the latest iteration frequency and
x+ 1 indicates the following generation repetition count. The
term Rnd is the random value this can be amended using the
adaptive concept in Eq. 1.

G2 = 2 − (
x
X
) (8)

Here, the term X denotes the largest number of repetitions.
Crayfish’s objective in the summertime resort level is to reach

the cellar, so this is the best option. The crayfish will be
approaching the cavern at this juncture. This puts folks nearer
to the best option and improves COA’s exploit capability.
Allow the method to come together more quickly.

H. STAGE OF COMPETITION (EXPLOITATION)
When Tp > 30 and the Rnd > 30, it indicates that other
crayfish are additionally keen on the cave. They are battling
for shelter at this moment. Through Eq. 9, the crayfish fights
for the entrance to the cave.

Bx+1
m,n = Bxm,n−B

x
d,n × BSde (9)

When d denotes an arbitrary crayfish person, as indicated in
Eq. 10.

d = Round(Rnd × (R− 1)) + 1 (10)

Crayfish compete against themselves in the competitive
phase, and crayfish modify their location according to the
spot taken by another crayfish. The searching depth of
COA is increased, and the algorithm’s exploring capability
is improved, by altering its location. Stage of foraging
(exploitation): Once the temperature reaches 30, the crayfish
can feed. The crayfish will begin to approach the meal at
this point. The crayfish will estimate the dimensions of its
nourishment after finding it. If themeal is too big, the crayfish
will rip it up with its sharp claws and consume it using its
second and subsequent walking foot alternatively. The term
BFud is defined as an edible place in Eq. 11.

Bfud = BK (11)

Here, the term Fud is the food and the size of food is U , this
can be defined in Eq. 12.

U = G3 × Rnd ×

(
FtNsm
FtNsFud

)
(12)

Here, the term G3 denotes the biggest food while the
constant 3, FtNsm is the fitness score of the mth crayfish,
and FtNsFud reflects the fitness rating of the nutrient
site. The crayfish’s estimation of its meal size is based
on the dimensions of its biggest food. When U exceeds
G3+1
2 , the food being eaten is too large. The crayfish

will rip off the nourishment with its first claw leg at this
juncture. The following is the algebraic the following formula
in Eq. 13.

BFud = exp
(

−
1
U

)
× BFud (13)

When the meal becomes chopped and lesser, the second
and the third legs alternatively take it up as they place it
in their mouths. To imitate the alternation, and manage,
an amalgam of the function of sine with the function of cosine
is employed. Furthermore, the nourishment obtained from
crayfish is connected to the consumption of food; hence the
hunting equation works using Eq. 14.

Bx+1
m,n = Bxm,n + BFud × t ×

(
Cos(2 × π × Rnd)
−Sin(2 × π × Rnd)

)
(14)
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FIGURE 3. Flowchart of the proposed MCOA.

When G3+1
2 , the crayfish only needs to travel towards the

meal and consume immediately, as shown in Eq. 15.

Bx+1
m,n = Bxm,n + G2 × Rnd

(
BSde − Bxm,n

)
(15)

Crayfish in the Hunting phase adopt various feeding
approaches according to the dimension of the food they
consume U , with food BFud representing the ideal answer.
When the dimension of the mealU is appropriate for crayfish
consumption, the crayfish will get near its contents. When
U is excessively great, it shows that the crayfish and the
best solution are significantly different. As a result, BFud
must have lowered and moved nearer to the meal. Adjust
the unpredictability of the crayfish meal intake augmentation
mechanism. The pseudo-code and the flowchart of the
proposed MCOA are given in Algorithm 1 and Fig.3.

