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ABSTRACT Transition graphs or transition diagrams, describing the rates and probabilities with
which a system changes between discrete states, are common throughout the sciences. In many cases,
parameterisations of transition graphs are inferred from different datasets, for example in the context of
Markov or hidden Markov models. An important task for followup analysis is to find efficient and effective
ways to compare transition graphs with different parameterisations. Here, we introduce theWeight-Filtration
Comparison Curve (WFCC), an approach by which the differences between two or more parameterisations
of a transition graph can be quantified and compared. Borrowing from topological data analysis, the
WFCC allows graphs learned from different datasets and/or null models to be systematically compared,
and differences in both the fine- and coarse-grained structure and dynamics of transition graphs to be
quantitatively assessed. We demonstrate WFCC with simple illustrative cases and real-world cases of
transition graphs inferred from global data on the evolution of antimicrobial resistance in different countries,
showing how different inferred dynamics, and different levels of uncertainty, are reported by structural
aspects of these comparison curves.

INDEX TERMS Transition graphs, Markov models, filtration curves, topological data analysis, anti-
microbial resistance.

I. INTRODUCTION
Systems across the natural sciences are often modelled
with a discrete ‘state space’, describing every state the
system can exist in, and a ‘transition graph’ (also ‘diagram’
or ‘matrix’) describing the system’s propensity to make
transitions between these states. This picture is at the root
of Markov and hidden Markov models [1], [2], [3], where
the future behaviour of a system depends only on its
current state and not its history. These models are used
across the sciences: some examples from biology [4], for
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instance, include modelling dynamics of disease spread-
ing [5], animal movement [6], a wide range of uses in
evolutionary biology fromDNA sequence evolution [7] to the
dynamics of particular evolving systems like mitochondrial
DNA [8] or antimicrobial resistance [9], and tracking the
dynamics of cancer progression in ‘accumulation modelling’
which explicitly or implicitly captures Markovian transitions
between states [10], [11]. A common task in these fields is,
given some observations of a system, to learn the parameters
of the transition graph that best describe its behaviour.
This parameterisation can then be interpreted scientifically,
to describe and/or make predictions about the system.
Specifically, if the state space is S = {S1, S2, . . . , Sn}, we are
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interested in the matrix θ , where θij gives either a transition
rate (in continuous time) or transition probability (in discrete
time) from Si to Sj.

Well-established approaches exist for estimating these
transition parameters from observations, including estimation
directly from observations for Markov chains [12], [13] and
the Baum-Welch algorithm for hidden Markov models [14].
A subsequent task is to compare such parameter estimates
across different cases. For example, if we estimate transition
rates for a cancer progression model from data, do the
parameters differ when we look at male versus female
patients? Or if we estimate evolutionary transition rates for
bacteria acquiring drug resistance, do the parameters differ
for bacteria in different geographical regions? Addressing
these questions requires a method to quantify the differences
between differently-weighted transition graphs.

The general topic of graph comparison has several
well-developed branches of literature. Graphs of different
topology (such as degrees, connectivity, centrality, etc) can
be compared using graph isomorphism approaches [15],
set-theory [16], [17], by defining a distance that informs
about structural similarities [18], by looking at matching
subgraphs [19], [20] or by comparing neighbourhoods of
vertices [21], [22]. All these methods can be used to compare
unweighted graphs with different underlying structures.
We highlight the work in [23] where a metric is defined
also to compare directed weighted graphs with the same
number of vertices [23, Eq 6], and a pseudometric is
presented for directed weighted graphs of different dimension
[23, Thm 1]. Recently, methods based on graph filtrations
have been proposed to compare graphs [24], [25]. These
methods put the focus on the weights of the edges, and they
make it possible to consider different types of features (like
connected components or edge repetitions) and to localise
when differences between graphs appear or disappear.

In comparing transition graphs, however, we are usually
more interested in comparing graphs with the same topology
but different edge weightings. This task connects to the
related field of comparing adjacency matrices (matrices
describing the weights graph edges). Approaches here
include spectral methods [26], [27], the general graph
distance induced by a distance on the adjacent matrices
[27, Eqn 20] and graph kernels [26], [27]. Our work is aligned
to the literature employing the l1-metric [28, Def 3.6], also
called the Manhattan distance [29], between two adjacent
matrices, as we do use this metric in our method as a final
step to give an overall readout of the dissimilarity of a pair of
graphs. However, these adjacency matrix methods typically
do not give information about when differences between
graphs appear or disappear, nor about the magnitude of these
local differences.

To facilitate this finer-grained analysis of differences
between transition graphs, we here present a method, named
Weight-Filtration Comparison Curve (WFCC), to visually
and quantitatively compare graphs with the same vertices and

edges, but different weights on their edges. The framework
of this comparison method is general and versatile, with
the potential to be applied to a wide range of problems.
Our method follows a current trend in graph comparisons
connected to topological data analysis (TDA): transforming
the weighted graph into an edge-filtration (a nested sequence
of edge sets) formed by gradually adding edges at different
thresholds or filtration values [24], [25]. We then quantify
differences between edge sets with the symmetric difference
metric, which has been applied to unfiltered graphs in the
classical work [30, Sec 1.8.5], and recently, in [31] to
unfiltered simplicial complexes that represent mathematical
models.

II. METHODS
A. EDGE-FILTRATIONS ON GRAPHS
We begin with a graph G = (V ,E,w), with vertices V and
edges E , and with each edge e ∈ E having a corresponding
weight w(e).
Definition 1: Let G = (V ,E,w) be a weighted graph.

