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ABSTRACT The next generation of wireless networks is poised to deliver dependable, extensive, and
extremely low-latency mobile broadband communications across various industries. In this regard, recon-
figurable intelligent surface (RIS)-aided non-terrestrial base station (NTBS) is crucial for developing
three-dimensional (3D) networks that aim to integrate the terrestrial and non-terrestrial infrastructures. The
integration of RISs with NTBSs has resulted in additional capabilities to attain faster and more flexible
mobile coverage. In this paper, we employ a novel RIS-aided NTBSs with non-orthogonal multiple access
in downlink heterogeneous networks (HetNets), in which the RIS is utilized to improve the transmission of
signals from multiple NTBSs to ground users (GUs). We aim to maximize the system sum rate (SSR) and
energy efficiency (EE) bymitigating inter-cluster and intra-cluster interference. The formulated optimization
problem is non-convex due to the joint optimization of NTBS 3D positions, RIS reflection angles, RIS reflec-
tion coefficients, and successive interference cancellation among GUs. To address this problem, a modified
gray wolf optimization -based meta-heuristic algorithm is proposed. In particular, the original optimization
problem is divided into three sub-problems (i.e., RIS reflection angles, RIS reflection coefficients, and
NTBS 3D position), which are then addressed alternately using the proposed optimization technique. The
novelty of our proposed work is presented by reformulating the distance equations to minimize the distance
between the wolves and their prey and enhance the search process’s precision. The simulation results stated
that the suggested algorithm outperforms the traditional schemes in terms of both SSR and EE. Furthermore,
the results show that incorporating RIS into multi-NTBS HetNets effectively boosts overall performance
by improving the channel quality between NTBSs and their respective GUs while reducing inter-NTBS
interference.

INDEX TERMS B5G, MGWO, HetNets, NOMA, NTBS, RIS, SIC.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adao Silva .

I. INTRODUCTION
The progress and affordability improvements in manufac-
turing technologies have led to a growing fascination with
non-terrestrial base stations (NTBSs), such as unmanned

98750

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3480-0500
https://orcid.org/0000-0002-0186-3890
https://orcid.org/0000-0003-4003-4793
https://orcid.org/0000-0002-0390-7842
https://orcid.org/0000-0002-7008-6773


O. T. H. Alzubaidi et al.: Interference Mitigation Based on Joint Optimization

aerial vehicles (UAVs), commonly known as drones, for
their potential applications in diverse civil applications like
traffic surveillance, cargo delivery, and search and rescue
missions [1], [2], [3]. Among various possibilities, communi-
cation utilizing NTBSs stands out as particularly appealing.
These NTBSs can function as aerial base stations, equipped
with communication tools to offer wireless communication
services in numerous real-world scenarios. This includes
scenarios like diverting traffic to temporary hotspots or restor-
ing communication networks following natural disasters.
Unlike conventional terrestrial communications, line-of-sight
(LoS) links dominate the air-to-ground (A2G) channel [4].
This leads to reliable transmission with higher data rates.
Moreover, the NTBSs’ mobility can be managed and used
to enhance communication performance. For example, The
NTBS can approach the target ground user to acquire
enhanced channel characteristics.

Despite the benefits above, mitigating interference arising
from the predominant LoS nature of the A2G channel, par-
ticularly in scenarios involving multiple NTBSs, is regarded
as a major challenge in facilitating NTBS-enabled commu-
nication [5]. The relationship between inter-cell interference
(ICI) and NTBS is critical, as these stations must care-
fully manage interference to ensure reliable communication
across overlapping coverage areas [6], [7]. One potential
approach to address this issue involves utilizing reconfig-
urable intelligent surfaces (RISs) proposed recently [8], [9].
ARIS is a slender artificial surface comprising numerous pas-
sive reflecting components that are economical to produce.
These components are adjusted by changing their phase shifts
and amplitudes, thereby modifying how incoming signals
propagate. The optimization of RIS reflecting coefficients
involves a combination of reflected and non-reflected signals
in a manner that either amplifies the desired signal strength
or eliminates interference by constructive and destructive
interference, respectively [10]. Additionally, it is easy to
incorporate RISs into current wireless networks due to their
ability to be placed on a variety of structures, like road-
side billboards, building facades, and indoor walls, providing
flexibility in their deployment. This feature of RISs allows
them to be conveniently integrated into different wireless
networks [11].

In NTBS-based communication, NTBSs typically must
provide services to a massive number of ground users (GUs)
with specific communication demands. This holds partic-
ularly true for the future Beyond Fifth Generation (B5G)
networks. Advanced multiple-access techniques are essential
for tackling these challenges. In particular, non-orthogonal
multiple access (NOMA), which maximizes spectrum effi-
ciency (SE) and supports massive connections, is considered
a potential solution for integrating NTBS into the B5G net-
works. [12]. NOMA enables several users to share resources
at the same time and frequency. Using successive interference
cancellation (SIC) methods, NOMA can distinguish among
users according to their power levels. Using NOMA in NTBS
communications improved by RIS is an appealing approach.

It is seen as mutually beneficial because of the follow-
ing factors: First, NOMA offers better elastic and effective
resource allocation (RA) for NTBS communication that RIS
enhances compared to the traditional orthogonal multiple
access (OMA). Consequently, SE can be improved, and vari-
ous users’ communication needs can be covered [13]. Second,
the sequencing of SIC decoding order among users in tradi-
tional NOMA transmissions is commonly calculated based
on ‘‘dumb’’ channel characteristics [14], [15]. It’s crucial to
know that both NTBSs and RISs are channel-changing tech-
nologies. Leveraging the mobility of NTBSs and/or adjusting
the reflection coefficients of RISs can enhance or degrade
user channel conditions, enabling the intelligent implemen-
tation of NOMA [16].

A. RELATED WORKS
The latest research carried out on cluster interference [17],
[18], [19], inter-user interference [20], [21], [22], [23], [24],
ICI [25], [26], [27], and self-interference [28], [29], [30],
[31], [32] schemes in RISs are presented in this subsection.

1) CLUSTER INTERFERENCE SCHEMES
In [17], the RIS-enhanced multi-UAV NOMA networks are
investigated. To maximize the total data rate of the networks
under consideration, the joint optimization for the UAV trans-
mission power and three-dimensional (3D) placement, the
RIS reflection coefficients, and the NOMA decoding orders
among users are considered. A block coordinate descent
(BCD)-based technique is evolved to identify a suboptimal
solution iteratively to cope with the ensuing mixed-integer
non-convex optimization problem. The simulation results
proved that optimizing UAV trajectory, RIS deployment, and
utilizing NOMA can substantially enhance the attained total
data rate.

In [18], RIS is implemented in the NOMA network, aided
by UAVs. In this network, the RIS enhances the transmission
of signals from various UAVs to GUs. Since the formulated
optimization problem simultaneously optimizes the UAV
position, power transmission, active beamforming vectors
(ABVs), reflection coefficients of RIS, and decoding order
among users, it is non-convex and consequently quite chal-
lenging to solve optimally. To address this issue, the resultant
optimization problem is divided into four distinct subprob-
lems and resolved through an iterative process. First, the UAV
placement sub-solution, which can be achieved via successive
convex approximation (SCA) and maximum ratio transmis-
sion, is considered. The transmission power is optimized
through conventional convex optimization techniques. After-
ward, the reflection coefficients of RIS can be expressed in
closed form by utilizing the Gaussian randomization pro-
cedure. Finally, a dynamic-decoding order technique that
optimizes the NOMA decoding order is proposed to ensure
user fairness. The numerical results stated that the suggested
joint RA and deployment of the UAV algorithm dramatically
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minimize the total power consumption compared to the con-
ventional approaches.

In [19], the RIS is employed to improve energy efficiency
(EE) and the possibilities of task-offloading in a mobile edge
computing scenario that makes use of UAVs. The total sum
rate of internet of things (IoT) devices is maximized by the
joint optimization of time allocation, power transmission, IoT
devices’ central processing unit frequency, the phase shift
in the energy transfer and task offloading stages, and the
trajectory of UAVs. An alternative search method (ASM)
is suggested to deal with the non-linear, non-convex opti-
mization problem. The numerical results showed that the
suggested ASM algorithm has superior computational perfor-
mance compared to the benchmark designs.