VI. DEVELOPMENT OF 3D-TRANS-RESIDUAL
DENSEUNET++ FOR KIDNEY TUMOR SEGMENTATION
A. SEGMENTATION IMPORTANCE IN KIDNEY TUMOR
CLASSIFICATION PERFORMANCE
Segmentation is important in kidney cancer classification
because it allows for a more thorough and exact knowledge of
the tumour’s borders and features. Segmentation enables for
more precise assessment and classification of renal tumours,
leading to improved evaluation, planning of therapy, and
tumour progression tracking. One of the most significant

Algorithm 1 Proposed MCOA
Initialize the iterationX , population R as well as the dimension Dm

Generate the initialized population randomly
Determine the population’s fitness rating BK ,BP

While x < X
Upgrade the random value Rnd using
the adaptive concept in Eq. (1)
Define the temperature Tp using Eq. (4)
If Tp > 30

Determine the caveBSdeusing Eq. (6).
If Rnd > 30

Crayfish perform the summer resorting using Eq. (7).
else

Crayfish struggle for the need of caves using Eq. (9)
end

else
The intake food tand the size of the food
U are acquired using Eq. (5) and Eq. (12)
If U > 2

Crayfish slices the food using Eq. (13)
Foraging of crayfish using Eq. (14)

else
Foraging occurs using Eq. (15)

end
Upgrade the fitness functionBK ,BP
x = x + 1

end

advantages of segmentation in kidney tumour classification
includes its capacity to properly estimate the tumour’s shape
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and size. This data is critical for diagnosing the tumour’s
phase and extent, as well as measuring therapy efficacy. Pre-
cise volume and size data gained from segmentation enable
physicians to arrive at educated choices about treatments
like radiation therapy, surgery, or tailored pharmacological
regimens. Segmentation additionally makes it possible for
the recognition of certain tumour subdivisions or areas
of concern inside a kidney tumour. By segmenting the
tumour, doctors can examine distinct sections separately,
providing a greater awareness of the substance and features.
This knowledge can help anticipate the tumour’s behavior,
determine its aggression, and provide personalized treatment
strategies for patients. Furthermore, segmentation facilitates
the collection of quantitative information from the tumour,
such as texture, form, and brightness. These characteristics
give useful data that can be employed in neural networks
and forecasting algorithms to increase the precision of kidney
tumour classification. By adding these traits throughout
the classification management, segmentation aids in the
differentiation of malignant from benign tumours, resulting
in more precise classifications and improved outcomes for
patients. In general, segmentation is critical in kidney tumour
classification. These advantages eventually enhance kidney
tumour detection, planning of therapy, and tracking, resulting
in better treatment for patients and results.

B. DENSEUNET++ FRAMEWORK
The DenseUNet++ model is made by comprising the
DenseNet and Unet++ [26]. DenseNet represents an indi-
cated design of networks the fact that generated the most
successful findings on various classes’ image categoriza-
tion collections. Previously implemented associations, for
instance, AlexNet’s neural stage, boast a high inherent
dimension. The objectives of this structure would be to
densely integrate various classes’ convolutional regions with
exceptionally small indicative parameters. The aim of it is
to join the resultant information from each of the previously
convolutional layers into one with the information being
provided of the following convolution circuit. Considering
just q sections, q(q+1)

2 linkages could be brought in, enabling
it to accommodate functions that are more complicated with
fewer inputs. Dense partitioning is an assembly of this
convolution, wherein the distinct magnitude of every layer
is determined based on its expansion frequency. There is
also the convolution layer containing a kernel based on the
convolution size and width of one and a normal pooling
stage combined with a kernel’s duration and breadth and step
number of two among these layers.

DenseNet defines a sort of convolutional neural network.
Every one of thePtiers within the system undertakes a
quadratic transitionKl , if this represents the vector associated
with tier p, Kp might correspond to the Batch Normalization
(BN) section, Rectified Linear Units (ReLU) activation
functions, and amixture of pooling layers of convolution. The
image that is input is denoted bya0, while the outcome of the
layer p is designated byap.

In a typical CNN, the outcome of tier p is taken like the
data source of the stage p+ 1 and the expression is provided
in Eq. (16).

ap = K
(
ap−1

)
(16)

DenseNet recommends substitute connectedness archi-
tecture referred to as dense networking that will boost
the transfer of knowledge across sections, through the
establishment of immediate links regarding any level upward
to all next ones. Layerpgets as source the attribute network
for every layer beforea0, a1, , ..ap−1and the procedure is
provided in Eq. (17).

ap = Kp
([
a0, a1, , ..ap−1

])
(17)

Here, the term
[
a0, a1, , ..ap−1

]
denotes layering a function

hierarchy of a0, a1, , ..ap−1on each channel axis.