The edge-filtration on G is the nested sequence of sets
. . . ⊆ Kt1 ⊆ Kt2 ⊆ Kt3 ⊆ . . . where ti ∈ R (called the
filtration value or threshold) and

Kti = {e ∈ E | w(e) ≤ ti}.

The edge-filtration {Kt }t∈R is indeed nested, since if t ≤ s and
w(e) ≤ t , then w(e) ≤ s, so we have inclusions of sets Kt ⊆

Ks. This filtration starts capturing the edges with the smallest
weights and progressively adds stronger edges with higher
weights. Note that the set {(V ,Kt ,w|Kt )}t∈R defines a nested
sequence of weighted graphs, also called graph-filtration.

B. SYMMETRIC DIFFERENCE METRIC AS A FUNCTION OF
THE FILTRATION VALUE
We next compare edge-filtrations on two graphs by con-
sidering the symmetric difference of the filtration sets in
each filtration value. The symmetric difference gives the
cardinality of the non-common elements in two sets, that is,
the number of elements that are in one of the sets but not in
the other:
Definition 2: Let S be a set of sets. The symmetric

difference metric on S is the function d1 : S × S → R
where

d1(K ,L) = |K1L| = |(K \L)∪(L\K )| = |(K∪L)\(L∩K )|.

Note that the symmetric difference metric is indeed a
metric as it is positive definite, symmetric, reflexive and
satisfies the triangle inequality, as shown in [30, page 16].

Now if {Kt } and {Lt } are edge filtrations of the same
underlying graphG = (V ,E), we can for each filtration value
t ∈ R consider the symmetric difference d1(Kt ,Lt ). In this
case we have S equal to the set of all subsets of E . By looking
at the symmetric difference at each filtration step we localise
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at which stages the weighted graphs differ and for how long
those differences persist.

In our method, we plot the symmetric difference metric
as a function of t , visualising it as a curve. Then, to give a
readout of this metric across all filtration values, we compute
the area under the curve. We show that this area corresponds
to a metric (Proposition 1), and it turns out that it is exactly
the l1-metric.

On the sets of the symmetric difference {Kt1Lt } we can
measure other features besides the number of elements, like
the number of connected components as in [24] and [25], the
number of nodes, or the Euler characteristic (which might be
negative). This shows that our framework is general, flexible
and applicable for a wide variety of problems and contexts.
Note that the sets of the symmetric difference {Kt1Lt } do not
form a filtration nor a zigzag filtration [32, Sec 2.2], [33].

C. THE WFCC ALGORITHM FOR COMPARING WEIGHTED
GRAPHS
In this sectionwe present the algorithm of ourWeight-Filtration
Comparison Curve (WFCC) method (Algorithm 1) to
compute the symmetric difference metric as a function of the
filtration value.

Algorithm 1 Weight-Filtration Comparison Curve
(WFCC): Algorithm for the Symmetric Difference as a
Function of the Filtration Value
Input: A graph G = (V ,E) with two weightings w1 and w2.
Output: A list of unique edge weights, together with a list of
the cardinality of the symmetric difference of the weighted
graphs for each of these edge weights.
1: Let fVals be the sets of unique edge weights in w1 and
w2. If computationally required, choose a smaller set of
values (see text).

2: Let Card be a zero-array with each entry corresponding
to a filtration value v in fVals.

3: for edge e in E do
4: Find the pair (min{w1(e),w2(e)},max{w1(e),w2(e)})

giving the interval of filtration values where the edge e is
in one graph but not in the other.

5: for v in fVals do
6: ifmin{w1(e),w2(e)} ≤ v < max{w1(e),w2(e)}

then:
7: Card[v] += 1
8: end if
9: end for

10: end for
11: return (fVals, Card).

In Algorithm 1, every unique edge weight in the two graphs
is considered. For large graphs this may be computationally
intractable. In this case, the set fVals can be taken to be a
coarser-grained alternative, accepting that the details of the
WFCC curve between individual values may be lost. For the
cases explored here, this coarse-graining is not necessary; if

it is used, we suggest exploring the influence of the choice
of scale on the results to ensure robustness. Note that the
complexity of WFCC 1 is O(|E| · |fVals|), where |fVals| ≤

2|E|. If G is a hypercube (Def 3) of dimension n, then the
number of edges is |E| = 2n−1n. Plotting the output curve
of WFCC 1 we get a read-out of how much and when the
weightings on a graph differ, the idea being that the lower
the curve the more similar the weightings are (see Fig. 1 for
a concrete example). For a more quantitative approach, and
to provide a read-out of the level of dissimilarity across all
filtration values, we can consider the area under the curve of
the symmetric difference metric as a function of the filtration
value.

D. INTEGRATION TO SCALAR METRIC FOR WEIGHTINGS
OF GRAPHS
As a final step in our approach, we consider the area under the
WFCC 1 curve. This area turns out to be exactly the l1-metric
[28, Def 3.6] between the weightings. We calculate the area
in the exact case when fVals = R. Let G = (V ,E) be a graph
with two weightingsw1 andw2. Note that a single edge e ∈ E
influences the cardinality of the symmetric difference only for
filtration values t between w1(e) and w2(e), and in this range
it changes the cardinality by 1. Integrating over t gives a total
contribution of 1 ∗ |w1(e) − w2(e)|, where |w1(e) − w2(e)| is
the length of the range where they differ. To get the total area,
we simply sum the contribution of each of the edges.
Proposition 1: Consider a graph G = (V ,E). Let w1 and

w2 be weightings of G with edge-filtrations {Kt } and {K ′
t }

respectively. The area under the curve d1(Kt ,K ′
t ) for all t is

precisely the l1 − metric between the weightings

d(w1,w2) =

∑
e∈E

|w1(e) − w2(e)|.

