
Received 2 April 2024, accepted 31 May 2024, date of publication 6 June 2024, date of current version 14 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3410316

Feasibility Analysis of Applying Deep Neural
Network on Driving Distance Estimation
SANGHWAN LEE 1 AND JINSOO MOON2
1Department of Computer Science, Kookmin University, Seoul 02707, South Korea
2m2Cloud Inc., Seoul 05855, South Korea

Corresponding author: Sanghwan Lee (sanghwan@kookmin.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant 2022R1F1A1074672; and in part by the Grant from the Ministry of Food and Drug
Safety under Grant 22183MFDS436.

ABSTRACT In numerous location-based applications, such as the vehicular routing problem, driving
distances play a crucial role. However, these driving distances often differ from the direct geographic distance
computed using latitude and longitude. Hence, accurately estimating the driving distance between two
positions is vital for the success of such services. Researchers have worked on developing efficient methods
to estimate driving distances, and it has been reported that the inflation ratio (or detour index) between driving
distance and direct distance is approximately 1.3. However, this simple method may not suffice for complex
road networks. To address these challenges, other researchers have proposed deep learning based approaches.
They show relatively good performance for real road data sets. Even though the deep learning based approach
may work for real road data sets, it crucial to fully understand the behavior of the deep neural network (DNN)
based approach. Therefore, in this study, We aim to thoroughly examine a deep learning-based road network
distance estimation method under controlled conditions. Specifically, we define five different distance types
and assess the performance of the DNN-based approach. Subsequently, we analyze the key factors that
influence its performance. Through extensive simulations, we demonstrate that the DNN-based method
performswell acrossmost distance definitions. After conducting a thorough analysis of the evaluation results,
we have identified a key characteristic of the road data sets that significantly impacts the accuracy of the
DNN-basedmethod. Specifically, we have found that the ‘‘discontinuity’’ of the distances plays a crucial role
in achieving high accuracy. As a result, we propose that future designs of DNN-based road network distance
estimation methods should prioritize careful consideration of this ‘‘discontinuity’’ aspect to optimize their
performance and ensure better accuracy.

INDEX TERMS DNN, distance, driving.

I. INTRODUCTION
The advent of modern technology has brought about signif-
icant changes in a multitude of industries and applications,
not least of which is the way we estimate and utilize
location-based data [1]. One such application, of paramount
importance in the digital era, is vehicular routing [2].
This service, integral to a wide array of sectors including
logistics, food delivery, ride-sharing, and more, thrives on
its ability to accurately determine driving distances between
two locations. However, it is a well-documented fact that the
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geographical distance, calculated using traditional latitude
and longitude coordinates, often does not mirror the actual
driving distance [3], [4], [5], [6], [7]. This is due to various
factors such as road type, physical obstacles, road rules, and
more. Thus, there is a pressing need for a more advanced and
reliable approach for driving distance estimation, particularly
for applications involving complex road networks.

Many researchers offer methods for estimating driving
distances using an inflation ratio, which involves multiplying
the direct geographical distance by a factor of approximately
1.3 [4]. This approximation, albeit simple, has proven to be
reasonably effective in a variety of scenarios and applications.
However, this method is not without its shortcomings.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 81075

https://orcid.org/0000-0001-8431-0097
https://orcid.org/0000-0002-6573-0114


S. Lee, J. Moon: Feasibility Analysis of Applying DNN on Driving Distance Estimation

In particular, it often fails to adequately represent distances
in intricate road networks with numerous turns, one-way
systems, and other complexities. Additionally, this method
does not account for changes in the road network that might
occur over time due to construction, urban development,
natural disasters, or other causes [3]. In short, the traditional
method of estimating driving distances based solely on
geographic distance (latitude and longitude) may not be
sufficient when dealing with complex road networks.

To tackle these challenges, some researchers have pro-
posed deep learning-based approaches [8], [9]. They propose
DNN models and evaluate the model based on some real
road traffic data set. Even though their works work well for
certain data sets, it is not clear whether they will perform
well for other environments with different road types, traffic
type, etc. In other words, it is crucial to gain a comprehensive
understanding of how the deep learning based approach
behaves in different scenarios. Actually, we have analyzed the
deep learning based approach with 2 different distance defi-
nitions to understand in what circumstances the deep learning
based method works well [10]. To be specific, we have
considered two distance definitions: Euclidean distance and
Delaunay Triangulation based distance. We have found that
DNN based method works better for Euclidean distance
than Delaunay Triangulation based distance. We conjectured
that the ‘‘discontinuity’’ in the distances has impact on the
estimation performance.

Thus, in this paper, we extend our preliminary work to
more thoroughly analyze the deep learning based method
in estimating driving distance. Our primary objective is to
conduct a thorough examination of a deep learning-based
road network distance estimation method under carefully
controlled conditions. To achieve this, we define five different
distance types with specific characteristics including the two
distance type defined in [10]. We generate distance data sets
based on the five distance types and evaluate the performance
of the DNN-based approach on each. By this, we can better
understand the behaviour of the DNN based approach.