C. PROPOSED UNET++ MODEL FOR IMAGE
SEGMENTATION
UNet++ is an expansion of the UNet system that was
released in the hopes of increasing the UNet design’s pre-
cision while segmenting [27]. The UNet’s encoder-decoder
building keeps and claims that gradually enriching higher-
resolution characteristic maps before combining them into a
decoding device enables the system to gather greater excel-
lent quality information due to greater semantic resemblance
among the combined characteristics. The primary theory
behind the development of the UNet++ design is the belief
that by including more temporary a convolutional section
and expanding the skip links among structures, the combined
outcomes from every increased sampling suppression will
become more similar in semantics compared to the outcomes
obtained through the initial UNet construction, resulting
in a simpler optimization issue resulting in more precise
outcomes. The layered convolution units Aq,r added to fill the
distinction in meaning among the expanding and contracting
sections of the identical layer q in the structure are linked
via skipping connections having each convolutional element
of the equal layer q havingp′ > p. More specifically, Aq,r

remains the results of Eq. 18.

Aq,r =


CB

([
Aq−1,r

])
for q = 1

CB
([[

Aq−1,r
]p−1

n=1

]
,Aq−1,r−1

)
for q > 1

(18)

Here, the termCBis the convolution block, CB (a)remains
the results of the convolutional element provided as a
parameter a,

[
Al,m

]i
n=1 is the combination functioning

for components Al,1, . . .Al,i, and [a, b]is the association
functioning between components a and b. Fig. 4 depicts
an extensive representation of the DenseUNet++ design
specified within the basic UNet design.
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FIGURE 4. Pictorial view of the DenseUnet++ model.

D. ACCURATE SEGMENTATION PERFORMANCE WITH
DEVELOPED 3D-TR-DUNET++

The garnered images KiTGarT are put as input into the
designed 3D-TR-DUnet++-based kidney tumour segmen-
tation model. This model leverages the strength of ResNet,
DenseUnet++, and Transformer design to produce very
precise and effective results for segmentation. The trans-
former model receives the inputted images. The transformer
model incorporates self-attention techniques, allowing the
framework to detect dependence over time and improve the
accuracy of segmentation. This is especially valuable in 3D
healthcare imaging, wherein context is required for correct
segmentation.

E. TRANSFORMER MODEL OF PRESENTED NEURAL
NETWORK
The transformer circuit was built using an attention pro-
cedure, comprised of an encoding and a decoding device.
The transformer system includes 8 equal layer piles, each
with 2 sub-layers [28]. The multi-headed attention sub-
layer includes the initial one, while the subsequent layer
represents a basic fully linked forward network of neurons.
A residual structure of networks connects both sub-layers,
which are terminated by an average level. Here, the term
Ot = LN (a+ SL (a)), wherein every sublayer is produced

separately, expresses the final result for every sublayer, out is
the output. The sub-layers within the simulation are corrected
results in 256 degrees in order to simplify the residual
interaction among layers. Several sublayers are explained
further below.

F. DOT-PRODUCT ATTENTION FUNCTION
The attention function’s inputsT ,N , and Y indicate the query,
key, and value, correspondingly. The attention value is
determined by the resemblance with the query key. The
attention contextual is determined by the attention scales. The
design employs scaling dot-product attention, determined by
Eq. 19.

Attention (T ,N ,Y ) = SM
(
TNW
√
gnY

)
(19)

G. MULTI-HEADED ATTENTION
The multi-head attention system passes T ,N , and Y via k
different linear changes before splicing different attention
outcomes. With exact self-attention process T ,N , and Y all
have identical numbers as in Eq. 20.

MultiHead (T ,N ,Y ) = Concatenation (H1,H2, ..Hk)

(20)
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Here, H denotes the head. Feed-forward systems based on
location. Aside from the attention sub-layer, every encoder
layered includes a fully linked forward feedback circuit with
a two-layer linear transform with a ReLU activating function.
Then, the transformer model forwarded the processed image
to the Resnet framework for further processing of the images.