The l1-metric is indeed a metric since the triangle
inequality is inherited from the absolute value, and the rest
of the properties are straightforward to check. The distance
between two weightings can be calculated in linear time
O(|E|) as it is just the sum over all edges. However, for the
case of a hypercube of dimension n (Def 4), the number of
edges is 2n−1n which is exponential with respect to n. These
fast computations are an advantage, as classical methods
from computational topology often involve much higher
complexity.

Note that to compute the l1-metric for two weightings,
one does not need to construct a filtration first. However,
if we ignore the filtration approach, we cannot detect local
dissimilarities and their persistence in the structures of the
graphs, or get simplified representations of the graphs at
different thresholds.

E. DATA COLLECTION
We obtained data on sequenced, drug-resistant Mycobac-
terium tuberculosis isolates from the BV-BRC database [34].
Specifically, we downloaded the ‘Genome’ and ‘AMR
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Phenotypes’ datasets from the online interface at https://
www.bv-brc.org/view/Taxonomy/1773#view_tab=genomes.
Cross-referencing by Genome ID, we recorded countries
of origin for each record, along with susceptible/resistant
patterns for every recorded drug (in the database, some
susceptibility data are experimentally measured, and some
are inferred from genome information). We treated ‘inter-
mediate’ resistance records as ‘resistant’ for this case study.
We retained records for the nine drugs for which > 100k
records were available (ofloxacin, ethambutol, isoniazid,
streptomycin, capreomycin, rifampin, kanamycin, amikacin,
pyrazinamide), which overlap with the drugs analysed in
previous work [9]. We discarded records with any missing
data for these drugs, and subsetted by country of origin.
In this illustrative case, we retain only unique drug resistance
patterns, to guard against pseudoreplication (see Discussion
in Sec IV).

F. NUMERICAL IMPLEMENTATION
Our method finding the filtrations on edges and plotting the
curves of their symmetric difference metric, as described
above in WFCC 1, is implemented in Python using the
NumPy library [35], and for visualisations we use Pan-
das [36], Matplotlib [37] and Seaborn [38]. For additional
visualisations in R we used the libraries ggplot2 [39] and
ggraph [40]. The code can be found in https://github.com/
lar-sal/WFCC.git.

HyperHMM was implemented according to [41]. The
convergence criterion for the Hypercubic Baum-Welch
Algorithmwas set to 0.001. To estimate the uncertainty of the
algorithm we used 10 bootstrap resamples of 10000 random
walkers each of observed transitions and reported the
standard deviation and mean of the resamples.

The weights of the hypercube are obtained by running
HyperHMM on the different resistance datasets described
above. As output we obtained a list with the transition
probabilities from one possible resistance pattern to another,
so exactly one number for every edge in the transition graph.
This output is unique if we run the algorithm again.

III. RESULTS
A. TOY ILLUSTRATION OF WFCC
In Fig. 1 we see an example of how WFCC compares two
different 2-dimensional hypercubes. The area under the curve
can be computed as d(w1,w2) =

∑4
i=1 |w1(ei)−w2(ei)| = 1

by Prop. 1.
This analysis applies WFCC to the ‘raw’ probabilities

associated with each edge in the transition graph. How-
ever, the dynamics of a given system are not determined
exclusively by these edge weights, but also by an initial
condition. The probability ‘flux’ (Def 5) through a given
edge in the graph depends both on the edge’s weight and the
probability that its source node is occupied. Inmany scientific
applications, it is these patterns of flux – the probabilities
that a system actually makes given transitions – that are of

most interest to compare and analyse. WFCC can naturally
be applied to both the ‘raw’ edge weights and the edge fluxes,
as we will illustrate further below.

B. INTERPRETING WFCC CURVES
Generally, a WFCC valueW at a given t makes the statement
that there are W edges with weights ≤ t in one graph that
have weights > t in the other. A WFCC of zero means that
the same set of edges has weights ≤ t in both graphs; a high
WFCC value means that the sets of edges with weight ≤ t in
the two graphs are highly disjoint. The WFCC for t = 1, for
transition graphs, is always zero, as all edges in both graphs
will have weights ≤ 1.
A strength of the WFCC method is that, while the differ-

ence curve integrates to the simple l1-metric, the details of the
curve provide information on the similarities and differences
of the transition graphs, like how big these differences are
and where they appear. To help interpret these details, we will
introduce some definitions. For a fixed filtration value, we say
that an edge is common for the two weightings/graphs if it
lies in the same (higher/lower) partition-set, and non-common
if it lies in different partition-sets for the two graphs. The
l1-metric gives a readout of the symmetric difference metric
curve across all filtration values, as it is exactly the area under
this curve (Prop. 1).
We now consider how a single edge affects the curve