In essence, the core objective of this paper revolves
around demonstrating the performance disparities exhibited
by the DNN-based method across various types of distance
definitions. Additionally, we delve into the main factors that
influence the method’s performance. Our extensive simu-
lations demonstrate that the DNN-based method generally
performs well across a wide range of distance definitions.
Furthermore, we identify the ‘‘discontinuity’’ as a critical
determinant of its performance. The main idea of ‘‘discon-
tinuity’’ is that for some distance definitions the distance
does not change linearly or proportionally to the amount of
changes of coordinates. This characteristic greatly affects the
estimation performance of DNN based approach and other
approach such as linear regression based approach. Given
these findings, we emphasize the importance of considering
the ‘‘discontinuity’’ in the design of future DNN-based road
network distance estimationmethods to optimize their overall
performance. This deeper understanding will contribute to

the development of more accurate and efficient distance
estimation models that can address the complexities of
modern road networks effectively.

The rest of the paper is organized as follows. In Section II,
we describe the background and review the related works.
Section III describe the neural network model that we
examine and five different distance definitions. We present
the analysis results of the neural network based approach
in Section IV. In Section V, we discuss the ‘‘discontinuity’’
characteristics of the distances. Lastly, the paper is concluded
in Section VI.

II. RELATED WORKS
In this section, we discuss previous studies that offer insights
into the estimation of road distances. Then, we describe
applications and software that utilize such distance estimation
techniques.

Efficiently estimating the road distance is crucial for some
critical applications such as health care services. Refer-
ence [3] shows overhead based road distance estimation.
The authors introduce a fast method for estimating travel
distances between locations using an overhead graph that
stores representative location ratios among a small number
of selected locations. The approach proves effective in
complex optimization tasks that needs distances among nodes
by reducing the burden of travel distance computations.
Experimental results using real-world data from the North
Karelia region in Finland demonstrate an average estimation
error of 0.5 km with a 512-node graph. The method
significantly reduces processing time in the optimization
process, achieving a reduction from 1.2 hours to 2.9 seconds
per iteration, outperforming alternative estimation methods
with a smaller average estimation error of 2%.

A simpler distance estimation method is to use Detour
Index (DI), which is basically the ratio of actual road network
distance to the Euclidean or Geodesic distance. Authors of [4]
investigate the limitations of using straight-line Euclidean
distance (ED) as a distance metric in spatial analysis. They
estimate the relationships between ED and actual network
distance (ND) across 25 Chinese cities using functional data
analysis (FDA) and the detour index (DI). The results show
significant linear relationships between ND and ED, with
an average DI value of 1.324 observed across all cities.
Similarly, [5] compares the use of straight-line (Euclidean)
distance with actual travel distance and time in geographic
studies. They calculate travel distance and time directly from
commercial websites, eliminating the need for specialized
software or street files. The comparison is conducted using
a representative sample of over 66,000 locations in the
United States, including Puerto Rico and the District of
Columbia, with a focus on travel to community hospitals. The
measures show a strong correlation (r2 > 0.9), indicating
high linear relationship between the straight-line distance and
the actual travel distance. For non-emergency applications,
simple linear regression might be a good estimation method.
Reference [11] also addresses the estimation of road distances
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using distance functions and the need for correction through
a circuity factor to approximate actual travel distances.
A circuity factor is a multiplier to coordinate-calculated,
or straight-line, distances to approximate actual travel
distances, which is basically DI defined in [4]. Reference [11]
presents circuity factors derived from a sampling of road
networks in different countries and regions worldwide.

Exploiting the Euclidean distance and the linear regression
can be generalized to use the weighted lp or lk,p norms.
Reference [6] focuses on modeling travel distances in road
networks using the weighted lp or lk,p norm. The parameters
k and p are computed by analyzing a sample of actual road
distances from the geographical area of interest. The study
examines 17 diverse geographical areas and demonstrates
significantly improved results. It should be noted that
determining k and p is an optimization problem based on the
distance samples from the 17 diverse geographical areas.

Estimating the road distance can be useful. However
estimating the travel time might be more helpful for some
other applications. Reference [12] focuses on the importance
of accurate travel-time estimation in a green time-dependent
vehicle routing optimization problem to ensure precise
objective function values and accurate decision-making.
The proposed model considers multiple traffic modes and
assumes routes between nodes consist of different segments
with varying speed levels. Statistical analyses compare the
estimated travel times of random vehicles with random
departure times to data from Google Maps and show that the
proposed method performs well. Estimation of travel time is
also useful for many transportation systems such as NewYork
tax service. Reference [13] explores the travel time estimation
problem using large-scale trajectory data, particularly New
York City Taxi trips dataset. Instead of traditional route-based
methods, the proposed approach utilizes a vast amount of taxi
trips to estimate travel time between source and destination
without intermediate trajectory points. The experiments
reveal promising results, as the big-data-driven approach
outperforms state-of-the-art route-based methods and online
map services. The study highlights the potential of simple
big data-driven approaches to serve as new baselines for
traditional computational problems.