2) INTER-USER INTERFERENCE SCHEMES
In [20], an intelligent reflecting surface (IRS)-assisted UAV
reliability with limited energy of the UAV in complicated
urban environments is investigated. The joint optimization of
the trajectory of UAVs, the power allocation (PA) of UAVs,
and the scheduling of IRS, the phase shift matrix of IRS,
is presented to maximize the transmission link’s reliability,
taking into consideration the constraints of the energy of
the UAV and the error rate of the channel. A chaotic adap-
tative hybrid whale optimization algorithm (CAHWOA) is
designed to tackle the non-linear, non-convex original prob-
lem. The simulation results stated that the joint optimization
algorithm can significantly enhance the transmission link
reliability of the proposed system.

In [21], a novel framework of aerial IRS (AIRS) enhancing
the NOMA system is proposed. The joint optimization of the
UAV position, PA among users, and a passive beamforming
of AIRS maximizes the total sum rate of the proposed sys-
tem. Because of the non-convex nature of the optimization
problem, it is divided into three sub-problems and alternat-
ingly addressed using the SCA. Furthermore, the reflection
matrix of the IRS is addressed through the implementation
of semi-definite programming (SDP), and comparisons are
conducted utilizing particle swarm optimization (PSO). The
simulation results indicated that the performance of the sug-
gested system could attain a higher data rate than that of the
conventional system.

In [22], the simultaneous operation of the IRS-assisted
uplink (UL) sparse code multiple access (SCMA) wireless
cellular network along with device-to-device (D2D) users is
considered. The average data rate of the cellular network is
maximized by the joint design of IRS phase shifts, resource
block association for D2D users, and transmission power
for D2D users as well as cellular users. A BCD technique-
based, effective iterative approach is proposed to address
the non-convex original problem. The numerical results con-
firmed that the suggested approach is suitable and effective
for addressing the optimization problem.

In [23], a framework for optimizing energy consumption
in a multi-cluster simultaneous transmission and reflec-
tion (STAR) RIS-based time division multiple access

(TDMA)-aided hybrid NOMA system is proposed. The EE
of the proposed scenario is maximized by jointly optimizing
ABVs at the transmitter, phase shifts, energy conservation,
SIC-decoding order constraints, time allocation, and the
transmitter and reflector coefficients under quality of service
(QoS). Moreover, an alternating optimization (AO) scheme is
proposed to address the non-convex problem. The numerical
results showed that the proposed technique is effective in
terms of EE and achieves convergence in a minimum number
of iterations.

In [24], a model for communication channels involving
UAV-assisted IRSs in orthogonal frequency division multi-
ple access (OFDMA) heterogeneous networks (HetNets) has
been derived. Specifically, a swarm of drones equipped with
IRSs has been considered. Additionally, the IRSs are split
into patches of various sizes that can be specified for several
GUs. According to these presumptions, a lower-band gain
expression is acquired by 1) managing the phase shifts that
can be controlled in a way that lowers the degrees of free-
dom; 2) using a mathematical approximation to represent the
complicated Gaussian product used in channel modeling; and
3) enforcing a set outage probability to deal with the channel’s
built-in randomness. The numerical results demonstrate that
including UAVs equipped with IRS improves the quality of
the GUs’ channels.

3) INTER-CELL INTERFERENCE SCHEMES
In [25], a UAVwith simultaneous transmission and reflection
RIS (STAR RIS-UAV) scheme is investigated for enhancing
wireless communication systems in multi-user networks. The
total rate of the proposed system is maximized by opti-
mizing the TRC matrices in addition to the corresponding
beamforming vectors. The numerical results stated that the
suggested system could substantially enhance the average
system rate compared to the no-STAR-IRS and the traditional
IRS schemes.

In [26], a UAV communication system that combines
NOMA with simultaneous wireless information and power
transfer (SWIPT) is considered to enhance the practicality
of UAV-RIS networks. This original complicated non-convex
problem is decomposed into three steps because of the
extreme coupling among several parameters in the original
problem. The first step initially divides the problem into
two stages: NOMA sub-channel allocation and SIC decoding
order. The objective is to determine the optimal solution for
each stage independently. In the second step, a Lagrangian
duality-base beamforming design is employed, taking into
account the maximum power transmission of the UAV, the
energy harvesting threshold of the user, the constraints of
cross-layer interference, and the QoS demands of the users.
In the third step, the joint optimization of the power-splitting
factors and the RIS reflection phases using the penalty-semi-
definite relaxation (SDR) technique is innovated to attain
a near-optimal solution. The numerical results stated that
implementing RISs significantly affects the EE of the pro-
posed system.
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In [27], a framework for A2G UL NOMA that employs
IRSs is investigated. Flight safety is crucial when using UAVs
in urban airspace. The joint optimization of the trajectory of
UAVs, IRS reflection angles, and UAV transmission power
are considered. The objective is to maximize the total rate
of the network while ensuring the flying safety of the UAV
and satisfying the minimum sum-rate requirements for both
the GU and UAV. To address this optimization problem,
a sample-efficient deep reinforcement learning algorithm is
suggested to enhance the placement of the UAV, the con-
figuration of the IRS, and power control simultaneously.
Furthermore, a distributionally robust deep reinforcement
learning algorithm is introduced to address the factors that
influence the environment to ensure the performance guar-
antee under the worst-case scenario. The simulation results
stated that the proposed algorithm outperforms traditional
algorithms concerning robustness and learning efficiency.

4) SELF-INTERFERENCE SCHEMES
In [28], incorporating hybrid active-passive RIS into the UAV
platform to help in downlink (DL) transmission between
the multi-antenna UAV and several users is considered. The
objective is to create a fair design for two networks that
support UAVs. The first network, the static UAV network,
involves deploying the UAV in a fixed location to provide
the service for all users simultaneously. The second network,
the mobile-UAV network, involves the TDMA protocol. The
joint optimization of the beamforming transmission, the tra-
jectory of UAVs, and the coefficients of RIS maximize the
minimum data rate among all users. The simulation results
showed that the hybrid IRS achieves a better minimum data
rate enhancement than the passive IRS under the same active
elements.

In [29], the problem of deploying aerial RIS is studied
to facilitate the reliable delivery of data in a remote IoT
scenario. In order to reduce the average age of informa-
tion of the data received by the BS over time, the joint
determination of device transmission power, deployment
position of RIS, phase shift of RIS, and the time of data
uploading is adopted. Because of the non-convex nature
of the optimization problem, a BCD is proposed to divide
the optimization problem formulated into various subprob-
lems. A near-optimum solution is attained by optimizing the
variables in each sub-problem separately in an alternating
iterative way. The numerical results proved that the suggested
algorithm outperforms the benchmark schemes in terms of
enhancing the information speed.

In [30], the NOMA-based RIS-aided UAV networks are
proposed to enhance the average data rate of the pro-
posed system when a direct link is obstructed. An AO
method is suggested for the non-linear, non-convex origi-
nal problem. The average data rate of the proposed system
is maximized by simultaneously optimizing the RIS posi-
tion, RIS phase shift, successful SIC, UAV altitude, BS’s
maximum transmission power, and power splitting factors.

The simulation results demonstrated that the suggested
system can substantially enhance the total system rate com-
pared to conventional approaches.

In [31], a combination of an IRS installed on a full-duplex
UAV and splitting-rate multiple access (SRMA) is proposed
to improve SE in aerial networks. The joint optimization of
SRMA parameters, the UAV’s trajectory, the IRS’s place-
ment, and the IRS’s phase shift matrix are considered. To
address the non-convex optimization problem, the resul-
tant optimization problem is divided into three subproblems
and resolved through an iterative process. First, the PA
sub-solution that can be achieved via the BCD algorithm is
considered. The IRS phase shift is optimized by utilizing
the Riemannian conjugate gradient (RCG) algorithm. Finally,
an iterative scheme is used to get the optimum position for
both the IRS and UAV. The simulation results stated that
RSMA is more effective than NOMA and conventional OMA
schemes.

In [32], a new secure transmitting strategy is suggested
for NOMA networks with RIS assistance, prioritizing secu-
rity against external and internal surveillance. First, the
maximization problem of the security rate is formulated,
in which the phase shift matrix of RIS and the PA of
NOMA are optimized. Second, to address the non-convex
original problem, it is decoupled into two distinct security
problems: internal and external. Then, a heuristic-simulated
annealing (SA) algorithm is suggested to address decoupled
non-convex problems. This algorithm uses the Lagrange mul-
tiplier method, the SDR approach, and the singular value
decomposition approach to figure out the PA and phase shift.