obtained by the WFCCmethod, and we discuss how multiple
edges act together. Let (V ,E,w1) and (V ,E,w2) be two
weighted graphs with the same graph structure. We first note
that edges e ∈ E whose weights in both graphs are the
same, i.e. w1(e) = w2(e), do not contribute to the curve.
If the weights differ, say w1(e) < w2(e), then the edge e
will contribute to the curve by increasing its value by 1 in
the interval [w1(e),w2(e)). In particular, a small difference
in weight will give the curve a small ‘bump’, whereas bigger
differences contribute to the curve over most filtration values,
resulting in longer ‘plateaus’. The symmetry of the symmetric
difference means that interchanging the weights w1(e) and
w2(e) does not change the final curve.
We make some important observations when it comes to

how two or more edges can contribute together. First, if the
intervals corresponding to two edges intersect, then swapping
the start- or endpoints of the intervals does not change the
curve. For the example in Fig. 1, we have two intervals
[0.2, 0.7) and [0.3, 0.8) contributing to the curve. By setting
w2(e1) = 0.8 and w1(e2) = 0.7, we get the intervals
[0.3, 0.7) and [0.2, 0.8) which will give exactly the same
curve. Bumps can also correspond to the intersection of such
intervals. Second, it can happen that an interval starts exactly
where another one ends, which would be indistinguishable
to a single edge with a higher weight difference, in both
cases producing a plateau. For example, if one edge has
weights 0 and 0.5 and another has weights 1 and 0.5, they
raise the curve on [0, 0.5) ∪ [0.5, 1) = [0, 1), the same as a
single edge with weights 0 and 1.
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FIGURE 1. Toy example of Weight-Filtration Comparison Curve (WFCC). (top) Two transition
graphs (here, 2D hypercubic transition graphs) with the same vertex and edge sets V and E but
different edge weights w1 and w2. (centre) The sets of edges retained for each graph through
filtration with different thresholds t . (bottom) The symmetric difference metric comparing
retained edge sets as a function of threshold t . The curve starts at t = 0 with value 0 (both
graphs have identical, empty, sets of edges with t ≤ 0), rises to 1 (G1 has w1(e1) ≤ 0.2, G2 does
not), then 2 (each graph has one edge with w ≤ 0.3 that the other does not), before falling as the
mismatched edges survive the higher threshold values. The area under the curve is the l1-norm.

More broadly, if two graphs share some similar features
but differ in others, the position on the t-axis at which peaks
and troughs occur can inform us about these differences.
A high WFCC at low t that decreases at higher t arises from
two graphs that differ in their complements of low-weight
edges (low-probability transitions) but share similarities in
higher-weight edges (high-probability transitions), and may
therefore support similar dynamics with different ‘variations
on a theme’. We will see that WFCC peaks at low t ,
arising from different presence/absence patterns of low-
weight edges, are often matched by peaks at higher t values,

presenting a ‘trough’ at medium t values. This is because the
low-weight edges necessarily (since probabilities sum to one)
remove some probability from higher-weight edges from the
same source, leading to differences at higher t values.

C. WFCC METHOD APPLIED TO SIMPLE SYNTHETIC
TRANSITION GRAPHS
To illustrate the general ideas presented in Sec III-B,
we examine the WFCC curves corresponding to differences
between some simple transition graphs. Motivated by the
field of evolutionary accumulationmodelling, where a system
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irreversibly acquires binary traits one-by-one [10], [11],
we consider hypercubic transition graphs (Def 4). We first
consider a variety of simple 3-dimensional hypercubic
transition graphs with different edge weights (Fig 2).
We begin by considering the raw transition probabilities,

and later we consider the flux. We start by comparing a
graph supporting ‘branching’ dynamics (first state 1, then
either state 3 or state 5, then state 7) to two alternatives: a
‘noisier’ graph supporting the same core dynamics but with
alternative pathways supported at low probability, and a graph
supporting only one deterministic pathway (first state 1, then
state 5, then state 7) (Fig. 2 A). In the noisier case, the
low-probability alternative edges (with weights close to zero)
contribute to the symmetric difference at low t . The difference
then vanishes for intermediate t , before reappearing at
high t as a consequence of the alternate pathways removing
probability from the original pathway (with high weights).
This case illustrates how small differences can contribute to
the WFCC curve at low and high t , with a trough in between.
In the single-path case, a constant symmetric difference is
observed across t , first consisting of the lower-weight edge
for the branch that is absent, then the higher-weight edge for
the branch that is present. This case illustrates how adjacent
edge differences can contribute to a uniform symmetric
difference profile. These two curves have equal l1-metric
of value 1, but their unequal shapes inform about particular
differences in the structures of the graphs.

In Fig. 2 B, we compare the graph supporting a single,
deterministic pathway to a family of increasingly different
graphs. The first two support the same core dynamics but
with lower and higher probabilities of alternative pathways
respectively. The third is a ‘null’ case, where all transitions
from a given state are equally likely. The last is an ‘opposite’
case, where a single deterministic pathway is supported that is
completely disjoint from the original pathway. In the WFCC
curves, we see a similar influence of noise as in Fig. 2
A – lower and higher probabilities of alternative pathways
produce symmetric differences over a smaller and larger
range respectively of extreme t values, with a trough of zero
difference at intermediate t . In both cases, the symmetric
difference contribution is from the same set of edges – only
the range of t values for which they differ changes. The
comparison with the null, uniform case loses this trough: now
all t values give a non-zero symmetric difference. Finally, the
‘opposite’ disjoint pathway gives a constant, high difference
across all t values, corresponding to the absence of shared
edge weights across the comparison.

