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ABSTRACT The global drive towards carbon neutrality has led to a significant increase in the number of
power plants based on renewable energy sources (RES). Concurrently, numerous households are adopting
RES to generate their own energy, aiming to decrease both electricity costs and carbon footprints. To support
these users, many papers have been devoted to developing optimal investment strategies for residential energy
systems. However, there is still a significant gap as these studies often neglect important aspects like carbon
neutrality. For this reason, in this paper, we explore the concept of net-zero energy houses (ZEHs)—houses
designed to have an annual net energy consumption around zero—by presenting a constrained optimization
problem to find the optimal number of photovoltaic panels and the optimal size of the battery system for
home integration. Solving this constrained optimization problem is difficult due to its nonconvex constraints.
Nevertheless, by applying a series of transformations, we reveal that it is possible to find an equivalent linear
programming (LP) problem which is computationally tractable. The attainment of ZEH can be tackled by
introducing a single constraint in the optimization problem. Additionally, we propose a sharing economy
approach to the investment problem, offering a strategy that could potentially reduce investment costs
and facilitate the attainment of ZEH more efficiently. Finally, we apply the proposed frameworks to a
neighborhood in Japan as a case study, demonstrating the potential for long-term ZEH attainment. The results
show that, under the right incentive, users can achieve ZEH, reduce their electricity costs and have a minimal
impact on the main grid.

INDEX TERMS Net-zero energy houses, optimization, linear programming.

I. INTRODUCTION
As the global economy recovers from the impacts of
COVID-19, energy consumption has resumed its upward
trend. In 2022, global electricity demand saw an increase
of 2.7% compared to the previous year [1]. Meanwhile,
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the recent worldwide energy crisis accelerates a shift from
reliance on fossil fuels towards renewable energy sources
as well as adopting more efficient energy consumption
schedules. For example, [2] proposes an optimal carbon-
dispatching method, which allows entities to optimize their
operation costs and carbon emissions. In this context, the role
of buildings is also significant - they accounted for 30% of
the global final energy consumption in 2021, with electricity
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constituting about 35%of this building-related energy use [3].
As a result, there is an urgent need to alleviate the energy
burden and maintain a balanced power supply, beginning at
the local level, especially within residential buildings.

In response to this need and also due to the growing
urgency to reduce carbon dioxide (CO2) emissions, the
concept of net-zero energy houses (ZEHs) [4] is receiving
increasing attention [5]. A ZEH is a house whose annual
net energy consumption is around zero. To achieve this
objective, householders are required to actively generate
their own energy, primarily through renewable resources.
Consequently, a householder must satisfy the following
energy balance equation to attain the ZEH goal

K∑
k=0

Gk −

K∑
k=0

Xk = 0, (1)

where Gk is the energy generation by renewable sources
at time instant k , Xk is the demand at time instant k
and K is a certain long time horizon, typically a year.
However, satisfying equation (1) is generally impossible due
to uncertain demand and uncontrollable energy generation.
One alternative is to relax equation (1) into an inequality
constraint. While this might mean that net-zero energy
consumption is not achieved precisely, it does ensure that
carbon neutrality is met since there is no dependency on
non-renewable energy sources. Thus, adding this constraint to
the investment optimization problem would help us succeed
in the achievement of the ZEH goal.

Among various renewable sources, photovoltaic (PV) tech-
nology, in particular, emerges as an appealing option due to its
affordable implementation costs and broad adaptability [6].
However, a widely acknowledged limitation of PV systems
is their dependency on uncontrollable factors like solar
radiation, making it difficult to ensure consistent energy
generation. This becomes even clearer if we compare the
common load profiles and PV generation profiles together.
Let us consider, for example, the consumption and PV
generation profiles for a typical day in a household in
Kitakyushu, Japan, as shown in Fig. 1. It can be observed
that the majority of the energy is generated during hours
when there is minimal usage while, conversely, the peak
demand typically occurs during periods when no energy
generation is taking place. For this reason, it is desirable that
self-supply systems are accompanied by a battery, allowing
the user to save current unused energy for the near future [7].
It is also important to note that the philosophy of ZEH
is not merely about maintaining a balance between energy
consumption and production, but also about the optimal use
of energy through various strategies, including improved heat
insulation, the use of high-efficiency equipment, etc.