Reference [16] also addresses travel time estimation using
deep learning, which has gained traction due to available
large trip datasets. However, existing methods often disregard
road network information. The proposed approach integrates
road networks and historical data, enhancing performance,
particularly with smaller training sets. Incorporating node
embedding and road distance leads to improved results,
especially when road distance significantly differs from Vin-
centy distance. Experiments on real-world datasets highlight
the method’s efficacy. The focus on short-term traffic time
prediction in the intelligent transportation field is well-
established. However, anticipating long-term traffic time,
crucial for personal and commercial planning, remains chal-
lenging due to various factors like weather and congestion.

Reference [14] introduces the Deep Ensemble Stacked
Long Short Term Memory (DE-SLSTM) framework, which
integrates weather effects to address prediction bias during
congestion. Through experiments, DE-SLSTM showcases
strong performance, marking it as the first long-term traffic
time prediction approach that incorporates deep learning
techniques.

Since the road distance estimation is quite useful, some
researchers provide software to estimate the road dis-
tance. Reference [15] introduces the ‘‘osrmtime’’ command,
a platform-independent method for calculating travel time
and distance between two points using geographic data
on latitudes and longitudes. The method utilizes the Open
Source RoutingMachine (OSRM), a high-performance open-
source C++ routing engine that uses open-source maps
from OpenStreetMap [17]. OpenStreetMap’s decentralized
data collection and maintenance may have advantages and
disadvantages compared to maps from commercial providers,
but it is widely used in scientific research. Unlike existing
commands that compute geodesic distances, ‘‘osrmtime’’
calculates the optimal route over public roads by car,
bicycle, or on foot. It offers the advantages of being able
to handle an unlimited number of requests, working offline,
and providing efficient calculations within seconds. Another
application based on OpenStreetMap is Rapidex. It is a
novel tool for origin-destination (OD) demand estimation
and visualization [7]. Rapidex addresses the limitations of
data availability and development associated with traffic
assignment models. Rapidex allows users to download
and visualize road networks for any city, create traffic
analysis zones, and fetch travel time data from providers
like TomTom and Google. Using a genetic-algorithm (GA)-
based approach, Rapidex derives the OD demand pattern and
produces critical outputs such as link volumes, travel times,
congestion levels, and average trip length. The tool enables
scenario evaluation, allowing users to assess the impacts of
network and demand data changes on performance metrics.

Many of the previously methods use linear regression
based approach. Since the advancement of deep learning
technology, there has been many deep learning based
approaches. Reference [8] proposes a deep learning model,
ST-NN (Spatio-Temporal Neural Network), which utilizes
deep neural networks to jointly predict travel distance and
time. The ST-NN model shows improved generalization
compared to other existing methods, reducing mean absolute
error by approximately 17% for travel time prediction.
Furthermore, ST-NN demonstrates increased robustness to
outliers in the dataset, making it a promising approach for
accurate and efficient transportation management. ST-NN
model is rather simple. Thus, it might be interesting to see
whether a more complex model shows better performance.
In this regards, [9] introduces a novel travel time estimation
framework that combines transformer and convolutional
neural networks (CNN) to enhance accuracy. The proposed
framework includes a traffic information fusion component,
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TABLE 1. Summary Of Related Works.

incorporating GPS trajectory, real road network, and exter-
nal attributes for comprehensive estimation. Additionally,
a multiview CNN transformer component captures spatial
information at multiple regional scales. Experiments using
Chengdu and Beijing datasets demonstrate competitive mean
absolute percent errors (MAPE) of 11.25% and 11.78%,
outperforming state-of-the-art baselines in travel time estima-
tion. Table 1 summarizes the related works.

While existing approaches offer sufficient accuracy in
estimating travel distances and times, our paper shifts its
focus to a specific question: the suitability of the neural
network-based approach for various types of distances.
Instead of solely focusing on accuracy, our objective is
to investigate the specific domains in which this neural
network based approach demonstrates superior performance.
By doing so, we aim to identify the key characteristics of the
road data set that play a crucial role in its success. Through
this exploration, we seek to gain valuable insights into the
important factors that contribute to the effectiveness of the
new approach in specific scenarios.

III. ANALYSIS METHODOLOGY OF DNN BASED
DISTANCE ESTIMATION
In this section, we delve into the specifics of our proposed
analysis methodology. First, we describe the deep neural
network (DNN) based road distance estimation method that
We want to analyze. Subsequently, we detail the five distance
models with different characteristics. Lastly, we elucidate the
key performancemetric that we aim to focus in the evaluation.
These metric serves as the benchmark against which the
effectiveness and practicality of the DNN based method is
measured.

A. DEEP NEURAL NETWORKS WITH 3 HIDDEN LAYERS
It is well known that DNN can be applied to a very diverse
range of problems, but sometimes it is not easy to interpret
why it works [18], [19], [20], [21], [22]. In this paper, our
primary focus is not on explaining why DNN works, but
rather on acknowledging the potential of DNN to capture the

FIGURE 1. Five layer deep neural network model. h1 has 50, h2 has 100,
and h3 has 50 perceptrons.

underlying characteristics of the problem. While we may not
delve into the specific reasons for its success, we recognize
that DNN has the capability to effectively learn and adapt to
the intricate patterns present in the data. By acknowledging
this ability, we can explore how DNN-based methods can
be harnessed to tackle the challenges posed by road distance
estimation problem and achieve promising results.