In Fig. 2 C-D, we apply the same analysis to probability
flux patterns (Def 5), reflecting the probability of visiting
different edges given a start point at the state of all zeros.
In both cases, we see similar general behaviours as for the
raw probabilities in Fig. 2 A-B. Some different behaviours to
the raw probabilities for the ‘branch’ graph and its ‘noisier’
version, are a peak at medium t values corresponding to
the two edges at the end of the branching (3-7,5-7), now
non-common, in addition to the edges at the start of the

branch (1)-3,1-5) that contributed to the curve from earlier.
For the ‘branch’ and single-path case, the last two edges of the
branch are non-common, and contribute in complementary
intervals, raising the ‘plateau’.

Finally, in Fig. 3, we compute the l1-norm (the area under
the WFCC curve) for all pairs of graphs in the family we
consider, and embed these pairwise distances in a 2D space
using multidimensional scaling [42], [43, Sec 3.2]. Intuitive
trends are preserved throughout these comparisons. The
disjoint deterministic pathways differ the most; increasing
the noise around a given dynamic drives the flux towards
the uniform null case; branching variations on single pathway
themes are more similar to their single pathways than to
each other; two-pathway graphs are intermediate between
the one-pathway cases. Taken together, this picture suggests
both that the WFCC curves provide detailed insight into the
specific differences between graphs, and integrate to produce
the interpretable and efficiently-calculated scalar metric to
compare them. In Fig. 6 we show more examples of WFCC
curve comparisons for these synthetic hypercubes.

D. CASE STUDY: GLOBAL VARIABILITY IN INFERRED
EVOLUTIONARY DYNAMICS OF TUBERCULOSIS
ANTIMICROBIAL RESISTANCE
One emerging application of accumulation modelling is in
studying the evolution of antimicrobial resistance (AMR)
[9], [41], [44], [45]. In one approach here, the state space
describes drug resistance profiles of bacteria as binary strings,
where a 1 at position imeans that the bacterium has resistance
to drug i. To illustrate how WFCC may be applied to
real-world data, we consider observed patterns of antimi-
crobial resistance for Mycobacterium tuberculosis from the
BV-BRC database [34] (see Methods). We use HyperHMM,
an algorithm for reconstructing transition matrices from
observed data [41], to estimate parameters of the (hypercubic)
transition graphs in these different cases (see Methods), and
compare the different generated hypercubes with the WFCC
method (Algorithm 1). The set of inferred transition graphs
by country is shown in Fig. 8.
We are interested in progression pathways and how

the resistance evolves, which can better be captured by
considering the probability flux through state space (Def 5).
This is particularly important for inferred hypercubic
transition graphs, where many edges (corresponding to
transitions between unobserved states) will in general be
unidentifiable given data. In these cases, we want to
avoid the (arbitrary) values assigned to these unidentifiable
edges contributing to our distance measure, and there-
fore consider probability fluxes, which are constrained by
observations.

An illustrative subset of results is shown in Fig. 4.
In the illustrated transition graphs, an instance of the system
(a tuberculosis lineage) is assumed to start at state 000 . . .,
corresponding to no acquired drug resistances. Evolution
proceeds by the stepwise acquisition of features, moving
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FIGURE 2. Illustration of WFCC features with simple hypercubic transition networks. We perform WFCC analysis on a family of constructed transition
networks, in each case plotting the WFCC curve annotated with the edges that give rise to the given symmetric difference values. (A-B) WFCC analysis of
transition probabilities. (A) A graph supporting distinct ‘branching’ dynamics compared to a noisier version supporting more competing pathways and
one supporting a single, deterministic pathway. These two curves have different shapes, but equal l1-metric. (B) A graph supporting a single,
deterministic pathway compared to a spectrum of partners: lower- and higher-noise variants supporting more competing pathways, a ‘null’ case
supporting all pathways equally, and an opposite case where a different deterministic pathway is supported. (C-D) WFCC analysis of probability fluxes.
(C) As (A); (D) as (B).

towards the state 111 . . ., and the graphs in Fig. 4 show
the probability fluxes, inferred from observations, through
different transitions between states. Kenya illustrates the case
where no isolates were found in the dataset with resistance

to any of the 9 drugs of interest. The inferred transition
matrix describing evolutionary dynamics is therefore the
‘null’, uniform case: in the absence of observations, all
pathways are equally likely. Sweden illustrates a case with
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FIGURE 3. Embeddings of integrated WFCC measure (l1-norm) for simple transition graphs. (A) The family of example transition graphs and the raw
probability weights through their edges: a ‘null’ case supporting all pathways equally; a ‘one path’ case supporting a single, deterministic pathway, and
variations of it with lower or higher level of noise for alternative pathways supported at low probability; a ‘two paths’ case supporting two opposite
deterministic pathways, and variations of it with lower or higher level of noise; a ‘branch’ case supporting an equal branching in the intermediate stage
of the single pathway in ‘one path’, and variations of it with lower or higher level of noise; and alternative ‘alt’ structures mirrored to the ones above.
(B) A multidimensional scaling (MDS) embedding of the scalar l1-norm distances between these probability sets from integrating the WFCC curve. (C) The
same family of example transition graphs with flux edge weights; (D) an analogous MDS embedding using these probability flux sets. The values of the
l1-norms for each pair of graphs are in Fig. 7.

observations of resistance to a single drug (here, and
commonly, streptomycin). The first evolutionary step – strep-
tomycin resistance – is clearly inferred, but no information is

present for subsequent dynamics. In Norway and Bulgaria,
some instances of multi-drug resistance constrain early
evolutionary steps, leaving later ones unconstrained; in Italy,
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Spain, and Belgium, several highly multi-drug resistant
isolates constrain longer evolutionary pathways.