The research on optimal sizing for renewable energy
and battery systems is vast and encompasses a variety
of scenarios. For example, [8] considers the investment
problem of residential rooftop PV panels in India by studying
different market models. However, the integration of a battery

FIGURE 1. Example of PV and consumption profile for a single day.

system (which might be useful when the generated energy
is not enough) is not considered. A similar case study in
Philippines can be found in [9]. In addition to PV panels,
battery systems have also been included in the optimization
problems appearing in the literature. For instance, [10]
addresses the daily energy flow control problem for the
optimal management of residential PV and battery systems,
developing a design methodology from the proposed control
policy. Similarly, [11] proposes an investment optimization
problem considering wind turbines, PV panels, battery
systems, and super-capacitors. The problem itself is very
complex and cannot be solved by conventional methods.
Additional studies addressing these problems from a different
perspective are also available, such as [12] where the problem
of the loss of inertia in the generation power system due to the
introduction of many renewable energy sources is addressed.
There, from a regional perspective, an investment problem
involving an inertia constraint is solved and compared with
the unconstrained problem, quantifying the cost of the
introduction of the inertia within the renewable energy-based
system. For an exhaustive list of works, we refer the interested
reader to the following review papers [13], [14], [15].

However, a significant portion of these studies mainly
targets investments in PV panels and battery systems with
the primary objective of maintaining the power balance but
they often neglect broader aspects like carbon neutrality.
Notably, in recent years more research attention has been
focused on attaining the ZEH status and decarbonization,
as discussed in [16], [17], and [18]. Yet, a lingering question
remains: is achieving net-zero energy for residential houses in
specific regions a feasible reality? The feasibility of such an
objective will be explored in this paper through optimization
frameworks.

In the realm of battery-based power system planning and
management, there is a widely accepted strategy of purchas-
ing electricity during off-peak hours when it is cheaper and
then utilizing it during peak timeswhen prices are higher [19],
[20], [21]. Much like the strategic purchase of electricity
during off-peak times, the concept of sharing economy [22],
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[23], [24], [25] has recently gained increased attention due
to the fact that resources are becoming scarcer and more
expensive than before. Owners are also trying to monetize
their unused assets (see, for example, the increasing trend
of the second-hand apparel market in [26]). In [27], sharing
economy is defined as ‘‘a disruptive paradigm based on
replacing traditional notions of ownership with mechanisms
based on sharing/on-demand access’’. Of course, this leads
to a profound shift in the traditional notion of ownership.
Although there are lots of benefits, it also raises numerous
challenges [28]. In this kind of scheme, game theory [29],
[30] and multi-agent systems [31], [32] present themselves
as the most suitable mechanisms to deal with potential
cooperative and adversarial scenarios.

In this paper, we introduce optimization frameworks to
determine the optimal size of PV panels and battery systems.
Our objective is twofold: to achieve cost savings on future
electricity bills and to realize the desired ZEH status across
various scenarios. These scenarios encompass both an indi-
vidual’s self-supply approach and a collaborative investment
strategy involving multiple users. Although the problems we
initially present are nonlinear, subsequent transformations
allow us to relax them into linear programming (LP)
problems, which are tractable. Additionally, our numerical
examples leverage historical solar generation and household
consumption data, rather than relying on synthetic data,
enhancing the authenticity of our findings. It is worth noting
that we explored the optimal sizing of PV panels and batteries
using optimization and game theory in a stochastic context in
our earlier paper [33]. A notable distinction between the two
studies is the consideration of battery dynamics. While our
prior research did not account for this aspect, the accumula-
tion of power resulting from battery dynamics emerges as a
pivotal factor for achieving net-zero energy in this paper.

A. CONTRIBUTIONS
The contributions of this paper are listed as follows.

1) We formulate a novel optimization problem to deter-
mine the optimal sizing of PV panels and batteries
from an economic perspective while considering the
achievement of the ZEH status.

2) In the proposed optimization problem, both the cases
where users invest individually and a sharing-economy
approach are considered, showing quantitatively the
advantages that the latter provides in a cost-wise
manner.

3) By employing relaxation techniques, we transform the
original nonconvex problem into an LP problem with
equivalent solutions. Importantly, the attainment of the
ZEH status in our formulation can be realized by simply
adding a constraint to the LP.

4) We validate the effectiveness of our proposed formu-
lation using real-world data sourced from Kitakyushu,
Japan. The results illustrate that the inclusion of the
ZEH constraint causes only a minimal increase in the
optimal value of the LP. Thus, through this practical

data, we demonstrate that attaining ZEH status does
not significantly elevate costs, which implies that it is
a feasible goal for residential houses in Japan.

B. STRUCTURE
The paper is structured as follows: in Section II, the
basic problem for complete self-supply is presented. Then,
in Section III, some new decision variables are introduced in
such a way that the new optimization problem can be posed
as an LP. Also, several properties of the resulting model are
presented. Section IV shows the numerical examples of the
proposed optimization problems and some discussions about
the obtained results. Finally, in Section V, the conclusions of
the paper and the expected future work are presented.