In this road distance estimation problem, given specific
input, the model’s task is to learn a mapping from the
coordinates of the two points (source and destination) to
the actual road distance. In this paper, we rather focus on a
simple feed-forward deep neural network model structured
as in Fig. 1. [19] and [23] provide detailed information
about deep neural network model and feed-forward model.
It should be noted that this kind of simple feed-forward deep
neural network model has been used for various purposes in
many other papers such as [8], [24], [25], [26], and [27].
In summary, in this paper, we investigate how the simple
feed-forward deep neural network model works for different
distance definitions. We explain the model in more detail as
follows.

The input layer consists of 4 neurons corresponding to the
latitudes and longitudes of the two points. The model has
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3 hidden layers. These layers are fully connected (dense)
layers. The first layer has 50 perceptrons, the second hidden
layer has 100 perceptrons, and the third hidden layer has
50 perceptrons. Each perceptron has a non-linear activation
function, ReLU (Rectified Linear Unit) [28]. The output
layer consists of one neuron, which gives the estimated road
distance. Since our objective is to solve a regression problem,
the activation function used for the output layer is linear.

As a loss function, we use SmoothL1Loss() [29].
SmoothL1Loss() calculates basically the differences between
the predicted and actual road distances. However, depending
on a parameter β, there is small modification. Here is the
definition of SmoothL1Loss. Let L = {l1, . . . , lN }

T be the
loss vector for N samples. Each li is defined as follows.

li =

{
0.5(xi − yi)2/β, if |xi − yi| < β

|xi − yi| − 0.5 × β, otherwise
(1)

Furthermore, we usemean as the reduction function so that
we want to minimize the mean of the smooth l1 loss of each
sample. Thus, the smooth l1 loss is finally defined as l(x, y) =

mean(L). We use β = 1.0 for the training.
In the model, Fig. 1, the number of weights is 10, 250(=

4 × 50 + 50 × 100 + 100 × 50 + 50). There is no
clear rule for the size of training data set. However, in this
paper, we provide more data samples than the number
of weights. During the training phase of the deep neural
network model, the model learns to accurately estimate road
distances by iteratively adjusting its internal parameters. The
training process begins by feeding the model with a large
dataset consisting of pairs of input data, which includes
latitude and longitude coordinates of two positions, along
with their corresponding road distances. The model then goes
through a series of forward and backward passes, known
as epochs, where it computes predicted road distances for
the given inputs and compares them to the actual distances.
By utilizing the smooth l1 loss function, the model quantifies
the discrepancy between its predictions and the ground truth
values. Through a process called back propagation, the model
updates its internal parameters in a way that minimizes the
loss, gradually improving its estimation capabilities. This
process continues for multiple epochs, allowing the model
to fine-tune its weights and biases, ultimately enhancing
its ability to accurately estimate road distances between
positions. For this optimization process, we use Adam
optimization algorithm [30].

B. CONTROLLED DISTANCE DEFINITIONS
The primary objective of this paper is to thoroughly
analyze a deep learning-based road network distance esti-
mation method under controlled conditions. To achieve this,
we define five distinct distance types, each characterized
by specific attributes. Essentially, the focus of this study
lies in exploring the relationship between the characteristics
of the distance dataset and the performance of the model.
As such, controlled datasets are utilized to provide a more

controlled environment for the analysis, rather than relying
solely on datasets collected from real-world scenarios. The
five distance definitions are described as follows. Let p1 =

(x1, y1) and p2 = (x2, y2) be the positions of two points.

• Euclidean distance (D1):
√
(x1 − x2)2 + (y1 − y2)2

• Manhattan distance (D2): |x1 − x2| + |y1 − y2|.
• Geodesic distance (D3): The distance between two
nodes is defined as the distance on the globe [31].

• Delaunay triangulation with nearest point (D4): We first
generate k random landmarks in an area and conduct
the Delaunay triangulation among the landmarks. The
distance between two points, p1 and p2 is defined as
the Euclidean distance from p1 to the nearest landmark
of p1 + the distance from p2 to the nearest landmark
of p2 + the shortest distance over the Delaunay
triangulated graph between the two landmarks. Fig. 2
shows some examples of such distances with title
‘‘Nearest Point’’.

• Delaunay triangulation with nearest edge (D5): We
construct the Delaunay triangulation graph as before.
The distance between two points, p1 and p2 is defined
as the Euclidean distance from p1 to the nearest edge of
p1 + the distance from p2 to the nearest edge of p2 +

the shortest distance over the Delaunay triangulated
graph between the two cross points. Fig. 2 shows some
examples of such distances with title ‘‘Nearest Edge’’.