These differences are clearly reflected in theWFCC curves
comparing these instances to the uniform case (Fig. 4). First
consider the behaviour at lower filtration values, shown with
a linear scale. Kenya is identical to the uniform null case, with
a WFCC of zero throughout. Sweden has a higher WFCC at
lower filtration values, corresponding to the disappearance
of many edges that do not follow from the constrained first
step. The WFCC drops at higher filtration values as these
differences (low-weight edges present in the uniform graph
but not in the Sweden case) progressively disappear. The
other cases have even higher early WFCC curves (as even
more of their low-weight edges are constrained away). The
longer constrained pathways in the cases of Italy, Spain, and
Belgium keep their WFCC curves higher at higher threshold
values than the other cases. The curves for Sweden and
Norway are characterised by comparatively large deviations
from the trend of the other countries at lower values (Sweden)
and more intermediate values (Norway), corresponding to
the focus of probability flux in one and two canalised early
transitions respectively.

The behaviour of the WFCC curves for higher filtration
values, shownwith a logarithmic scale in Fig. 4, demonstrates
the coarser-grained differences between countries. Sweden
has a persistent symmetric difference of one over most
of the unit interval. This ‘plateau’ reports Sweden’s key
feature: the canalised first step, replacing 9 edges each with
uniform weight of 1/9 with a single edge of weight 1.
Correspondingly, the WFCC height-1 ‘plateau’ begins at 1/9
(neither the null nor Swedish case have weights above this
for 8 of the initial steps) and extends to 1. Similar behaviour
corresponding to early canalisation is observed in the Spanish
case, where a height-1 plateau extends from 1/2 to 1 – here,
the same canalised first step is responsible for this plateau,
but concentrated probability flux along other early pathways
(not present in Sweden) mean that the plateau begins later
(as the Spanish graph has several later edges up to weight
1/2 that are not present in the null). The small number of
distinct inferred pathways in the Spanish case are reported as
the higher intermediate value prior to the height-1 plateau.

Only Spain and Sweden have a single inferred first
step with weight 1. Other countries’ inferred graphs share
probability flux across a set of competing initial pathways,
and hence their WFCC curves drop to zero at lower filtration
values. Norway, for example, drops to zero at 1/3, reflecting
the fact that its flux is shared between 3 initial steps each of
weight 1/3. These initial steps, paired with their following
consequential transitions give Norway’sWFCC curve a value
of 6 for a long range of WFCC values preceding this
drop, with only limited intermediate steps between these
larger-scale changes and the finer-grained changes at lower
WFCC values.

Italy’s inferred graph supports a wider range of initial steps
but shows substantial concentration of probability flux at later
stages. Here, the WFCC curve’s drop to zero occurs at a

high filtration value around 0.4, corresponding to the highest
weight among the edges in these concentrated later steps. The
drop is from a cardinality of 2, reflecting the length of the
most strongly constrained tract of transitions. Prior to this,
the curve takes a higher cardinality value reflecting both the
range of possible initial steps and the later steps surrounding
this most constrained tract.

The WFCC traces for Italy (at lower filtration values),
Bulgaria, and to a greater extent for Belgium, display
more graded behaviour. The limited number of initial steps
means that these curves drop to zero at higher filtration
values, but their behaviour prior to these drops consists
of a large collection of small changes (corresponding to
differences in flux at later steps through the transition graph
between the canalised country-specific case and the uniform
null case). For example, between 4 and 10 pathways are
clearly inferred at intermediate ‘levels’ of the Belgium graph
(between around 3 and 7 steps from the original source node).
Distribution of probability flux across this limited number of
pathways, as opposed to a uniform distribution over many
more pathways in the uniform case, leads to a collection of
differences over small filtration ranges when compared to the
null.

This collection of examples shows how specific features
of the WFCC curve can quantitatively report differences
in patterns of probabilistic flux (here, including the degree
of canalisation and number of different pathways supported
through a transition graph). The full set of inferred graphs
by country could readily be compared in this way and in this
detail to address and explore particular hypotheses; the inte-
grated l1-norm picture can also be used to compare at scale.
In Fig. 5 we plot the MDS visualisation of this integrated
measure (distances in Fig. 9) and a principal components
analysis (PCA) of the inferred parameterisations for compar-
ison. It will immediately be seen that the countries yielding
the uniform hypercube (Kenya, Madagascar, Hong Kong,
etc Fig. 8) fall together at an extreme side of both plots;
those with streptomycin as the single inferred step (Sweden,
Finland, Ireland, etc) cluster together nearby. Ghana also has
only a single inferred step, but this step is pyrazinamide
resistance, leading to a separation in both embeddings. Those
countries with highly constrained, canalised pathways (Spain,
Belgium, etc) fall far from the uniform cases. However,
the MDS plot based on the integrated WFCC metric (the
l1-norm) separates these more canalised cases substantially
more than the PCA plot, where they are all clustered together.
By contrast, theMDS plot separates out those countries where
evolutionary dynamics are inferred to be canalised down
different pathways, potentially corresponding to the more
scientifically interesting reporting of structure.