H. RESNET FRAMEWORK OF PRESENTED COMPUTING
MODEL
The ResNet model serves to mitigate the issue of vanishing
gradients [29]. It comprises one of the frameworks created
to overcome challenges in deep learning training since
deep learning development requires an extended period and
is restricted to a specific number of levels in general.
ResNets paradigm has a benefit over other designs because
its efficiency remains unchanged as the design becomes
deeper. Furthermore, compute computations are thinner, and
the capacity to teach networks is improved. The ResNet
architecture operates by ignoring links between two and
three layers of designs that feature ReLU and BN. ResNet’s
residual block has been outlined using Eq. 21.

b = I (a,Z + a) (21)

Here, the term a denotes the input data component, b denotes
the outcome layer, and the residual mapping represents
theI functional. Residual blocking on ResNet is possible
when the source data sizes match the output information
parameters. Furthermore, every ResNet block is made up
of two or 3 layers. The first two layers of the design of
ResNet are similar to GoogleNet. ResNet strengths have
been set employing Stochastic Gradient Descent (SGD) with
typical velocity settings. Finally, the ResNet framework
passed the processed images to the DenseUnet++model and
the final segmented image outcome is obtained through this.
The developed 3D-TR-DUnet model has demonstrated good
performance in tumour segmentation, tissue segmentation,
and defect identification. It can handle complicated and
varied anatomic components, making it an important tool
in healthcare image processing. The designed 3D-TR-
DUnet++-based segmentation model offered the segmented
image output and defined using DRSEGU . The graphical illus-
tration of the segmentation performance with the developed
3D-TR-DUnet++ model is provided in Fig. 5.

VII. ADAPTIVE AND ATTENTIVE BASED RESIDUAL
DENSENET WITH GATED RECURRENT UNIT FOR KIDNEY
TUMOR CLASSIFICATION MODEL
A. GATED RECURRENT UNIT
GRU is a Long Short Tem Memory (LSTM)-based variation
network [31]. It merges the forget gate as well as the input
gate from an LSTM through an updating gate, preserving the
impact generated by the LSTM but simplifying its design.
As a result, theGRU exploited training as a long-term reliance
characteristic. A basic GRU structure is shown in Fig. 6.
The GRU needs to merely upgrade gate CW along with reset
gateUW . The GRU persistent dependency training blocks

FIGURE 5. Graphical illustration of the segmentation performance with
developed 3D-TR-DUnet++ model.

compute the concealed states using an array of coefficients
written using Eq. 22.

CW = ς
(
Z (C)

· [KW−1,AW ]
)

UW = ς
(
Z (U)

· [KW−1,AW ]
)

KW = tanh (Z · [UW ∗ KW−1,AW ])

KW = (1 − CW ) ∗ KW−1 + CW ∗ KW (22)

In Eq. 21, the updating gateCW regulates how prior state data
is replaced in the present state, while the resetting gate UW
regulates the degree to which past value data is discarded.
The activation factor is ς . The candidate activating operation
KW is calculated using the reset gate’s UW (which controls
the extent to which prior data is maintained) and represents
the elementwise multiple operations. Lastly, KW reflects the
suggested GRU unit’s real activation at a time W that is a
linear regression between the prior activation KW−1 with the
potential activity KW .
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FIGURE 6. Basic structure of GRU.

B. RESIDUAL DENSENET
The Residual DenseNet [32] comprises the deep extraction
of features, Residual Dense Block (RDBs), a dense fusion of
features (DFF), and subsequently the up-sampling network
(UPNet). Let’s define LPT as well as LKT called RDN’s
inputs as well as its outputs. For the extraction of deep
amenities, two convolutional layers are deployed. The term
I−1characteristics are taken away using the PT source from
the initial convolutional module via Eq. 23.

I−1 = KVIH1 (LPT ) (23)

Here, the term KVIH1 specifies the transformation method,
I1 is next used to execute incremental shallow extraction of
features and residual block. As a result, Eq. 24 is obtained as
an outcome.