The five different distance definitions presented above
exhibit distinct characteristics. Especially, we describe the
difference D4 and D5 in more detail. Fig. 2a and Fig. 2d
show the different distance of the same src-dest pairs in
D4 and D5. Similarly, Fig. 2b/Fig. 2e and Fig. 2c/Fig. 2f
show another examples. In Fig. 2c and Fig. 2f, we can see
a big difference between D4 and D5. All these data sets
aim to provide different characteristics of the road networks.
It should be noted that the DNN model employed in this
paper might display varying performance levels for each of
these distance definitions. Thus, our investigation centers
around understanding the relationship between the specific
characteristics of the distances and the corresponding model
performance.
Actually, in our analysis, we have explored various

planar graphs, including Gabriel graph and RNG graph,
as alternatives to Delaunay triangulation. However, we have
chosen Delaunay triangulation due to its ability to provide
denser edges compared to the other planar graphs. Fig. 3
shows three different planar graphs: Delaunay triangulation,
Gabriel Graph, and Relative Neighborhood Graph for the
same set of points. It can be easily seen that the Delaunay
triangulation based graph has more edges than other two
graphs. In short, in our paper, we opt for the Delaunay
triangulation graph because it closely mimics the dense road
networks found in developed regions of the world. This
choice allows us to analyze the model’s performance in a
setting that reflects real-world road network characteristics
accurately.
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FIGURE 2. Delaunay triangulation Example: Three sets of landmarks are chosen for the Delaunay triangulation and for each landmark set,
a pair of src-dest are randomly chosen and the different distance computation is shown.

FIGURE 3. Examples of planar graphs with the same landmarks: Each shows different set of edges.

C. PERFORMANCE METRIC
For the performance metric of the evaluation, we consider the
(absolute) relative error ϵ between estimated road distance r̂
and the actual road distance r . The relative error is defined as
follows.

ϵ =
|r̂ − r|
r

(2)

The relative error indicates the deviation of the estimated
distance from the actual distance, taking into account
the magnitude of the actual distance. It allows for a
fair comparison, as it considers the ratio rather than
the absolute difference. For instance, a relative error of
20% for an estimated distance of 120 km and an actual
distance of 100 km is equivalent to a relative error of
20% for an estimated distance of 12 km and an actual
distance of 10 km. Thus, a relative error near 0 signifies
that the estimated distance closely matches the actual
distance.

As we mention before, it is known that the inflation ratio
of the road distance over the direct distance is about 1.3.
The actual ratio may depend on the given data set. This
simple estimation using the inflation ratio is basically a
linear regression method over the data points of <Euclidean
distance (ed ), actual distance(ad )>. For the some distance
definitions, we investigate the performance of this simple
linear regression approach. For that matter, we generate data
points of (ed , ad ) for randomly generated src-dest pairs. With
the set of such distance pairs, we conduct linear regression
and compute the coefficient β and the intercept α. Then, the
actual distance estimation ad of a Euclidean distance ed is
computed as follows.

ad = β × ed + α (3)

IV. ANALYSIS RESULTS
In this section, we investigate the performance of the
DNN based road distance estimation method over five
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different distance definitions. For the evaluation, we first
generate the synthetic distance data sets for the five
different distance definitions. Each data set consists of tuples
of 5 values: source-longitude, source-latitude, destination-
longitude, destination-latitude, and actual distance. For all the
distance types except Geodesic distance (D3), the sources
and destinations are randomly generated from a 10000 ×

10000 square area. The landmarks for Delaunay triangulation
based methods (D4 and D5) are also randomly generated
from the same area. The training data sets and test data sets
are generated by using the same method.

Then, we train the deep neural network with varying sizes
of training data sets. We vary the size from 10,000 to 50,000.
The smallest value, 10000, has been chosen to be similar to
the number of weights of the DNN model in Fig. 1, which
is 10,250. If the training set size is too small compared to
the number of weights, the model could be over-fitted. Thus,
we consider 10,000 could be the minimum possible data set
size. Then, we increase the size up to some extents to see
the performance over the training set sizes. The size of the
test data set is fixed to the smallest training set size, which
is 10,000.

We conduct the evaluation 15 times, each time with a
different set of randomly selected landmarks and src-dest
pairs. This allows us to establish confidence intervals and
demonstrate the robustness of the repeated evaluations. We
compute the confidence interval via Student’s t-distribution,
which requires smaller sample sizes compared to the
Gaussian distribution. The number of trials or samples, 15,
is half of 30, which is considered to be the minimum sample
size for Central Limit Theorem. The resulting confidence
intervals are small enough to show the behavior of the
performance over random situations. During this evaluation,
we add the estimation result of the simple linear regression
method, which basically exploits DI or circuity factors, which
are discussed in Section II. Even though we add linear
regression method, it does not mean that the linear regression
is the state of the art estimation method till now. Rather we
just want to show that the simple linear regression method
may not work for some distance definitions, which justifies
the necessity of more sophisticated methods. Furthermore,
it should be noted again that the main focus of this paper is to
show the performance differences of DNN based method for
different kinds of distance definitions.