B. MOTIVATION AND CONTRIBUTION
There is still a big research gap in using RIS for
NTBS-based communication with multiple users and NTBS.
Previous studies have laid a strong foundation for using
NTBS-qualified and RIS-promoted communication. The
above studies look into the RIS reflection angles and coef-
ficients as well as the joint NTBS trajectory optimization
problems. However, none of these studies focus on the
possible performance benefits of optimum-position NTBS
networks supported by RIS with DL NOMA transmission.

The main challenges of this work are identified in the
following points:

• The performance of NTBS-based communication is
sharply affected by several parameters such as the
NTBS’s altitude and the GUs’ position. The deploy-
ment of NTBSs must be carefully planned to ensure
optimal performance. However, when multiple NTBSs
are deployed simultaneously, they can cause inter-NTBS
interference [33].

• When determining the optimum altitude for the deploy-
ment of NTBSs, the probability of having a LoS link
must be considered. DeployingNTBSs at lower altitudes
can lead to lower coverage and lower probabilities of
having LoS links due to the shadow effect. On the
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contrary, NTBSs deployed at higher altitudes can suffer
from poor coverage performance due to higher path
losses resulting from the larger distance between the
transmitter and receiver [34].

• In a multi-NTBS environment, each GU’s communica-
tion rate is influenced by both the level of interference
and the power strength of the desired signal. Optimiz-
ing the NTBS 3D positions requires striking a balance
between the desired signal strengths conveyed to desired
GUs and inter-UAV interference imposed on undesired
GUs, which is a significant challenge [35].

• In contrast to the single-GU environment [36], the con-
figuration of optimal RIS for a multi-GU environment
does not simply involve aligning the phases of reflected
and non-reflected signals. The RIS reflection coeffi-
cients must be shared by multiple GUs simultaneously,
making their design significantly more challenging [37].

• Using NOMA adds a newway to design decoding orders
based on channel conditions [38]. This leads to strong
connections between NTBS 3D positions, RIS reflection
angles and coefficients, and NOMA decoding orders
amongGUs. Therefore, it is essential to develop efficient
optimization algorithms to properly benefit from NTBS
supported by RIS and NOMA and effectively adjust to
the quickly evolving environments of beyond-5G wire-
less networks.

Considering the background and observations described
earlier, the main contributions of this paper can be summa-
rized as follows:

• A novel transmission structure is proposed for sev-
eral NTBS wireless communication networks, where
NOMA is used at each NTBS to serve GUs. RIS
is used to boost NTBS transmission to the desired
GUs and reduce the impact of interference from other,
non-targeted GUs. The SSR and EE maximization
problems are formulated for the joint optimization
of NTBS 3D positions, the RIS’s reflection coeffi-
cients and reflection angles, and the NOMA-SIC at
each user cluster. Moreover, a theoretical analysis
is provided, and the signal-to-interference-plus-noise
ratio (SINR) and maximum achievable data rate are
calculated.

• A modified gray wolf optimization (MGWO)-based
meta-heuristic algorithm is proposed. As the distance
between each wolf and prey should be as small as pos-
sible to obtain the most accurate results, the novelty of
our proposed work is presented by reformulating the
distance equations to minimize the distance between
the wolves and their prey and enhance the search pro-
cess’s precision. Based on the reformulated equations,
the ability of the MGWO increased accordingly to
retain information on the search space through the itera-
tion process without configuring supplementary control
parameters. The original problem is divided into three
sub-problems and then tackled iteratively. The three sub-
problems, namely, RIS reflection angles, RIS reflection

coefficients, and NTBS 3D positions with NOMA-SIC
are successfully resolved by employing the MGWO
technique.

• Compared with other benchmark techniques, the pro-
posed RIS-enhanced NTBS NOMA scheme has sub-
stantially enhanced coverage capacity, sum rate, and
EE performance. Moreover, the results indicate that
the inclusion of the RIS has a dual effect: it improves
the channel quality between NTBSs and served GUs,
while simultaneously reducing the impact of interfer-
ence originating from unserved GUs. Furthermore, the
advantages of NOMA over other multiple access tech-
niques are significantly increased by optimizing the
NTBSs 3D positions, as it increases the channel differ-
ences among GUs and facilitates flexible SIC design.
This leads to enhanced performance gains with NOMA
in the proposed system.

• The simulation results demonstrate that in terms of SSR
and EE, the proposed algorithm can outperform other
traditional algorithms such as BCD, Annealing, Greedy,
GWO OMA, NOMA with RIS (random reflection coef-
ficient), and NOMA without RIS. In this paper, the
NOMAwith RIS (random reflection coefficient) will be
referred to as (NOMA+RIS), and NOMA without RIS
will be referred to as (NOMA-RIS). The results also
show that using the RIS with random reflection angles
has the same effect on performance as without the RIS.
This indicates the importance of optimizing the reflec-
tion angles and coefficients of the RIS in RIS-based
communication networks.

• To the best of the author’s knowledge, this is the first
time that the NTBS 3D positions, RIS reflection angles,
RIS reflection coefficients, and SIC among GUs have
been addressed and solved using a modified evolution-
ary algorithm.

C. PAPER ORGANIZATION AND NOTATIONS
The sections in this paper are organized as follows: In
section II, the system model for RIS-enhanced NTBSs with
NOMA HetNets is presented. The formulation problem of
the total sum rate maximization is presented in section III.
Section IV of the paper presents the development of an
optimization method designed to find a solution for the opti-
mization problem that has been described. The simulation
results are given in section V. Finally, the conclusion of this
article is described in section VI.

Notation: Bold-face upper case, bold-face lower case, and
lower-case characters are used to represent matrices, vectors,
and scalars, respectively. The space of NX1complex-valued
vectors is denoted by CN×1. T and H represent the trans-
pose and conjugate transpose of vector , respectively. The
Euclidean norm, diagonal matrix, and nth element of vector
are represented by the notations ∥ ∥, diag ( ), and [ ]n,

respectively. The notation 1nxm is referred to as an ‘‘all-one’’
matrix of size nxm. The notation HN represents the set of all
N-dimensional complex Hermitian matrices.
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II. PROPOSED SYSTEM MODEL
The explored RIS-enhanced NTBSs, with NOMA in DL
HetNets, are depicted in Fig. 1, where U NTBSs are utilized
to support U different user clusters with the help of RIS
consisting of reflective elements. A feasible use of the
described setup involves utilizing NTBSs to deliver commu-
nication services to transient hotspots in suburban or rural
areas. It is assumed that both NTBSs and GUs have a single
antenna. The set U = {1, · · ·, U} is used to represent both
NTBSs and their corresponding served user clusters. The set
Mu = {1, · · ·,Mu}, ∀ u ∈ U, is used to index the GUs in
each cluster, where Mu stands for the number of GUs in
the U th cluster. A 3D Cartesian coordinate system is taken
into consideration without losing its generality, and the index
(u, i) is used to represent the ith user in the uth cluster. The
positions of the (u, i)th user, RIS, and NTBSs are fixed at
u
i = [xui , y

u
i , z

u
i ]
T , ∀i ∈ Mu, u ∈ U , = [x , y , z ]T ,

and9u = [xu, yu, zu]T , respectively. In order tomaintain safe
operation and prevent collisions, certain restrictions must be
followed regarding the altitude at which NTBSs fly and the
minimum distance that must be maintained between any two
NTBSs, as follows:

Zmax ≥ zu ≥ Zmin, ∀u ∈ U (1)∥∥9u −9 j
∥∥ ≥ 1min, ∀u ̸= j ∈ U (2)

The range of permissible altitudes for NTBS is denoted by
[Zmax, Zmin] while the minimum distance between any two
NTBSs to prevent collisions is represented as ‘‘1min’’.

In practical applications, it is common for RIS to
be equipped with an advanced controller, such as a
field-programmable gate array (FPGA), which is responsi-
ble for setting and adjusting reflection coefficients, as well
as facilitating communication and information exchange
between the RIS and NTBSs [39]. The NTBS-RIS-user con-
nection has considerable path loss, requiring a substantial
number of reflecting components to provide a reflection link
with path loss equivalent to the unobstructed direct NTBS-
user link. However, this results in an unreasonably large
overhead and a high level of complexity regarding channel
acquisition and the design or reconfiguration of the reflection
coefficient. To solve this problem, the RIS is partitioned
into smaller sub-surfaces with a higher channel correlation.
Assume that each sub-surface is composed of a different
reflecting element.