I0 = KVIH2 (I−1) (24)

Here, the termKVIH2 entails the subsequent deep extraction
of features and the convolution technique that is utilized as a
source of residual dense units. If there are G residual dense
structures, gets the final result Igcorresponding to the gth RDB
using Eq. 25.

Ig = KRDB,g
(
Ig−1

)
= KRDB,g

(
KRDB,g−1

(
. . .
(
KRDB,1 (I0)

)
..
))

(25)

Here, the term KRDB,g implies the gth RDB’s functioning,
andKRDB,gmight serve as a synthesis of procedures like com-
pression and ReLU.While Ig is formed out of the gth RDB via
fully making use of every layer of convolution throughout
the unit, can be considered Ig to be a local characteristic.
Then dense Feature of features (DFF), following collecting
complex characteristics from an assortment of RDBs. DFF
takes advantage of each of the previous layers’ aspects and is
capable of being expressed in Eq. 26.

IDF = KDFF (I−1, I0, I1, ..IG) (26)

FIGURE 7. Architectural representation of the residual densenet model.

The resultant function of residual densenet is offered in
Eq. 27.

Rs = KRDN (IPT ) (27)

Here, the term Rs is the resultant residual densenet. The
architecture of the Residual denseNet is shown in Fig. 7.

VIII. PROPOSED AA-RD-GRU-AIDED KIDNEY TUMOR
CLASSIFICATION
The segmented imagesDRSEGU are given as the input to the
developed AA-RD-GRU-based kidney tumour classification
model. Here, the developed framework combining Residual
DenseNet and GRU helps to solve the problem of increasing
complexity of models that can reduce additional processing
time and materials for both training and inference. Further-
more, combining these two designs may increase the chance
of overfitting. To overcome such drawbacks, a model should
be properly tuned, so the parameters like hidden neurons,
epochs, and step per epoch are optimized in the developed
AA-RD-GRU model by the developed MCOA algorithm
to enhance the accuracy and we introduced an attention
layer within the framework to mitigate the issues mentioned
above. The attention mechanism enables the framework
to concentrate on important areas or characteristics in
imaging tests, hence increasing the classification process’s
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FIGURE 8. Depiction of the proposed AA-RD-GRU-aided kidney tumor classification model.

comprehension. The attention mechanism may successfully
highlight significant information while suppressing unnec-
essary or distracting data. Finally, the developed AA-RD-
GRU-based kidney tumour classification model allows for
recording the spatial linkages and interconnections among
various parts of the tumour, which improves classification
outcomes, and then, the developed model offers the classified
image outcome. Eq. 28 shows the objective function HRtTF
of the developed AA-RD-GRU-based kidney tumor classifi-
cation model.

HRtTF = arg min{
GARGRUg ,HARGRU

h ,IARGRUi

}
(

1
ArTRl

)
(28)

Here, the term ArTRl is the accuracy, and its expression
is given in Eq. 29, GARGRUg defines the hidden neurons
in AA-RD-GRU in the range of[5, 255], and the terms

HARGRU
h andIARGRUi are the epochs and step per epoch in AA-

RD-GRU in the range of [5, 50] and [300, 1000].

ArTRl =
(GyBT + FqEC )

(GyBT + FqEC + OuEX + NsID)
(29)

Here, the term pt indicates the true positive, nt defines
the true negative, nf represents the false negative, and pf
denotes the false positive, respectively. The diagrammatic
depiction of the proposed AA-RD-GRU-aided kidney tumour
classification model is illustrated in Fig. 8.

IX. RESULT AND DISCUSSION
A. EXPERIMENTAL SETUP
The developed system was executed using the Python
platform and used 30 populations, 3 chromosome lengths,
and a maximum iteration was 50 to complete the process.
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The effectiveness of the designed framework was validated
through the comparison with different existing classifiers
like CNN [30], Residual Densenet [31], [32]GRU, Residual
DenseNet with GRU (RD-GRU) [33], the segmentation
models like UNET [34], ResUnet [35], ResUnet++ [36]
and DenseUnet++ [37], and the optimization approaches
like Tuna Swarm Optimization (TSO) [38], Fire Hawk
Optimizer (FHO) [39], Circle Search Algorithm (CSO) [40]
and COA [25].