II. OPTIMAL SIZING OF PV PANELS AND BATTERY
In this section, we consider the optimal investment of PV
panels and battery for an individual household assuming the
availability of past solar generation and demand data.

The primary objective is to maintain power balance. When
the electricity generated by PV panels exceeds the consump-
tion and battery capacity, the surplus energy is returned
to the grid. Conversely, when the generated energy falls
short, the battery discharges to meet the demand. When the
battery reaches the point of depletion, a fuel cell is activated,
generating the required energy through fuel combustion.

It is important to recognize the challenges this power
balance issue presents. On one hand, the reverse power might
lead to overvoltage issues in the feeders, potentially damaging
the power grid [34], [35], [36], which we would like to
minimize when determining the optimal size for PV panels
and the battery (note that this might be particularly important
when dealing with microgrids [37]). On the other hand,
to promote the integration of renewable energies into the
electrical system, feed-in tariffs (FiT) are commonly utilized.
They provide an incentive to users by offering financial
compensation for surplus power. Both policies are taken into
account, respectively, in our following formulation.

Given the factors previously stated, we should tackle in
an economic manner (i.e. money loss or investment) the
following terms in our optimization problem:

• Investment in PV panels.
• Investment in the battery system.
• Reverse power penalty or FiT profit.
• Fuel cell generation cost.

First, we present in the next subsection the model of the
battery dynamics, which is needed to compute the amount
of reverse power penalty, FiT profit, and fuel cell generation
cost.

A. BATTERY DYNAMICS
Here, we consider the state-of-charge (SoC) dynamics as a
bounded integrator, that is

Ck =
[
C+

k

]C̄
0 :=


αC̄ if C+

k < αC̄
αC̄ if C+

k > αC̄
C+

k else

(2)
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where Ck is the SoC of the battery at time k , C̄ is the
maximum capacity of the battery, α ∈ (0.5, 1] and α ∈

[0, 0.5) are scalars defining the charging cycle of the battery
and C+

k is the SoC of the battery at time k before applying
the bounds, i.e.

C+

k = γ Ck−1 + aYk−1 − Xk−1, (3)

where γ ∈ (0, 1] is a scalar representing the losses (self-
discharge, etc.) from one instant to another, a is the total
area of the PV panels, Yk−1 is the energy production of the
photovoltaic panels per m2, i.e., kWh/m2 at time instant
k − 1 and Xk−1 is the energy consumption in kWh at time
instant k − 1. It is easy to see that Ck takes the value of
C+

k when it is within the operating range of the battery and
it is saturated when it is outside the range. For a discussion
regarding the validity of the model, we refer the interested
reader to the appendix.

Also, it is possible to consider that the charging rate is
limited. This constraint limits the speed of the charging and
discharging process

|Ck − Ck−1| ≤ R C̄, (4)

where R ∈ (0, 1]. Note that this constraint can be written as
two linear constraints, i.e.

Ck − Ck−1 ≤ R C̄, Ck−1 − Ck ≤ R C̄ . (5)

From now on and for the sake of clarity, we assume that
constraints referred to a certain time instant k must always
be fulfilled ∀k = 1, . . . ,K , and thus it will be omitted in the
following optimization problems.

B. COST FUNCTION
Once the dynamics of the battery has been presented, the
terms of the cost function can be shown:

• Investment cost of the PV panels, which is quantified by
5PV a. Note that 5PV is a constant value indicating the
price per square meter [m2] and a is a decision variable
showing how much area [m2] should be bought.

• Investment cost of the battery, which is quantified by
5BC̄ . Here, the price is assumed to follow a linear
function although other possibilities can be considered
without loss of generality. Note that C̄ is a decision
variable indicating the size of the battery [kWh] and 5B
corresponds to the price per kWh.

• Reverse power penalty or FiT profit, which is quantified
by 5Rmax(C+

k − αC̄, 0). Here, 5R is the cost/profit
for each kWh injected into the main grid and max(·, ·)
is a function R × R → R that returns the maximum
value of the two inputs scalars. This cost/profit is equal
to zero when the generated energy can be saved in the
battery and 5R(C

+

k − αC̄) elsewhere. Note that making
5R < 0 tackles the case of the FiT where the user
receives compensation for his/her surplus energy.

• Fuel cell generation cost, which is quantified by
5Gmax(αC̄ − C+

k , 0). This cost appears when the

PV generation and the stored energy in the battery is
not enough to satisfy the demand, that is, its value is
zero whenever C+

k ≥ αC̄ and greater than zero when
C+

k < αC̄ . In this paper, we assume that this additional
energy is generated by means of a fuel cell and thus 5G
represents the cost of generating each kWh in this fuel
cell.