It is assumed that each sub-surface’s reflecting element has
the same or a different reflection coefficient. The reflection
matrix of the RIS is represented as = φ.dia g

(
θ∗1

×1

)
∈

C × , where θ =

[
ejθ1 , ejθ2 , . . . , e

jθ ]T
, θn ∈ (0, 2π) ,

and φn ∈ (0, 1) ∀n ∈ = 1, . . . , represents the reflection
angle and reflection coefficient associated with the nth sub-
surface of the RIS, respectively.

In the following two sub-sections, we will provide a
detailed theoretical analysis of our proposed system. The
first sub-section (the model of channel) provides a detailed

theoretical framework of the channel models used in our
proposed system, including the mathematical representations
and assumptions necessary for the subsequent analysis of
channel behaviors. while the second sub-section (NOMA
transmission) elaborates on the theoretical underpinnings of
NOMA techniques, discussing how they are applied within
our proposed system model.

FIGURE 1. RIS-enhanced several-NTBS NOMA HetNets.

A. THE MODEL OF CHANNEL
Let H

j
u,i ∈ C1×1 refers to the communication channel

between the j th NTBS and the (u, i)th GU, u,i ∈ C ×1

refers to the communication channel between the RIS and the
(u, i)th GU, and gu ∈ C ×1 refers to the communication
channel between the uth NTBS and the RIS, since NTBSs
often fly at elevated altitudes, are strategically deployed to
prevent the blockage of a signal. The channels H

j
u,i and

u,i models are supposed to be the ‘‘Rician channel model’’,
which is mathematically expressed as:

H
j
u,i =

√∣∣ψ j −
u
i

∣∣α1 (
ϱ1

√
β1H̄

j
u,i + ϱ1H̃

j
u,i

)
(3)

k,i =

√∣∣ −
u
i

∣∣α2 (
ϱ2

√
β2 u,i + ϱ2 ˜ u,i

)
(4)

where denotes the path loss that is measured at a stan-
dardized distance of one meter. The values α1 ≥ 2 and
α2 ≥ 2 represents the path loss exponents (PLEs) for the
links between the NTBS and user, and between the RIS and
user, respectively. β1 and β2 represent the Rician factors,
ϱ1=

√
1

β1+1 and ϱ2=

√
1

β2+1 , H̄
j
u,i = 1 and ¯ u,i represent

the deterministic LoS components, and H̃
j
u,i and ˜ u,i rep-

resent the random components of non-line-of-sight (NLoS)
Rayleigh distribution. More specifically, like [17], a uniform
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linear array (ULA) is taken into consideration for RIS and
¯ u,i is given by:

¯ u,i =

[
e−j

2π
λ

∂co sψu,i
]T

(5)

λ represents the carrier signal wavelength, represents
the spacing between elements in the given context, ∂ = [0, 1,

2, . . . . . . .., ( -1)], and co sψu,i =

xui −x∥∥∥ u
i −

∥∥∥ refers to the cosine

of the (u, i)th user’s Angle of Departure from the RIS.
In addition, gu is supposed to represent the LoS channel

for the NTBS-RIS channel and can be stated as

gu =

√∥∥9u −
∥∥2 −

gu =

√∥∥9u −
∥∥2 [

e−j
2π
λ

∂co s σu
]T
(6)

where co s σu =

x −xu∥∥∥ −9u

∥∥∥ is the cosine of the angle of arrival

from the U th NTBS to the RIS.
According to the channel models mentioned above, the

efficient power gain of the communication channel between
the ith NTBS and the (u, i)th user with the assistance of the
RIS can be obtained as follows:

C
j
u,i =

∣∣Dj
∣∣2, ∀u, j ∈ U , i ∈ Mu (7)

where: Dj =

∣∣∣Hj
u,i + u,i

H gj

∣∣∣2
B. NOMA TRANSMISSION
In this paper, it is supposed that NTBSs are intended to
function within the same frequency range and use NOMA to
establish connections with GUs. To enable the transmission
of NOMA, the signal transmitted from the uth NTBS to the
uth cluster is formulated using SIC as given by:

Sk =

∑Mu

i=1

√
Pu,iSu,i (8)

where the transmitted signal is represented by Su,i and the
transmitted power is represented by Pu,i for the (u, i)th user.
We have ∑Mu

i=1
Pk,i ≤ Pmax,u, ∀u ∈ U (9)

where Pmax,u stands for the uth NTBS’s maximum transmis-
sion power. Following that, the signal received by the (u, i)th

user can be represented as:

yu,i =

(
H
j
u,i + Du

) √
Pu,iSu,i︸ ︷︷ ︸

desired signal

+

(
H
j
u,i + Du

) ∑
=1, ̸=i

√
Pu, Su,︸ ︷︷ ︸

intra-cluster interference

+

∑U

j=1,j̸=u

(
H
j
u,i + Dj

) ∑Mj

ℓ=1

√
Pj,ℓSj,ℓ︸ ︷︷ ︸

inter-cluster interference

+ u,i

(10)

where Dj = u,i
H gu, u,i stands for an additive white

Gaussian noise (AWGN) with a mean of zero and a variance
of σ 2.
Each user uses SIC following the NOMA protocol to elim-

inate intra-cluster interference. Specifically, the user with a
higher channel power gain is seen to first decode the signal
of the user with a lower channel power gain, followed by
decoding their signal [40], [41]. To indicate the decoding
orders among GUs in each cluster, a group of binary variables
is introduced, u

,i ∈ 0, 1,∀u ∈ U ,∀ , i ∈ Mu. Suppose
that the uth NTBS is providing service to a set of GUs. If the
efficient channel power gain of the (u, t)th user is greater than
that of the (u, i)th user,we have u

,i = 1; otherwise, u
,i = 0.

Therefore, for all u ∈ U , i ̸= ∈ Mu,
{

u
,i

}
must meet the

following provisions:

u
,i =

{
1, if Cuu, ≥ Cuu,i
0, otherwise

(11)

u
,i +

u
i, = 1 (12)

Additionally, the assigned power must meet the following
criteria for the specified decoding orders:

Pu,i ≥
u
,iP ,i, ∀i ̸= ∈ Mu, u ∈ U (13)

This condition guarantees that GUs with lower channel
power gains receive more PA compared to GUs with higher
channel power gains [42],

i.e.,Pu,i ≥ Pk, , if
u
,i = 1 (14)

Consequently, the SINR received by the (u, i)th user after
implementing SIC can be expressed as:

u,i =
Cuu,i Pu,i

intra
u,i +

inter
u,i + σ 2

, ∀i ∈ Mu, u ∈ U (15)

where:

intra
u,i = Cuu,i

∑Mu

=1, ̸=i
u
,iPu, (16)

and

inter
u,i =

∑U

j=1,j̸=u
C
j
u,i

∑Mj

ℓ=1
Pj,ℓ (17)

The attainable transmission rate for the (u, i)th user is given
by:

Ru,i = log2
(
1 + u,i

)
,∀i ∈ Mu, u ∈ U (18)

III. PROBLEM FORMULATION OF THE PROPOSED
SYSTEM
Our objective is to solve the optimization problem which is
decomposed into three sub-problems (NTBS 3D positions9,
the RIS’s reflection angles θ , the RIS’s reflection coefficients
φ) aiming to maximize the SSR and EE of all GUs in the
network. The following equations represent the optimization
problem for our proposed method:
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Let ℘ = {9u,∀u ∈ U} ,P =
{
Pu,i,∀u ∈ U , i ∈ Mu

}
, and

=

{
u
,i,∀u ∈ U , i ̸= ∈ Mu

}
,

max
℘,θ,φ

∑U

u=1

∑Mu

i=1
Ru,i (19a)

s.t. Zmax ≥ zu ≥ Zmin,∀u ∈ U (19b)∥∥9u −9 j
∥∥2 ≥ 12

min,∀u ̸= j ∈ U (19c)

θ=diag
(
θ1, . . . . . . θ

)
, θ1, . . . . . . θ ∈ (0, 2π )

(19d)

φ=diag
(
φ1, . . . . . . φ

)
, φ1, . . . . . . φ ∈ (0, 1)

(19e)

Pu,i ≥ 0,∀u ∈ U , i ∈ Mu (19f)∑Mu

i=1
Pu,i ≤ Pmax,u,∀u ∈ U (19g)

Pu,i ≥
u
,i Pu, ,∀i ̸= ∈ Mu, u ∈ U (19h)

u
,i =

{
1, if ∥9u −

u
∥ ≤ ∥9u −

u
i ∥

0, otherwise,

∀u ∈ U , i ̸= ∈ MU (19i)
u
,i +

u
i, = 1,∀u ∈ U , i ̸= ∈ Mu (19j)

The range of permissible NTBS flying heights, denoted
by (19b), is designed to guarantee a secure distance between
any two NTBSs. The restriction on the phase shift and reflec-
tion index of each sub-surface of an IRS is indicated by (19d),
and (19e), respectively. The constraints on the transmission
power of NTBS are represented by (19f) -(19h). Moreover,
according to (19i), the stronger user is identified as the user
who is paired with the closer NTBS. Furthermore, (19j)
ensures that both GUs are not assigned as either stronger or
weaker GUs when ∥9u −

u
∥ = ∥9u −

u
i ∥.