B. PERFORMANCE MEASURES
The subsequent measures aid in evaluating the developed
model.

(a) The Matthews correlation coefficient (MCC) can be
done by Eq. 30.

CmC =
GyBT × FqEC − OuEX × NsID√(
(GyBT + OuEX )(GyBT + NsID)
(FqEC + OuEX )(FqEC + NsID)

) (30)

(b) False Negative Rate (FNR) is identified via Eq. 31.

NeF =
NsID

NsID + GyBT
(31)

(c) PrecisionRp is obtained utilizing Eq. 32.

Rp =
GyBT

GyBT + OuEX
(32)

(d) Sensitivity is resolved by Eq. 33.

YeS =
GyBT

GyBT + NsID
(33)

(e) F1-Score can be recognized by Eq. 34.

E1S =
2 ∗ GyBT

2 ∗ (GyBT + OuEX + NsID)
(34)

(f) False Positive Rate (FPR) is estimated by Eq. 35.

PeF =
OuEX

OuEX + FqEC
(35)

(g) Negative Predictive Value (NPV) is classified by
Eq. 36.

RpV =
OuEX

NsID + OuEX
(36)

(h) Specificity is evaluated using Eq. 37.

YsP =
FqEC

FqEC + OuEX
(37)

(i) False Discovery Rate (FDR) can be defined by Eq. 38.

BrF =
OuEX

OuEX + GyBT
(38)

(j) The formulation of the Dice coefficientDyT can be
obtained using Eq. (39).

DyT = 2 ×

∣∣GGsGTY ⋂
DRSEGU

∣∣∣∣GGsGTY ∣∣+ ∣∣DRSEGU

∣∣ (39)

(k) The formulation of the Jaccard coefficient JyT can be
obtained using Eq. (40).

JyT =

∣∣GGsGTY ⋂
DRSEGU

∣∣∣∣GGsGTY ∣∣+ ∣∣DRSEGU

∣∣− ∣∣GGsGTY ⋂
DRSEGU

∣∣ (40)

Here, the term GGsGTY indicates the ground truth images.

C. DEVELOPED 3D-TR-DUNET++-BASED SEGMENTED
IMAGES RESULTS
The developed 3D-TR-DUnet++-based segmented image
results are provided in Table 3.

D. SEGMENTATION PERFORMANCE ON THE DESIGNED
FRAMEWORK
The designed 3D-TR-DUnet++-based segmentationmodel’s
performance based on dataset-1 and dataset-2 are shown in
Fig. 9. The proposed 3D-TR-DUnet++-based segmentation
model given the dice coefficient value is 9.24% more than
UNET, 3.65% superior to ResUnet, 4.52% enhanced than
ResUnet++, and 3.44% increased than DenseUnet++when
examining the best function. The result proved that
the proposed 3D-TR-DUnet++- segmentation framework
supports accurately segmenting and diagnosing different
kinds of kidney cancers and gives critical information for
generating customized treatment strategies according to
tumour features.

E. CONVERGENCE ANALYSIS ON THE DEVELOPED MODEL
The designed MCOA-AA-RD-GRU-based classification
model’s convergence performance is shown in Fig. 10. The
proposed MCOA-AA-RD-GRU-based classification model
offered the cost function is 52.26% more than TSO-AA-
RD-GRU, 52% superior to FHO-AA-RD-GRU, 49.57%
enhanced than CSO-AA-RD-GRU, and 40% increased
than COA-AA-RD-GRU when 10th iteration. The result
proved the proposed MCOA-AA-RD-GRU-based classifi-
cation model enables individualized and focused treatment
plans, resulting in excellent healthcare for patients and
results. It also helps identify kidney tumours, allowing for
swift action and a greater likelihood of survival.