Before investigating the performance of the DNN model,
we conduct a trainingwith a very trivial case.We create tuples
of 5 randomly generated numbers from a range [1, 9999] and
train the model using 4 numbers as input and the remaining
1 number as output. Since the output number is randomly
generated, it is theoretically impossible to accurately predict
the output from the given input. This simple experiment helps
us understand the behavior of the DNN model when faced
with an inherently unpredictable scenario. Fig. 4 shows the
estimation results of such experiment. Fig. 4a shows the
mean, 50th percentile, and 95th percentiles of relative errors
over training data set sizes. Fig. 4b shows the error statistics

FIGURE 4. Estimation of Randomly Generated Values with DNN.

over difference distance ranges when the training data set
size is 50,000. We divide the set of actual distances into
3 groups: low, middle, high. To define the group, we find
the maximum of the output values. Then, we create three
groups with intervals of one third of the maximum value.
Then, we compute the statistics (mean, 50th percentile and
and 95th percentile) of the errors in each group. Actually
the largest value of the relative errors is much higher than
that is shown in Fig. 4b. But to examine smaller values more
clearly, we just cut the y-axis of the group statistics to 3.3.
As can be seen in Fig. 4, the mean relative errors are about
4.7 and the 50th percentiles are about 0.62. Actually, consider
two integer random variables X and Y , which are uniformly
distributed over [1, 9999]. Consider a new random variable
Z = |X − Y |/X . The expected value of Z is 4.741 and
the median is 0.618 (This can be easily computed by simple
nested for loop code.) Thus, it is quite clear that the estimation
through the DNN model does not show any accuracy at all.
The reason for the high relative errors in the trivial case is that
the given data set lacks intrinsic characteristics. However, the
five distance definitions exhibit underlying structure, which
leads us to anticipate significantly smaller relative errors.

To clearly appreciate the capability of the DNN based
method, we, first, investigate the performance for the
euclidean data set. Fig. 5a shows the overall accuracy of the
method over the size of train data sets in terms of relative
errors. As the size increases, the relative error decreases.
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FIGURE 5. Estimation of Euclidean Distances with DNN.

To summarize the accuracy, we show the mean, median
(50th percentile), and the 95th percentile errors. For each
measurement point, we also show the confidence intervals
for mean and median errors. Fig. 5a clearly shows that
the errors are very close to 0. This experiment is to show
that neural network can be used to effectively mimic a
non-linear function such as Euclidean distance. Fig. 5b shows
the error statistics over the three distance groups. As can
be seen in Fig. 5b, when the actual distance is small, the
95th percentile relative errors are relatively high. It is quite
expected due to the definition of relative error. However, for
mid and high range actual distances, the relative errors are
near 0. In summary, the DNN based method can estimate the
Euclidean distance quite accurately.

Even though the earth looks flat, it is actually a globe.
So to better measure the direct distance between two points,
we need to use Geodesic distance instead of Euclidean
distance. For that matter, we generate random points in spher-
ical coordinates with radius 1. The latitudes are uniformly
randomly generated from −90◦ to 90◦. The longitude are
uniformly randomly generated from−180◦ to 180◦. It should
be noted that through this random selection, the points near
poles are more frequently chosen. Fig. 6 shows the estimation
performance over the Geodesic distances. As can be seen in
Fig. 6, the relative errors are about 10 times higher than the
Euclidean distance case, which is quite surprising.

Such high errors is due to the fact that the distances among
the points in spherical coordinates does not resemble to

FIGURE 6. Estimation of Geodesic Distances with DNN.

Euclidean distances. However, if the area on a sphere is small,
then the distances might exhibit Euclidean characteristics.
Thus, we randomly generate points in a small area on the
sphere. For that matter, we consider two cases. One is the area
of mainland USA, where latitude varies 24◦ to 48◦ and the
longitude varies from −125◦ to −67◦. The other is the area
of Korean Peninsula. where latitude varies 33◦ to 43◦ and the
longitude varies from 124◦ to 132◦. Fig. 7 and Fig. 8 show
the relative errors for the data set derived from each area. The
relative errors over the smaller area are smaller than those of
the overall globe. One thing to note is that Fig. 8 shows higher
relative errors than Fig. 7. The difference comes from the fact
that the Korean Peninsula area is longer in vertical direction,
while the mainland USA area is wide in horizontally.

Now, we investigate the performance of the DNN based
method for the Manhattan distances. Fig. 9 shows the mean,
median, and 95th percentiles for the DNN based method
(‘‘-DNN’’) and the linear regression based method (‘‘-Reg’’).
The relative errors of the DNN based method are similar
to the Euclidean distance case. However, linear regression
model does not perform well. That is because the same direct
distance may have very different Manhattan distances. For
example, let a = (0, 0), b = (5, 0), c = (3, 0), d(0, 4). Then,
both ab and cd are 5 in terms of Euclidean distance. However,
in Manhattan distance, ab = 5 and cd = 7. Thus, linear
regression may not be able to estimate the correct distance
solely based on the Euclidean distance between two points.
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FIGURE 7. Estimation of Geodesic Distances with DNN (Mainland USA).

Since the largest error of linear regression method occurs
when two points are on the diagonal of a square, the largest
relative error could be (2 −

√
2)/2 = 0.293. This simple

mathematical analysis can be roughly confirmed by the 95th
percentile of relative errors of linear regression model for
Manhattan distance, a little bit larger than 0.2.