Nevertheless, the problem (19) is difficult to be solved
because of the following reasons:

• The interrelation among the optimization variables is
significant, and the objective function does not exhibit
concavity or convexity concerning the optimization
variables.

• The design of the NOMA-SIC adds binary vari-
ables, causing integer constraints to be involved
in (19h) – (19j).

Thus, problem (19) becomes a challenging non-convex
optimization problem (NCOP), and it is hard to discover
a globally optimum solution. The MGWO system uses the
proposed technique to offer an effective iterative approach for
discovering a high-quality suboptimal solution.

IV. OPTIMIZATION ALGORITHM
This paper uses a gray wolf optimization (GWO) algorithm
that is based on nature to find the best coefficients and
reflection angles for the RIS and the best 3D position for
the NTBS in the DL HetNets. The hunting behavior of gray
wolves inspires the GWO algorithm, which has no control
parameters. Hence, no more parameters are required except

for the parameters of maximum iterations or generations and
population size [43], [44].

A. GRAY WOLF OPTIMIZATION
The GWO is described in the following sub-sections, accord-
ing to the work in [43].

1) INSPIRATION
The algorithm classifies the wolf vectors into four distinct
categories, namely alpha (α), beta (β), delta (δ), and omega
(ω). In terms of their power values and associations, three
top-performing vectors (α), (β) and (δ) have been selected
for these categories. The unclassified solutions are placed in
the (ω) category. These population categories (α), (β), and
(δ) control the optimization process, which is comparable to
group hunting behavior in a wolf pack. Grey wolves possess
the capability to identify prey’s location and encircle them.
Typically, the (α) is in charge of the hunt. On occasion, the (β)
and (δ) may also engage in hunting activities. However, the
prey (optimal location) is unknown within an abstract search
space. To mathematically model the grey wolves’ hunting
behavior, we assume that the best candidate solution (α), the
second-best solution (β), and the third-best solution (δ) have
the best knowledge about the prey’s possible location. So,
we keep track of the best three solutions found so far and
make sure that all the other search agents (SAs), including
the omegas, adjust their positions based on the location of the
best three SAs.

2) MATHEMATICAL MODEL
The GWO technique utilizes mathematical models of how
grey wolves organize themselves and hunt in the wild. One
notable characteristic of this approach is its ability to retain
information on the search space through the iteration process
without configuring supplementary control parameters. The
mathematical formulas used in the algorithm represent the
encirclement of prey during a hunting process as follows:

−→
V ξ =

∣∣∣∣−→C2 ·
−→
Zξ − ξ

∣∣∣∣ (20)

ξ+1 =
−→
Z −

−→

C1 ·
−→
V (21)

−→

C1
= 2 · 1 − (22a)

−→

C2
= 2· 2 (22b)

where the vectors 1 and 2 are obtained randomly from a
uniform distribution with values ranging from 0 to 1. The
parameter ( ∈ [2, 0] is the parameter that is responsible for
controlling the tradeoff between exploration and exploitation.
The parameter ‘‘ ( ’’ is updated linearly in each iteration
based on the following equation:

= 2 − ξ .
2
µi

(23)
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where µi is the total number of iterations permitted for the
optimization.

−→
Vα =

∣∣∣∣−→C2
1 · α −

∣∣∣∣ (24a)

−→
Vβ =

∣∣∣∣−→C2
2 · β −

∣∣∣∣ (24b)

−→
Vδ =

∣∣∣∣−→C2
3 · δ −

∣∣∣∣ (24c)

where
−→
Vα represents the distance between the alpha wolf and

the prey,
−→
Vβ is the distance between beta wolf and prey, and

−→
Vδ the distance between delta wolf and prey. α refers to the
location of the alpha wolf, β represents the location of the
beta wolf, δ is the location of the delta wolf. represents
the location of prey. Note that the values of

−→
Vα,

−→
Vβ ,

−→
Vδ are

fractions (less than one).

1 = α −
−→

C1
1 ·

(
−→
V α

)
(25a)

2 = β −
−→

C1
2 ·

(
−→
V β

)
(25b)

3 = δ −
−→

C1
3 ·

(
−→
V δ

)
(25c)

ξ+1 = 1 + 2 + 3/3 (26)

where 1 represents the position that we are supposed to be
in if we only follow the alpha, 2 is the position that we are
supposed to be in if we only follow the beta, and 3 refers to
the position that we are supposed to be in if we only follow
the delta. ξ+1 is the new location of the prey.

B. THE PROPOSED ALGORITHM
The goal of the proposed algorithm is to find the optimal
values for the 3D positions and transmit power of NTBS,
as well as the best RIS reflection angles, RIS reflection
coefficients, and NOMA-SIC among GUs in each cluster to
maximize the SSR and EE of all GUs in the network. The
distance between each wolf and prey should be as small as
possible to obtain the most accurate results. However, one of
the main drawbacks of the default GWO is the large distance
between the wolves and prey, leading to a lower total sum rate
in the system, which affects the QoS negatively. Therefore,
in the proposed algorithm, equation (23) is reformulated to
minimize the distance between the wolves and their prey and
enhance the search process’s precision.

The equations (24a, 24b, and 24c) are reformulated as
follows:

−→
Vαo =

∣∣∣∣−→C2
1 · α −

∣∣∣∣2 (27a)

−→
Vβo =

∣∣∣∣−→C2
2 · β −

∣∣∣∣2 (27b)

−→
Vδo =

∣∣∣∣−→C2
3 · δ −

∣∣∣∣2 (27c)

where
−→
V αo is the modified distance between the alpha wolf

and prey,
−→
V βo represents the modified distance between

beta wolf and prey, and
−→
V δo refers to the modified distance

between delta wolf and prey.

1o = α −

−→

C1
1 ·

(
−→
V αo

)
(28a)

2o = β −

−→

C1
2 ·

(
−→
V βo

)
(28b)

3o = δ −

−→

C1
3 ·

(
−→
V δo

)
(28c)

ξo+1 = 1o + 2o + 3o/3 (29)

where 1o is the modified position that we are supposed to be
if we only follow the alpha, 2o refers to themodified position
that we are supposed to be in if we only follow the beta, and
3 represents themodified position that we are supposed to be

if we only follow the delta. ξo+1 is themodified new location
of the prey.

TheMGWOalgorithm seeks to optimize the RIS reflection
angles by adjusting the position of each wolf in the solution
space, where each position corresponds to a set of RIS reflec-
tion angles.

The connection between the MGWO algorithm and RIS
reflection angle optimization involves:

• Initialization: Each wolf’s position represents a possible
solution set of RIS reflection angles.

• Fitness Evaluation: We evaluate each position based
on its ability to maximize SSR, which directly links
the search dynamics of the MGWO to the formulated
problem of sum rate maximization.

• Adaptation and Update: Equations (27, 28, and 29) iter-
atively update the wolves’ positions towards optimal
angles that yield the best SSR, using the social hierarchy
and hunting behavior mimicked in MGWO.

We repeat the same procedure for optimizing the reflection
coefficients and NTBS 3D positions.

C. OPTIMIZE THE RIS REFLECTION ANGLES AND
COEFFICIENTS AS WELL AS NTBS 3D POSITIONS
In this sub-section, we optimize the SSR of the proposed
system by considering the relevant constraints. We formulate
the optimization objective function and utilize the MGWO
approach to address the optimization problem. The MGWO
is formulated by considering the NTBS 3D positions IRS
reflection angles, and the IRS reflection coefficients.