F. DATASET-1-BASED CLASSIFICATION PERFORMANCE
EVALUATION ON THE RECOMMENDED MODEL
Fig. 11 and 12 illustrate the performance results of the created
MCOA-AA-RD-GRU-based classification model compared
to current classifiers and optimization methodologies consid-
ering dataset 1. The proposed MCOA-AA-RD-GRU model
given the accuracy is 16.35% more than CNN, 17.73%
superior to Residual DenseNet, 9.88% enhanced than GRU,
1.95% increased than RD-GRU, 8.32% improved than PBS-
SO-OHFD and 0.91% effective than IDF-HBA-OEC at 200th
epoch. The result confirmed the suggested MCOA-AA-
RD-GRU system helps physicians plan medical procedures
by assuring optimal tumour eradication while maintaining
normal kidney cells, as well as selecting possible scenarios
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FIGURE 9. Segmentation performance on the designed framework.
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TABLE 3. Developed 3D-TR-DUnet++-based segmented images results.

FIGURE 10. ROC analysis on the developed MCOA-AA-RD-GRU-based classification model regarding (a) Dataset-1, and
(b) dataset-2.
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FIGURE 11. Dataset-1-based classification performance evaluation on the recommended model.
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FIGURE 12. Dataset-1-based algorithm performance evaluation on the recommended model.
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FIGURE 13. Dataset-2-based classification performance evaluation on the recommended model.
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FIGURE 14. Dataset-2-based algorithm performance evaluation on the recommended model.
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FIGURE 15. ROC Analysis on the developed MCOA-AA-RD-GRU-based classification model regarding (a) Dataset-1, and (b) dataset-2.

TABLE 4. Overall comparison evaluation of the recommended model with existing algorithms.

for elective procedures such as an operation, which reduces
patient suffering and time to recovery.

G. DATASET-2-BASED CLASSIFICATION PERFORMANCE
EVALUATION ON THE RECOMMENDED MODEL
Fig. 13 and 14 illustrate the performance results of the created
MCOA-AA-RD-GRU-based classification model compared
to current classifiers and optimization methodologies con-
sidering dataset 2. The NPV of the proposed MCOA-AA-
RD-GRU model is 8.77%, 11.75%,8.65%, 4.93%, 3.16%,
and 2.27% effective than CNN, Residual Densenet, GRU,
RD-GRU, PBS-SO-OHFD and IDF-HBA-OEC at 200th
epoch. The recommended MCOA-AA-RD-GRU-based clas-
sification model offered a precision is 16.54% more

than TSO-AA-RD-GRU, 13.96% superior to FHO-AA-RD-
GRU, 11.5% enhanced than CSO-AA-RD-GRU, and 7.22%
increased than COA-AA-RD-GRU at 300th epoch. The
result proved the proposed MCOA-AA-RD-GRU framework
provides vital information for the study and creation of unique
ways for treatment.

H. ROC ANALYSIS ON THE DEVELOPED MODEL
Fig. 15 shows the ROC analysis of the developed model.
The developed model provided the true positive value is
2.08%, 4.255%, 8.88%, and 13.95% more effective than
CNN, Residual DenseNet, GRU, and RD-GRU when the
false positive is at 0.4. The result confirmed that the

85656 VOLUME 12, 2024



V. V. Patel et al.: Systematic Kidney Tumour Segmentation and Classification Framework

TABLE 5. Overall comparison evaluation on the recommended model with existing classifiers.

TABLE 6. Statistical analysis on the recommended model.

developed model outscored the performance of other models
by providing the best analysis.

I. OVERALL COMPARISON EVALUATION OF THE
RECOMMENDED MODEL WITH EXISTING ALGORITHMS
Table 4 shows the comparison analysis of the developed
MCOA-AA-RD-GRU-based classification model compared
to current optimization approaches considering dataset-1
and dataset-2. The recommended MCOA-AA-RD-GRU-
based classification model offered the F1-Score is 19.21%
more than TSO-AA-RD-GRU, 13.67% superior to FHO-
AA-RD-GRU, 10.18% enhanced than CSO-AA-RD-GRU,
and 6.99% increased than COA-AA-RD-GRU in database-
1. The recommended MCOA-AA-RD-GRU model given
the Recall is 9.39% more than TSO-AA-RD-GRU, 7.87%
superior to FHO-AA-RD-GRU, 5.65% enhanced than
CSO-AA-RD-GRU, and 3.3% increased than COA-AA-
RD-GRU in database-2. The result proved the proposed

MCOA-AA-RD-GRU framework helps patients make more
educated decisions by giving themmore knowledge regarding
their tumour type, outcome, and available treatments.