Manhattan distance represents the road network around
city centers. However, for a large area, a planar graph may
represent better. For that matter, we evaluate the performance
of the DNN based approach for distances based on Delaunay
triangulation graphs (D4 and D5). Fig. 10 shows the relative
errors for the distances of Delaunay triangulation with
Nearest Point (D4). The number of nodes for the Delaunay
triangulation is 30. As can be seen in Fig. 10, the mean and
media relative errors of the DNN based method is less than
0.2. The 95th percentiles are also below 0.5. However, these
errors are much higher compared to the Euclidean distance
and Manhattan distance cases. The reason is that for the
distances of the Delaunay triangulation with nearest point,
there are some cases where small difference in the position
may occur large actual distance. However, for Euclidean
distance and Manhattan distance, the difference is usually
proportional to the offset of the positions.

For example, let p⃗ and q⃗ be the positions of two nodes. Let
q⃗′ = q⃗+ δ⃗, which is a point close to q⃗. The Euclidean distance
of p⃗ and q⃗ is d1 = ∥q⃗− p⃗∥. The Euclidean distance of p⃗ and q⃗′

is d2 = ∥q⃗− p⃗+ δ⃗∥. The distance difference between d1 and

FIGURE 8. Estimation of Geodesic Distances with DNN (Korean
Peninsula).

d2 is relatively proportional to ∥δ⃗∥. In other words, there is
no large distance difference for a small change of positions,δ⃗.
However, for the distances of Delaunay triangulation with
nearest points, there can be many cases where small position
changes cause large distance differences. That is because two
nearby points may have different nearest landmarks in the
Delaunay triangulation. A specific example is given in the
next section. Nevertheless, the linear regression basedmethod
shows a little bit higher relative errors than the DNN based
method.

One thing to note is that the relative errors do not change
much as the training data size increases. The reason is
because the whole distances are based on the 30 node
Delaunay triangulation. Thus, 10,000 samples can effectively
represent the characteristics of the distances. Thus, increasing
the number of training samples may not provide more
information to the neural network. In other words, the neural
network can summarize the distances among the landmarks
easily with 10,000 samples. However, it is quite difficult
to estimate the distances between src-dest pairs because of
the non-linear distance characteristics. Thus, there are large
relative errors compared to the Euclidean and Manhattan
distances.

Similar phenomenon happens for the distances of Delau-
nay triangulation with nearest edges (D5). Fig. 11 shows the
relative errors of the DNN based approach and the linear
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FIGURE 9. Estimation of Manhattan Distances with DNN.

regression based approach. We can clearly see that the DNN
based approach performs better than linear regression based
approach.

Finally, we show the correlation coefficient and the coef-
ficient of determination of the estimation results in Table 2.
For each r and r2, we show the mean and 95th confidence
interval from the 15 runs of simulations respectively. Thus,
for the Delaunay triangulation with Nearest Point, the mean
of r is 0.9064376 and the 95th confidence interval is the
mean ±0.0083036. As can be easily expected from the above
results, r and r2 values are close to 1.0 for Euclidean distance
and Manhattan distance. However, r values of Delaunay
triangulation based approaches are a little bit row, close
to 0.9. Nonetheless, the DNN based approach shows good
estimation accuracy. It should be noted that r and r2 of the
random data set are almost 0, whichmeans that the estimation
is totally random.

V. IMPACT OF DISCONTINUITY
Carefully analyzing the results in Section IV, we conclude
that the difference in performance comes from the degree of
how much output change is incurred by the input change.
To be specific, we expect that if the input change is small, the
output change is small. Similarly, if the input change is large,
the output should change large. Since DNN can be considered
as a sort of linear regression model, if the data set shows this
kind of linear (continuous) behavior, the DNN model may

FIGURE 10. Estimation of Distances by Delaunay triangulation with
Nearest Poin.

work well. However, if the data set does not show continuous
behavior, DNN may not perform well.

The distance types that the DNN model works best are
the Euclidean distance and the Manhattan distance. In the
two cases, the continuity exhibits highly. However, for other
distance types, there are many cases where the distances
are not continuous. For example, consider the example in
Table 3. There are two inputs and two outputs for the three
different distance types. For the Euclidean and Manhattan
distances, the two outputs differ for different inputs. However,
the geodesic distance type shows the same output due to
the characteristics of the sphere. To be specific, the Input
1 represents two points: (lat= 0◦, lon=0◦) and (lat= 90◦,
lon=0◦). Similarly, the Input 2 represents two points: (lat=
0◦, lon=0◦) and (lat= 90◦, lon=180◦). However, the geodesic
distances of those two Inputs are the same, i.e., π/2 because
(lat= 90◦, lon=0◦) and (lat= 90◦, lon=180◦) are the same
points.