C. PROBLEM FORMULATION
In summary, we formulate the following optimization prob-
lem to determine the PV size a and the capacity C̄ :

min
a,C̄,C,C+

5PV a+ 5BC̄ +

K∑
k=1

5Rmax(C+

k − αC̄, 0)

+

K∑
k=1

5Gmax(αC̄ − C+

k , 0) (6a)

s.t. Ck =
[
C+

k

]αC̄
αC̄ (6b)

C+

k = γ Ck−1 + aYk−1 − Xk−1 (6c)

Ck − Ck−1 ≤ R C̄ (6d)

Ck−1 − Ck ≤ R C̄ (6e)

0 ≤ a ≤ amax (6f)

C0 = Ĉ (6g)

a
K∑
k=0

Yk ≥

K∑
k=0

Xk (6h)

where K is the time horizon of the optimization problem and
C and C+ are the vectors of concatenated Ck and C

+

k , that is

C = {Ck}Kk=1, C+
= {C+

k }
K
k=1. (7)

As we must take into account that the amount of PV panels
that can be installed on the rooftop of each house is limited,
we consider that a maximum of amax m2 of panels can be
bought, which leads to constraint (6f). On the other hand,
constraint (6g) establishes the initial SoC of the battery to a
certain scalar Ĉ ∈ [αC̄, αC̄]. Finally, constraint (6h) forces
users to achieve ZEH for the time period given byK . Note that
the nonconvex saturation in (2) and the max function make
this optimization problem hard to solve in general.

There is a slightly different variation of the previous
formulation where users share the battery and the PV panels.
Assuming the existence of N users, the optimization problem
would be as follows:

min
ai,C̄,C,C+

5BC̄ +

N∑
i=1

5PV ai +
K∑
k=1

5Rmax(C+

k − αC̄, 0)

+

K∑
k=1

5Gmax(αC̄ − C+

k , 0) (8a)

s.t. Ck =
[
C+

k

]αC̄
αC̄ (8b)

C+

k = γ Ck−1 +

N∑
i=1

(
aiYk−1,i − Xk−1,i

)
(8c)
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0 ≤ ai ≤ amax ∀i = 1, . . . ,N (8d)

equations (6d, 6e,6g) (8e)
N∑
i=1

ai
K∑
k=0

Yk,i ≥

N∑
i=1

K∑
k=0

Xk,i (8f)

where ai is the amount of PV panels for householder i and
Yk,i and Xk,i are the generation and consumption at time
instant k for user i respectively. Note that, in this formulation,
we consider the group of users as a unique ‘‘big user’’ since
the generation and consumption of each user is summed in
the power balance equation (8c).

III. RELAXATION TO LINEAR PROGRAMMING
In what follows, we present how problems (6) and (8) can be
relaxed to LPs which can be easily solved.

Firstly, we tackle the problem of removing the saturation
constraints. For this purpose, we define new decision
variables 8 ∈ RK . Now, denote φk as the k-th element of 8.
Then, these decision variables φk can be used to ‘‘absorb’’
the difference between C+

k and Ck . Thanks to the definition
of these new decision variables φk , the saturation constraints
(2) become linear constraints, i.e.

Ck + φk = γ Ck−1 + aYk−1 − Xk−1,

αC̄ ≤ Ck ≤ αC̄ . (9)

That is, when the battery is full, φk takes a positive value
corresponding to the amount of energy that cannot be stored.
On the other hand, when the battery becomes empty, φk takes
a negative value corresponding to the amount of energy that
must be generated using the fuel cell to avoid a blackout.
Thus, it is clear that the two terms below are associated
with the cost of ‘‘reverse power’’ (or FiT) and ‘‘fuel cell’’,
respectively:

5Rmax(C+

k − αC̄, 0) → 5Rmax(φk , 0),

5Gmax(αC̄ − C+

k , 0) → 5Gmax(−φk , 0). (10)

Under the reasonable assumption that 5G ≥ 0 and 5R ≥

−5G, then 5Rmax(φk , 0) + 5Gmax(−φk , 0) is a convex
function and thus we have the following equivalence

5Rmax(φk , 0) + 5Gmax(−φk , 0)

= max(5Rφk , −5Gφk ). (11)

Then, by substituting equation (11) in the cost function and
taking into account the previous change in the constraints, the
new optimization problem is

min
a,C̄,C,8+,8−

5PV a+ 5BC̄ +

K∑
k=1

max(5Rφk , −5Gφk )