The distance from the NTBS to the GUs and from the
NTBS to the RIS are two key factors affecting performance
in the proposed system. The total sum rate will change based
on the NTBS 3D positions. As the NTBS 3D positions
change, the sum rate of the proposed system will also change.
This is because the variation in the NTBS 3D positions
leads to a change in the distance between the NTBS and the
RIS and the distance between the NTBS and GUs, which
enhances the quality of the LoS channel. Therefore, after
optimizing the IRS reflection angles and coefficients, the
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NTBS 3D positions must also be optimized to find the best
NTBS 3D positions for supporting the GUs.

The optimization of (θ , φ, and 9) is described as follows:

1) OPTIMIZING θ FOR GIVEN 9 AND φ

For given 9 and φ, the RIS reflection angle optimization
problem can be written as

max
θ

∑U

u=1

∑
=1

Rsum (30a)

s.t. (19d) (30b)

However, problem (30) is non-convex because the objec-
tive function is non-concave, and the unit-modulus con-
straint (19d) is non-convex. As described in algorithm 1, the
process begins by assuming all initial reflection coefficients
are set to one andmaking a random selection of RIS reflection
angle elements and a random selection of other elements in a
way that meets the QoS requirements. A 2D matrix is created
to represent the RIS reflection angles.

2) OPTIMIZING φ FOR GIVEN 9 AND θ

For given 9 and θ , the RIS reflection coefficients optimiza-
tion problem can be written as

max
φ

∑U

u=1

∑
=1

Rsum (31a)

s.t. (19e) (31b)

However, problem (31) is non-convex because the objec-
tive function is non-concave, and the unit-modulus con-
straint (19e) is non-convex. We optimize the RIS reflection
coefficients depending on the optimal RIS reflection angles
and a random selection of other elements in a way that
meets the QoS requirements. A 2D matrix is also created to
represent the RIS reflection coefficients.

3) OPTIMIZING 9 FOR GIVEN θ AND φ

For given θ and φ, the NTBS 3D positions optimization
problem can be written as

max
9

∑U

u=1

∑
=1

Rsum (32a)

s.t. (19b), (19c) (32b)

Problem 32 is still an NCOP because the objective function
is complicated, and the constraint (19c) is non-convex. The
NTBS 3D positions are optimized depending on the optimal
RIS reflection angles and coefficients, where a 3D matrix is
created to represent the NTBS 3D positions.

The optimal RIS reflection angles and coefficients, as well
as the NTBS 3D positions, are obtained by invoking the
MGWO algorithm, which directly determines the corre-
sponding u,i, and H

j
u,i, respectively. The algorithm is

initialized with a relatively high number of SAs and follows
the steps described in algorithm 2 to reach an efficient solu-
tion. Our simulations indicate that this algorithm converges
to a desirable solution after several iterations. Optimizing

the RIS reflection angles, RIS reflection coefficients and the
NTBS 3D positions can convert problem (19a) into a problem
that can be linearly solved using θ , φ, and9, respectively.We
utilize a linear technique based on interference mitigation to
solve θ , φ, and 9.
The optimization problem can be reformulated as follows:

max
θ,φ,9

∑U

u=1

∑
=1

Rsum (33a)

j
u,i =

√∥∥M9 j −
u
i

∥∥α1
√

1
β1 + 1

(√
β1H̄

j
u,i + H̃

j
u,i

)
(33b)

j = ϑ

√∥∥M9u −
∥∥2

e−j
2π
λ

∂

x −xu∥∥∥∥ −M9u

∥∥∥∥

T

(33c)

=

∣∣∣ j
u,i + u,i

H ϑ j

∣∣∣2 (33d)

Rsum ≥ log21+

u
,i P ,i∑Mu

=1, ̸=i
u
,iPu, +

∑U
j=1,j̸=u j

∑Mj
ℓ=1 Pj,ℓ+σ 2


(33e)

[xUB, yUB, zUB] ≥ M9u ≥ [xLB, yLB, zLB],∀u ∈ U (33f)

ϑ = φz.dia g
(
θz ∗ 1

×1

)
∈ C × (33g)

θz ∈ (0, 2π) ∀ ∈ (33h)

φz ∈ (0, 1)∀ ∈ (33i)

where j
u,i ∈ C1×1 refers to the optimal communication

channel between the jth NTBS and the (u, i)th. j ∈ C ×1

represents the optimal communication channel between the
uth NTBS and the RIS. is the optimal efficient power gain
of the communication channel between the ith NTBS and the
(u, i)th user with the assistance of the RIS. θzn and φzn refer
to the optimized reflection angle and reflection coefficient
associated with the nth sub-surface of the RIS, respectively.
M9 represents the modified 3D NTBS positions. It is obvi-
ous that the aforementioned problem is convex and can be
solved utilizing meta-heuristic algorithms.

The time complexity of the suggested MGWO algorithm
is Q(µiδ ) while the time complexity of the other compared
BCD [17], Greedy [30], and Annealing [32] algorithms is
Q(µi ), Q( log ), Q

(
µi

)
respectively. This demon-

strates that the suggested MGWO has the same time com-
plexity as the BCD and Annealing algorithms, as well as a
higher time complexity than the Greedy algorithm.

Where δ refers to the number of SAs, represents the
dimension of the search space, is the average complexity
of optimizing each block, refers to the dimensionality of
the sub-problem, is the number of elements or decisions to
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Algorithm 1 Algorithm for the Proposed System
1) Initialize environment variables.
2) i = 0.
3) Maximum iterations = 200.
4) While i <Maximum iterations.
5) Initialize user locations randomly.
6) Set random RIS reflection angles.
7) Set RIS reflection coefficients as ones.
8) Calculate optimal RIS reflection angles according to algorithm (2).
9) Calculate optimal RIS reflection coefficients based on optimal RIS

reflection angles according to algorithm (2).
10) Calculate optimal 3D position of NTBS based on user locations,

optimal RIS reflection angles, and optimal RIS reflection coefficients,
according to algorithm (2).

11) Calculate maximum sum rate.
12) i = ++.
13) End while.
14) Display maximum sum rate.

FIGURE 2. The flowchart of Algorithm 1(main function).

be made, represents the computational effort or resources
required to perform a single calculation of the objective
function.The flowchart of the main function and MGWO are
depicted in Fig. 2 and Fig.3, respectively.

Algorithm 2 The Modified GWO Algorithm for Optimiz-
ing NTBS 3D Positions and RIS Reflection Angles and
Coefficients
1) Input (Number of SAs, Maximum Iterations, Lower

bound, Upper bound, Dimension, Objective function).
2) Initialize Alpha, Beta, and Delta positions.
3) Initialize the positions of SAs.
4) t = 0
5) While t <Maximum iterations.
6) For i = 1: size(positions,1)
7) Return the SAs that go beyond the boundaries of the search space.
8) Calculate the objective function for each search agent.
9) Update Alpha, Beta, and Delta positions.
10) If fitness>Alpha score
11) Update Alpha
12) End If
13) If fitness<Alpha score and fitness>Beta score
14) Update Beta
15) End If
16) If fitness<Alpha score and fitness<Beta score and fitness>Delta
score
17) Update Delta
18) End If
19) End For
20) Update the position of SAs including Omega.
21) For i = 1: size(position,1)
22) For j = 1: size(position,2)

23) Calculate
−→

C1
1,

−→

C2
1, 1o.

24) Calculate
−→

C1
2,

−→

C2
2, 2o. According to equations (22, 27, 28)

25) Calculate
−→

C1
3,

−→

C2
3, 3o.

26) Position (i, j) = ( 1o, 2o, 3o)/3 According to eq. (29)
27) End For
28) End For
29) t = t + 1
30) Convergence curve (t) = Alpha score
31) End While
32) Return the best feasible solution vector of reflection angles, reflection

coefficients, and NTBS 3D position values.