IV. DISCUSSION
Our WFCC method of filtering the graph and generating a
curve as the symmetric difference metric at each filtration
value, is aligned with the work in [24] and [25], where
the authors form an analogous graph filtration based on the
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FIGURE 4. Inferred tuberculosis evolutionary dynamics and WFCC comparison. The WFCC curves comparing the null, uniform hypercubic transition graph
with the transition graphs inferred for tuberculosis drug resistance evolution in 7 countries. The countries’ corresponding transition graphs are
illustrated in the inset. In these graphs, the source node, corresponding to no drug resistances acquired, is at the top, and transitions run from one
vertical layer to the one below, with each transition corresponding to the acquisition of resistance to another drug. The width of an edge corresponds to
its probability flux; node labels give the decimal value for a binary string describing the presence/absence of resistance to different drugs (see text). The
two traces show the same curves; (A) on a log scale, (B) on a linear vertical scale and truncated at threshold values above 0.025, where fewer changes
occur. The WFCC curve for Kenya takes value zero throughout (not visible on the logarithmic scale) as that dataset contained no resistance patterns and
hence its inferred dynamics are identical to the null case.

weighting. Then they construct a curve tracking features
like the number of connected components or node label
repetitions across the filtration. The main difference between
their approach and ours is that they generate a curve per
graph, while we generate a single curve per two graphs.
This single curve already encodes dissimilarity information
between the two graphs, with no need of doing further
comparisons [25] or clustering [24]. In our approach,
we count the number of elements in the symmetric difference
of edge-sets across the filtration, but we can also look at
different properties of the symmetric difference, as long as
that property for the empty set is zero. Some examples
of other properties we can consider are the number of
connected components (as proposed in [24]), the number of
nodes and the Euler characteristic [46], which are readily
extracted from the analysis we consider and may be used as
diagnostic statistics in more general comparison questions.
Other TDA tools besides filtrations have recently been
employed to specifically study the topology of unweighted
hypercubes [47], [48], [49]. Our WFCC method has the
advantage of being computationally fast, with runtime
proportional to the number of edges times the number of
filtration values considered.

In the context of transition graphs inferred from observa-
tions, we have considered only a single point estimate (the
maximum likelihood parameterisation). In real situations any
parameter estimates will have associated uncertainty, and
the question of how to incorporate this uncertainty into our
distance measure then arises. An obvious option is to report
a range of distances and curves corresponding to the range
of parameter estimates. Curve features that remain consistent

across this range would then likely be true regardless of
the particular ‘true’ (population) parameterisation; features
that differed across the range of estimates could be less
robustly claimed. Hypothesis testing about the range of
‘true’ differences could then be accomplished by resampling
methods (as are used for uncertainty quantification in
HyperHMM [41]).

Of course, other methods for inferring transition graphs
from data can also be used for a given problem [12],
[13], [14]; we have used HyperHMM as an illustrative
example. The inference of transition networks from data is
the focus, for example, of the powerful corHMM package
in evolutionary biology [3]. A wide range of approaches in
accumulation modelling, developed particularly in the cancer
modelling literature [10], [11], works towards the same goal:
inferring transitions between states. These approaches often
address a parameter space of reduced dimensionality, where
relationships between features defining a system state (like
the different drugs in our AMR example) are mapped to
transition rates between states (although HyperHMM, as an
instance of the Baum-Welch algorithm [14], directly reports
a full set of estimated edge weights for a transition graph).
However, a full parameterised transition graph can readily be
constructed from the outcomes of these approaches too, and
compared using the WFCC approach.

In the anti-microbial resistance case study, we have only
considered unique resistance patterns for each region. This
discards many repeated observations of the same resistance
pattern across different strains. The rationale for this, in this
illustrative case, is that isolates with identical resistance
patterns may not have evolved those patterns independently,
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FIGURE 5. Embeddings of inferred tuberculosis dynamics. (A) MDS embedding of transition graphs describing tuberculosis evolution in different
countries, using the l1-norm distances from the integrated WFCC curve (Fig. 9). (B) PCA embedding of the sets of edge weights for these transition graphs.
The PCA plot shows largerly homogeneous clusters of countries with some similar transition structures, whereas the MDS plot separates those countries
substantially more, showing in more detail the relative differences of those countries, whose evolutionary dynamics are canalised down different
pathways. ‘Cluster 1’ is Guatemala, Hong Kong, Kenya, Lebanon, Madagascar, Nepal, Philippines, Uganda; ‘Cluster 2’ is Brazil, Colombia, Ecuador, Finland,
Ireland, Sweden; countries within a cluster have identical inferred dynamics (Fig. 9).
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FIGURE 6. WFCC comparison for more cases of synthetic, deterministic hypercubes for A) raw probability weightings in Fig. 3 A and B) flux weightings in
Fig. 3 C. Note that ’2’ here corresponds to ‘alt’ in the main text.

FIGURE 7. l1-metric for A) raw probability weightings and B) flux weightings of the synthetic hypercubes considered. The flux captures more strongly the
main dissimilarities. Note that ’2’ here corresponds to ‘alt’ in the main text.

but may have inherited them from a common ancestor. In that
case, they cannot be regarded as independent instances where
that pattern has evolved. Of course, reducing the observation
set to unique patterns only is likely an overcorrection: the
correct approach would be to estimate a phylogeny linking
the observations and consider the independent instances of
each transition (as in [9], [41] for a tuberculosis case study

with an independently-constructed phylogeny). Additionally,
as we are only considering tuberculosis samples after our own
curation from the BV-BRC database [34], we cannot claim
that our inferred transition graph for evolution in a given
country gives a complete representation of current knowledge
in that country. However, as this case study is designed to
illustrate the comparison method and not report evolutionary
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FIGURE 8. Transition graphs inferred for tuberculosis drug resistance evolution across countries. In each graph, the top state corresponds to the state
where no drug resistance has been acquired. Lower levels correspond to the progressive acquisition of resistance to different drugs.

dynamics in depth, we take this simpler approach to yield a
range of inferred transition graphs for comparison and bear in
mind that their applied evolutionary interpretation is limited
by these simplifications.