J. OVERALL COMPARISON EVALUATION ON THE
RECOMMENDED MODEL WITH CLASSIFIERS
Table 5 demonstrates the performance results of the created
MCOA-AA-RD-GRU-based classification model compared
to current classifiers and optimization methodologies consid-
ering dataset 1. The proposed MCOA-AA-RD-GRU model
given the specificity is 7.73% more than CNN, 8.99%
superior to Residual Densenet, 4.21% enhanced than GRU,
2.02% increased than RD-GRU, 2.41% improved than PBS-
SO-OHFD and 1.02% effective than IDF-HBA-OEC in
dataset-1. The FPR of the proposed MCOA-AA-RD-GRU
model is 63.86% more effective than CNN, 71.39% better
than Residual Densenet, 55.8% superior to GRU, 40.47%
better than RD-GRU, 32.68% improved than PBS-SO-OHFD
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and 21.97% effective than IDF-HBA-OEC in dataset-2. The
result confirmed the suggested MCOA-AA-RD-GRU system
guarantees accuracy and uniformity in the evaluation of
tumours, lowering variation and enhancing overall control of
quality in the testing process.

K. STATISTICAL ANALYSIS ON THE RECOMMENDED
MODEL
Table 6 shows the statistical analysis of the developed
MCOA-AA-RD-GRU-based classification model regarding
dataset-1 and Dataset 2. The recommended MCOA-AA-
RD-GRU-based classification model offered the best value
is 14.28% more than TSO-AA-RD-GRU, 14.6% superior
to FHO-AA-RD-GRU, 26.57% enhanced than CSO-AA-
RD-GRU, and 12.3% increased than COA-AA-RD-GRU in
database-2. The result proved the proposed MCOA-AA-RD-
GRU framework inspires patients by helping them with their
cancer kind, allowing individuals to actively engage in the
therapeutic process.

X. CONCLUSION AND FUTURE DIRECTION
The developed kidney tumour segmentation and classifi-
cation model based on a deep learning strategy helped in
the initial identification of kidney tumours, allowing for
swift action and a greater likelihood of survival. Initially,
the input CT images were collected from regular sources.
The images are subsequently inputted into the developed
3D-TR-DUnet++ system for segmentation. The segmented
images then proceeded to the classification phase. To classify
kidney tumours, an AA-RD-GRU-based classification model
was developed. The parameters in the developed AA-
RD-GRU system like hidden neurons, epochs, and step
per epoch, were optimized using the suggested MCOA
to enhance accuracy. The performance was validated with
the conventional model and showed its effectiveness than
others. During comparison, the precision of the proposed
MCOA-AA-RD-GRU-based classification model is 7.45%
more than CNN, 10.74% superior to Residual Densenet,
5.24% enhanced than GRU, 2.76% increased than RD-
GRU, 1.95% improved than PBS-SO-OHFD, and 1.13%
effective than IDF-HBA-OEC. The standard deviation of
the recommendedMCOA-AA-RD-GRU-based classification
model is 55% more than TSO-AA-RD-GRU, 75.1% superior
to FHO-AA-RD-GRU, 61% enhanced than CSO-AA-RD-
GRU, and 99.38% increased than COA-AA-RD-GRU. The
result confirmed the suggested MCOA-AA-RD-GRU system
helps create efficient follow-up plans depending on the
features of the tumour, guaranteeing prompt recognition of
migration or recurring. The implemented kidney tumour
classification system offered highly accurate outcomes.
Moreover, it minimizes the computational burdens. However,
while processing large-scale datasets, the quality of the
outcome is minimized. Hence, in future work, more effective
techniques will be integrated into the suggested work to
improve the quality of the outcome. Moreover, the designed
system has not classified the cancer subtypes. Therefore,

in future work, the designed kidney tumour classification
system will be improved for classifying the tumour subtypes
to offer valuable data for further experiments. This will also
support medical experts in making better treatment decisions.
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