Similarly, the Delaunay triangulation based distances
show similar discontinuity. Consider Fig. 12. The Delaunay
triangulation has three points at (0, 0), (6, 0), (0, 6). There
are three other points at (4, 5), (5, 4), (6, 1). The distance
between (4, 5) and (6, 1) is

√
17+6

√
2+1 ≈ 13.6. However,

the distance between (5, 4) and (6, 1) is
√
17+ 1 ≈ 5.1. This

is because the nearest points in Delaunay triangulation of the
two points, (4, 5) and (5, 4), are different even though the two
points are close.
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TABLE 2. Accuracy of Distance Estimation: r and r2.

TABLE 3. Examples of discontinuity in distances.

FIGURE 11. Estimation of Distances by Delaunay triangulation with
Nearest Edge.

To analyze the impact of discontinuity of the distance,
we generate distance data sets on an Euclidean space with
some discontinuity factor. To be specific, we divide a
rectangular evenly along one axis. Then we select two points
on the area and compute the Euclidean distance. To apply
the discontinuity factor p, if the two points reside in different
‘‘half’’ of the area, we add additional distance, p × width.
Thus, a slight change of a position may result in a big
distance change. We vary p with 0, 0.25, 0.5, 0.75, 1.0 and
check the performance. Since we only need to show the clear
relationship between the errors and p, we vary p from 0 up

FIGURE 12. Example of Delaunay triangulation with nearest points: Two
close points have very different distance to a third point.

FIGURE 13. Impact of the discontinuity factor in a Euclidean space. Larger
discontinuity factor generates poor performance.

to only 1. As can be seen in Fig. 13, a larger discontinuity
factor shows higher relative errors. Thus, if the driving
distances show high discontinuity, then the deep learning
based method may not work well. One thing to note is that
in this paper, we only consider synthetic data sets, which are
generated from distance definitions. However, for the real
road information, OpenStreetMap [17] could be a viable data
set.

Actually, the continuity characteristics of the road distance
have been reported in many papers [4], [5], [11]. We also
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FIGURE 14. Geographic distance vs. Travel Distance: The slope of the
linear regression method shows the inflation ratio of around 1.3.

examine the continuity of the geographic distances in real
environment.We collect 123 truck routes from a drug delivery
services in Korea. The total number of destinations in the
routes is 1090. Thus, in each route, there are in average
8.9 destinations. Fig. 14 shows the travel distance and the
geographic (straight) distance pairs. Specifically, Fig. 14a
shows the overall distribution of distances of routes and
Fig. 14b shows the distributions of distances of each segment
in a route. The evident slope of approximately 1.3 in the
plot confirms the consistent findings of previous studies.
This clear continuity suggests the promising potential of
DNN models for accurately estimating travel distances. The
correlation coefficient of the whole travel distances is r =

0.9916 and the coefficient of determination is r2 = 0.9833.
Similarly, the correlation coefficient of the segment distances
is r = 0.9945 and the coefficient of determination is r2 =

0.9891. It means that the deep learning based method might
be a promising method for the driving distance estimation.

Finally, we mention the estimation time of DNN based
approach. For some applications like VRP (Vehicular Rout-
ing Problem), the number of distance estimations may be
very large. For example, the number of distance estimations

needed for an n node VRP problem, is n(n− 1)/2. Thus,
the computation time should be considered as a serious
factor for such application. The computation of the DNN
model depends on the number of weights and the number
of perceptrons. In the model of this paper, the number of
weights is 10, 250. Furthermore the number of perceptrons
is 200, for which the ReLu operation is needed. However the
ReLu operation is just a simple comparison and assignment,
the number of weights is the main factor for the computation
time. Ten thousands multiplication does not take much time
for modern computers, so the computation time of the
estimation procedure in DNN based approach is not a big
problem.

Actually, we measure the execution time of the estimation
in aWindows machine (Inter(R) Core(TM) i5-9500F CPU@
3.00GHz, 32.0GB RAM, 64bit operating system). We con-
duct 75 runs of 10,000 estimations. The average computation
time of each run is 2.818706667 seconds, which means
0.281871msec for each estimation. Thus, for a 100 node VRP,
the computation time would be less than 2 seconds.

VI. CONCLUSION
The road distances play a crucial role in many location-
based applications, particularly in the context of the vehicular
routing problem. However, traditional methods relying solely
on direct geographic distances calculated by latitude and lon-
gitude fail to accurately represent road distances on real road
networks. Estimating road distances is therefore paramount
for the success of such services. Previous research has
focused on developing efficient methods for estimating road
distances and has reported an inflation ratio of approximately
1.3 between road distances and direct distances. Furthermore
there are DNN based approaches to improve the accuracy of
the estimation.

In this paper, the main focus is on thoroughly examining
a deep learning-based road network distance estimation
method under controlled conditions. Five different distance
types with specific characteristics are defined, and distance
data sets based on these types are generated to evaluate the
DNN-based approach. The goal is to better understand the
behavior of the DNN-based approach and identify the main
factors influencing its performance. Extensive simulations
show that the DNN-based method performs well across
various distance definitions. By carefully analyzing the
evaluation results, we find that the discontinuity in the
distances is a critical determinant of its performance. Conse-
quently, future DNN-based road network distance estimation
methods should carefully consider the discontinuity to
optimize overall performance and develop more accurate and
efficient distance estimation models for complex modern
road networks.
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