As future work, we are interested in finding full progres-
sion pathways. This can be approached by filling in small
holes in the graph and keeping track of bigger holes. To do
that, the clique complex can be a natural tool [50, Section 3],
[51, Section 3.1]. By definition, clique complexes are

Vietoris-Rips complexes [52], and Vietoris-Rips complexes
are proven to be an efficient way to compute persistent
homology [53]. One can also consider other simplicial
complexes from graphs, for example the ones in [51]. Another
venue of future work is to explore stability conditions for
the WFCC method. This consists of finding metrics on the
data so that small perturbations in the data will produce small
differences in the Markov transition graphs inferred from an
inference algorithm like HyperHMM [41]. For now, we hope
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FIGURE 9. l1 distances between transitions graphs inferred for tuberculosis evolution across countries.

that the insights provided from the WFCC approach will help
to inform about scientifically interesting distinctions between
inferred transition dynamics across a range of scientific
disciplines.

APPENDIX A
METHODS: HYPERCUBES AND FLUX WEIGHTINGS
A (directed) graph G = (V ,E) consists of a vertex set V
and an edge set E ⊆ V × V consisting of ordered pairs of

vertices. We write xy for the edge e = (x, y) ∈ E , and say
that xy is an edge from x to y.
Definition 3: (Directed version of [48, 2.4]) For a positive

integer n, the (directed n-dimensional) hypercube is the
directed graphH = (V ,E) where the vertex set V consists of
all possible 2n binary strings of length n, i.e.

V = {x = x1 . . . xn | xi ∈ {0, 1} for i = 1, . . . , n},

and where xy is in E if there exists exactly one value j such
that 0 = xj < yj = 1 and xi = yi for all i ̸= j.
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In particular, there is an edge from x to y if and only if you
can change a single zero in the binary string x to a one and
get the binary string y. For example, there is an edge from
1010 to 1110, but not the other way, and not from 1010 to
1111 because youwould need to change two zeros. The labels
of the vertices in the form of binary strings are precisely the
states in the evolutionary pathways. Note that hypercubes are
finite, simple (acyclic) and connected. The name hypercube
comes from the fact that it is the graph corresponding to the
1-skeleton of a hypercube.

A weighting on a graph G = (V ,E) is a function w :

E → R, where w(e) ∈ R is the weight of e ∈ E and the
triple G = (V ,E,w) is called a weighted graph. In our
examples, we will work with discrete-time Markov models.
Here, at each timestep, the system occupies a particular
vertex, and between timesteps, exactly one outgoing edge
from the current vertex is followed to obtain the new state.
This edge may in general be a loop, so that the system
occupies the same state in two adjacent timesteps. For
discrete-time Markov models, the probability that an edge
is followed is given by that edge’s weight – hence, the
weight on each edge is between 0 and 1, and the set of
weights on the set of edges leaving a particular node must
sum to 1.
Definition 4: A hypercubic transition graph H =

(V ,E,w) is a weighted hypercube H = (V ,E) where the
sum of the weight of all outgoing edges from a vertex must
sum to one, i.e. for all x ∈ V we have

∑
xy∈E w(xy) = 1.

To fulfil this property we equip the vertex corresponding
to the string of all 1s (x = 111 . . .) with a self-edge of
weight 1.

Hypercubic transition graphs defined as above are special
cases of Markov transition graphs [1], [2], [3] of evolutionary
pathways, where the edge weights are typically inferred by
statistical algorithms from real data. The vertex correspond-
ing to the string of all 1s (x = 111 . . .) acts as an ‘absorbing
state’: once the system reaches this vertex it remains there for
all future timesteps. An evolutionary accumulation process
involves starting at the vertex corresponding to the string of
all 0s (x = 000 . . ., corresponding to no acquired features)
and stepping towards this absorbing state, with each step on
a hypercubic edge corresponding to the acquisition of one
feature.

In addition to the weight on an edge, which determines
the probability that the edge is traversed given that the
system occupies the source vertex, we are also interested
in probability flux, which is the probability that the system
actually traverses the edge during some specified time
window. The flux of an edge is the probability that the system
occupies its starting vertex multiplied by the probability of
then traversing that edge, integrated over the time window.
In our hypercubic cases, we will take this time window to
run from 0 to n, the full set of times over which the system
evolves. In the hypercubic cases, each edge can only be
traversed at exactly one time, corresponding to the number
of features in its source vertex.

Of course, the edge probability weight and edge flux
weight can differ dramatically, as the source vertex may be
very rarely encountered in systems initialised according to
some initial condition (for us, x = 000 . . .).
Definition 5: Let H = (V ,E,w) be a hypercubic

transition graph, with a initial node v0 corresponding to the
all-zero string. The original probability weight of the edge eij
is denoted by w(eij) ∈ [0, 1]. We let P(vi) be the probability
of passing through the vertex vi when starting in v0, and we
denote the flux value of the edge eij by f (eij). With this
notation, the flux value is f (eij) = P(vi) · w(eij), and can be
calculated recursively by

P(v0) = 1

f (eij) = P(vi)w(eij) for i < j

P(vi) =

∑
k<i

f (eki). (1)
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