V. NUMERICAL RESULTS AND DISCUSSION
A. ASSUMPTIONS OF THE SIMULATION
The behavior of the proposed RIS-based NOMA HetNet
is assessed in this study, which is achieved through simu-
lation of its performance, and compares it with traditional
algorithms such as BCD, Annealing, Greedy, GWO OMA,
NOMA+RIS, and NOMA-RIS. We consider a network with
U = 2 NTBSs serving 2 user clusters. Each cluster com-
prises 2 GUs that have a random and uniform distribution in
two neighboring areas of 100 × 100 m2. The results were
obtained using one random realization of the distributions
of GUs, as demonstrated in Fig. 4. The parameters used
in the simulation are defined as follows: The RIS is posi-
tioned at coordinates (100, 50, 20) meters, and the number of
sub-surfaces in the RIS element is set to = 20. The PLEs
andRician fading channel factors for both theNTBS-user link
and the RIS-user are assigned the same values. Expressly,
the PLEs are set to α1 = α2 = 2.9, and the Rician factors
are set to β1 = β2 = 10 dB. NTBSs are permitted to fly at
a maximum altitude of 100 meters and a minimum altitude
of 60 meters. To simplify the scenario, we suppose that
all NTBSs possess the same maximum transmission power,
which can be denoted as pmax,u = pmax = 20dB, ∀u ∈U.
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FIGURE 3. The flowchart of Algorithm 2 (MGWO).

During the first step of each initialization, the horizontal
positions of NTBSs are produced uniformly and randomly
in each area of 100 x 100 m2. The initial flying height is
set to zu = Zmax + Zmin/2, ∀u ∈U. Second, the MGWO is
used to determine the optimal NTBS 3D positions. After that,
the NOMA-SIC among GUs in each cluster is established
depending on the distances of the GUs to the paired NTBSs.
The maximum transmission power is assigned to each NTBS
and distributed equally among all GUs served by that NTBS.
Each RIS sub-surface’s reflection angle and reflection coef-
ficient are randomly and uniformly produced in the range of
[0, 2π] and [0, 1], respectively.

B. RESULTS AND DISCUSSION
Fig. 5 illustrates the SSR plotted concerning the signal-to-
noise ratio (SNR) for the proposed algorithm in comparison
with conventional algorithms such as BCD, Annealing,
Greedy, GWOOMA, NOMA+RIS, and NOMA-RIS. As the
SNR increases, the proposed algorithm achieves a higher SSR
than BCD, Annealing, Greedy, GWO OMA, NOMA+RIS,
and NOMA-RIS. This is because optimizing the IRS

FIGURE 4. The simulations’ network topology.

reflection angles, coefficients, and NTBS 3D positions
greatly impacts interference mitigation. The results state
that the suggested algorithm notably impacts the SSR
increment. It is clear that with the increase of the SNR
from 0 to 100 dBm, the SSR of BCD, Annealing, Greedy,
NOMA+RIS, NOMA-RIS, and GWO OMA stabilized at
6.501, 5.286, 5.014, 4.741, 4.723, and 3.344 bits/s/Hz,
respectively. The best SSR is achieved in the case of the
proposed method with 7.443 bits/s/Hz. From Fig. 5 we also
see that both the NOMA+RIS andNOMA-RIS schemes have
very close SSR values.

These significant improvements to the SSR can be
explained by the fact that the GWO’s principal work in
solving such problems is more accurate than that of other
traditional algorithms, which means the GWO works more
accurately to reach the ideal value. Moreover, the MGWO
minimizes the distance between the wolves and their prey
and enhances the search process’s precision, as explained in
equations 27a, 27b, and 27c.

At different numbers of sub-surfaces, the SSR for the
proposed algorithm in comparison with BCD, Annealing,
Greedy, GWO OMA, NOMA+RIS, and NOMA-RIS is
depicted in Fig. 6. When the number of sub-surfaces is
20, the SSR for NOMA+RIS, Greedy, BCD, Annealing,
GWO OMA, and the proposed RIS-enhanced multi-NTBS
NOMA networks is equal to 4.02, 4.04, 4.66, 4.98, 7.30, and
8.74 bits/s/Hz, respectively. Increasing the number of sub-
surfaces to 80 increases these values to 4.06, 4.07, 8.48, 7.16,
10.01, and 11.48 bits/s/Hz, respectively. These results are
because increasing the number of sub-surfaces can improve
the SSR by increasing the number of reflecting paths and
enhancing the diversity gain. However, in the NOMA-RIS
scheme, the achieved SSR is not affected by the variation of
the number of sub-surfaces, which confirms the advantages
of the RIS.

The proposed algorithm attains a higher SSR performance
among all the aforementioned algorithms. This is due to the
fact that the NOMA permits the simultaneous service of all
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FIGURE 5. The performance of the suggested system, BCD [17],
Greedy [30], Annealing [32], GWO OMA, NOMA+ RIS, and NOMA-RIS
concerning the SSR at various SNR values.

users in all resource blocks (RBs), thereby enabling flexible
RAs that enhance SE. Moreover, optimizing the NTBS 3D
positions as well as the reflection angles and coefficients
of RIS introduces a new degree of freedom for implement-
ing NOMA by designing the decoding order through the
NTBS 3D positions and mitigating inter-group interference
by adjusting IRS reflection angles and coefficients. As afore-
mentioned, the distribution of GUs is random and uniform,
resulting in different user locations at each iteration. This
affects the communication channels between the NTBS and
the GUs, as well as the communication channels between the
RIS and the GUs, which in turn affects the calculation of the
system sum rate. Compared to NOMA, OMA has the worst
performance because it allocates a limit of RBs for each GU.
We also noticed that RIS has a much higher gain for NOMA
than the other schemes mentioned above.

The effect of variations in the SNR versus the system
EE is illustrated in Fig. 7. The numerical results indicate
that the system EE increases as the SNR increases through-
out all seven schemes. This is due to the fact that as SNR
increases, the total sum rate of the proposed system also
increases. Also, the results show that the proposed algorithm
has substantially improved the performance of the system
EE. This is due to the SIC decoding order among GUs for
the proposed system, which results in much more EE gain
compared with other schemes. It is clear that with an increase
in the SNR from 0 to 100 dBm, the system EE of BCD,
Annealing, Greedy, NOMA-RIS, NOMA+RIS, and GWO
OMA stabilized at 125.112, 98.64, 85.114, 84.081, 82.454,
and 34.140 bits/joule, respectively. Moreover, the SSR for the
proposed method reaches 157.648 bit/joule.

Fig. 8 plots the SSR for seven cases versus the PLE. These
results clearly illustrate the impact of the PLE on the sum
rate, considering that both the power and the SNR of NTBS
are constant. When the PLE is 2, the SSR for the cases

FIGURE 6. The performance of the proposed system, BCD [17],
Greedy [30], Annealing [32], GWO OMA, NOMA+RIS, and NOMA-RIS
regarding the SSR at different numbers of sub-surfaces.

FIGURE 7. The performance of the proposed system, BCD [17],
Greedy [30], Annealing [32], GWO OMA, NOMA+RIS, and NOMA-RIS
concerning EE at various SNR values.

NOMA-RIS, Greedy, NOMA+RIS, BCD, Annealing, GWO
OMA, and the proposed RIS-enhanced multi-NTBS NOMA
is equal to 1.173, 1.205, 1.266, 1.882, 2.153, 2.520, and
3.754 bits/s/Hz, respectively. Increasing the PLE to 4 leads
to a decrease in these values to 0.723, 0.739, 0.774, 1.108,
1.004, 1.655, and 2.354 bits/s/Hz, respectively. These results
can be explained by the fact that as the PLE increases,
a more significant attenuation of the signal with distance is
achieved, leading to a decrease in the SSR. Moreover, the
IRS’s reflecting signal weakens when the PLE of the RIS-GU
link increases. Therefore, an increase in the PLE value can
cause a significant reduction in the coverage area and the
maximum achievable communication range, making it more
challenging to maintain reliable communication links with
the NTBS.
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FIGURE 8. The performance of the suggested system, BCD [17],
Greedy [30], Annealing [32], GWO OMA, NOMA+RIS, and NOMA-RIS
regarding the SSR at various values of PLE.

Fig. 9 demonstrates the SSR versus SNR for different
minimum QoS requirements. It is clear from the results that
with an increase in the SNR from 0 to 100 dBm, while
keeping the number of sub-surfaces constant, the SSR for the
cases of 200, 300, 400, and 500 Kbps minimum QoS is stabi-
lized at 2.484, 1.625, 0.716, and 0.163 bits/s/Hz, respectively.
Moreover, the SSR with a 100 Kbps minimum QoS reaches
4.514 bits/s/Hz. The results stated that the highest SSR is
attained when the minimum QoS is 100 kbps. Note that these
values are achieved for SNR of 40 dBm and above since
they remain constants with the increment of the SNR. This
is because when the minimum QoS decreases, the number
of user connections will increase, thereby increasing the sum
rate of the proposed system.

FIGURE 9. The performance of the proposed system with different
minimum QoS requirements regarding the SSR at different SNR values.

The sum rate of the suggested system against the num-
ber of sub-surfaces for different NTBS maximum power

FIGURE 10. The performance of the suggested system with various
maximum power requirements regarding SSR at different numbers of
sub-surfaces.

transmissions is depicted in Fig. 10. It is obvious from the
results that the Pmax of NTBS plays a crucial role in aerial
communication scenarios. The simulation results state that
increasing the number of sub-surfaces from 20 to 80 leads
to an increase in the SSR from 8.061 to 10.994 dBm when
Pmax = 10, from 8.359 to 11.576 dBm when Pmax = 20,
and from 6.607 to 11.147 when Pmax = 30. The NTBS
power of 20 dBm is operating at an optimal level, providing
sufficient power for communication while avoiding excessive
interference and power consumption and overcoming noise
and attenuation. While the NTBS power of 10 dBm results
in weaker signals and reduced coverage. The NTBS power of
30 dBm introduces more interference and signal distortion.
Furthermore, it is also clear from the results that if the number
of sub-surfaces is 75 or above, the performance of 30 dBm
becomes better than 10 dBm. The reason is that increasing
the number of sub-surfaces requires increasing the power
level to extend coverage and improve connectivity without
introducing excessive interference.

In Fig. 11, the sum rate of the proposed system is plotted
against the SNR with different GUs per cluster. The results
show that when the SNR increases from 0 up to 12 dBm,
the proposed algorithm in the case of 20 GUs per cluster,
achieves a higher SSR than 10, 30, 40, and 50 GUs per
cluster. When the value of SNR increases above 15 dBm, the
proposed algorithm in the case of 30GUs per cluster, achieves
a higher SSR in comparison with 10, 20, 40, and 50 GUs per
cluster. Furthermore, the cases of 40 and 50 GUs per cluster
have an identical SSR. It is clear that when increasing the
number of GUs per cluster by more than 30, the aggregate
sum rate decreases. This is because when the number of GUs
per cluster increases up to a specific limit, the SIC among
the GUs cannot work correctly, potentially leading to higher
levels of intra-cluster interference.

At various values of sub-surface, the sum rate of the
proposed system with different iterations of the proposed
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FIGURE 11. The performance of the suggested system with various GUs
per cluster in terms of SSR at different SNR values.

algorithm is plotted in Fig. 12. Increasing the number of sub-
surfaces from 20 to 80 while keeping the power of NTBS
and SNR constant leads to an increase in the sum rate of
the system for the cases of 5, 25, 50, 75, and 100 iterations
by 10.799%, 21.195%, 30.756%, 36.860%, and 42.110%,
respectively. The results demonstrate that the sum rate of the
system increases when the number of iterations increases.
This is because of the iterative nature of the optimization
process, where the proposed algorithm continuously refines
and updates the solutions over multiple iterations to converge
toward an optimal solution. Overall, the increasing SSR with
an increasing number of iterations in the proposed optimiza-
tion algorithm can be attributed to the algorithm’s ability to
explore the solution space effectively and converge towards
better solutions over time.

In Fig. 13, the results provide vital insight into the effect
of the SAs on the performance of the SSR, particularly con-
cerning the number of sub-surfaces and SSR using RIS with
optimized reflection angles and coefficients, as well as the
optimization of the 3D position of NTBSs. The observed
trend, in which the aggregate rate increases as the number
of SAs increases with different numbers of sub-surfaces,
suggests that the number of SAs plays a crucial role in the
proposed optimization algorithm. The simulation results state
that by increasing the number of sub-surfaces from 20 to 80,
the sum rate in the case of 10, 20, 30, 40, and 50 SAs
is increased by 10.912%, 17.727%, 23.383%, 28.162%,
31.881% respectively. The results prove that these values are
increasing exponentially. The reason for these results is that,
on the one hand, increasing the number of sub-surfaces results
in increasing the reflection paths. This increased number of
reflection paths enables the RIS to create more diverse and
optimized channel conditions, improving signal quality and
enhancing communication links between the NTBS and GUs.
On the other hand, increasing the number of SAs can acceler-
ate the convergence of the proposed optimization algorithm

towards optimal solutions. The SSR increases as the number
of SAs in the proposed algorithm increases. This is because
more SAs lead to better exploration, diversity, exploitation,
and convergence.

FIGURE 12. The performance of the proposed system with different
iterations of the proposed algorithm in terms of SSR at various numbers
of sub-surfaces.

FIGURE 13. The performance of the proposed system with different SAs
of the proposed algorithm in terms of SSR at various numbers of
sub-surfaces.

The SSRwith different iterations of the proposed algorithm
versus various SNR values is plotted in Fig. 14. As the
value of SNR increases from 0 to 100 dBm, the proposed
algorithm with the case of 100 iterations achieves a higher
SSR in comparison with that of 75, 50, 25, and 5 itera-
tions. When the SNR is 0, the SSR for the cases of 5,
25, 50, 75, and 100 iterations is equal to 1.341, 1.449,
1.667, 1.452, and 1.744 bits/s/Hz, respectively. Increasing the
SNR to 100 increases these values to 2.399, 4.167, 4.385,
4.914, and 5.067 bits/s/Hz, respectively. The results show
that increasing the number of iterations of the proposed
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algorithm notably impacts the SSR increment. This is because
increasing SNR leads to fewer transmission errors and higher
data rates. Thereby, the optimization process of the proposed
algorithm becomes more effective. This implies that the pro-
posed algorithm can better distinguish between good and
poor solutions, allowing it to converge more quickly towards
an optimal solution that maximizes the SSR.

FIGURE 14. The performance of the proposed system with different
iterations of the proposed algorithm regarding total sum rate at various
SNR values.

FIGURE 15. The performance of the proposed system with SAs of the
proposed algorithm in terms of SSR at various values of SNR.

The crucial insights into the impact of search agent per-
formance on the SSR are presented in Fig. 15, specifically
concerning the SNR and the SSR. The observed trend that
the aggregate rate increases as the number of SAs with dif-
ferent SNR values increases shows that the number of SAs
significantly affects the proposed optimization algorithm. It is
clear from the results that with an increase in the SNR, while
keeping the number of sub-surfaces constant, the SSR for
the cases of 5, 10, 20, and 50 SAs is stabilized at 3.910,
4.774, 5.326, and 5.932 bits/s/Hz, respectively. Moreover, the

TABLE 1. Table of abbreviations.

SSR with 100 SAs reaches 7.226 bits/s/Hz. These results are
because with increased SNR values and the number of SAs,
the proposed algorithm can converge to optimal solutions
more quickly. The higher SNR reduces the complexity of
the optimization problem, making it easier for the algorithm
to converge. Additionally, increasing the number of SAs
accelerates the exploration of the solution space, facilitating
quicker convergence toward optimal solutions. This faster
convergence results in an increase in the sum rate of the
proposed system.
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VI. CONCLUSION AND FUTURE WORKS
In this paper, we employ RIS-aided NTBSs with NOMA in
DLHetNets. The SSR and EEmaximization for the proposed
system is achieved by the joint optimization of NTBS 3D
positions, RIS reflection angles, RIS reflection coefficients,
and SIC among GUs. Moreover, an MGWO-based meta-
heuristic algorithm is proposed to address the formulated
non-convex optimization problem. In particular, the origi-
nal optimization problem is divided into three sub-problems
(i.e., RIS reflection angles, RIS reflection coefficients, and
NTBS 3D position), which are then addressed alternately
using the proposed optimization technique. Our simulation
results stated that the suggested algorithm is found to be able
to increase the SSR and EE significantly in comparison with
the conventional schemes. The results also showed that using
the RIS with random reflection angles has the same effect on
performance as without the RIS. This highlights the signifi-
cance of optimizing the coefficients and reflection angles of
the RIS in communication networks based on RIS. Moreover,
integrating RIS with NTBS in DL HetNets is efficient in
enhancing the total system performance by improving the
channel quality between NTBSs and their respective GUs
while minimizing inter-NTBS interference. Future research
includes incorporating NTBS PA optimization into the joint
optimization process and accounting for multiple RISs.

ABBREVIATIONS
See Table 1.
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