(12a)

s.t. Ck + φk = γ Ck−1 + aYk−1 − Xk−1 (12b)

αC̄ ≤ Ck ≤ αC̄ (12c)

equations (6d∼6h) (12d)

where 8 is the vector of concatenated φk , that is 8 =

{φk}
K
k=1. Note that all constraints are linear but the cost

function remains nonlinear. As this max function corresponds
to a convex piecewise linear function, it is possible to
transform this problem into an LP problem which can be
solved efficiently. This can be done by adding some slack
variables (see [38, §4.3.1]). Here, for the sake of clarity,
we opt to defineφk as the difference between two nonnegative
variables

φk = φ+

k − φ−

k , (13)

where φ+

k ≥ 0 and φ−

k ≥ 0. Then, φ+

k would correspond
to the amount of reverse power and φ−

k would correspond to
the amount of energy generated by means of the fuel cell at
time k . This is similar to the strategies used to pose an LP
problem in the standard form (see [38, §4.3]). Note that, after
this change, we have that

max(5Rφk , −5Gφk ) = 5Rφ
+

k + 5Gφ−

k (14)

and thus the problem can be written as

min
a,C̄,C,8+,8−

5PV a+ 5BC̄ +

K∑
k=1

(
5Rφ

+

k + 5Gφ−

k

)
(15a)

s.t. Ck + φ+

k − φ−

k = γCk−1 + aYk−1 − Xk−1 (15b)

αC̄ ≤ Ck ≤ αC̄ (15c)

φ+

k ≥ 0, φ−

k ≥ 0 (15d)

equations (6d∼6h) (15e)

where 8+ and 8− are the vectors of concatenated φ+

k and
φ−

k , that is

8+
= {φ+

k }
K
k=1, 8−

= {φ−

k }
K
k=1. (16)

Similarly, the community-based optimization problem can
be easily obtained from the aforementioned individual
optimization problem by considering the group of users as a
unique ‘‘big user’’. Then, it is possible to write the following
optimization problem:

min
ai,C̄,C,8+,8−

5BC̄ +

N∑
i=1

5PV ai +
K∑
k=1

(
5Rφ

+

k + 5Gφ−

k

)
(17a)

s.t. Ck + φ+

k − φ−

k

= γ Ck−1 +

N∑
i=1

(
aiYk−1,i − Xk−1,i

)
(17b)

αC̄ ≤ Ck ≤ αC̄ (17c)

equations (8d∼8f). (17d)

A. PROPERTIES OF THE PROPOSED MODEL
This subsection is dedicated to show the equivalence of
the proposed model (15) with respect to the original model
including the saturation constraints (6) and the conditions for
this equivalence to hold. First, we show that the optimal cost
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of the original problem is an upper bound of the optimal cost
of the proposed LP problem.
Theorem 1 (Upper Bound of the Optimal Cost): The opti-

mal cost of the LP problem (15) is less than or equal to the
optimal cost of the original problem (6).

Proof: It is possible to rewrite the original optimization
problem (6) by making the following change of variables

C+

k = Ck + φk , (18)

where φk ∈ R. Then, the resulting optimization problem is

min
a,C̄,C,8

5PV a+ 5BC̄ +

K∑
k=1

5Rmax(Ck + φk − αC̄, 0)

+

K∑
k=1

5Gmax(αC̄ − Ck − φk , 0) (19a)

s.t. Ck = [Ck + φk ]αC̄αC̄
(19b)

Ck + φk = γ Ck−1 + aYk−1 − Xk−1 (19c)

equations (6d∼6h). (19d)

Also, note that

max(Ck + φk − αC̄, 0) = max(φk , 0),

max(αC̄ − Ck − φk , 0) = max(−φk , 0), (20)

because of the constraint Ck = [Ck + φk ]αC̄αC̄
. After making

φk = φ+

k − φ−

k , where φ+

k , φ−

k ≥ 0, the problem becomes

min
a,C̄,C,8+,8−

5PV a+ 5BC̄

+

K∑
k=1

5Rmax(Ck + φk − αC̄, 0)

+

K∑
k=1

5Gmax(αC̄ − Ck − φk , 0) (21a)

s.t. Ck =
[
Ck + φ+

k − φ−

k

]αC̄
αC̄ (21b)

Ck + φ+

k − φ−

k = γ Ck−1 + aYk−1 − Xk−1

(21c)

equations (6d∼6h). (21d)

Finally, it is easy to see that the constraint Ck =[
Ck + φ+

k − φ−

k

]αC̄
αC̄ implies αC̄ ≤ Ck ≤ αC̄ too and thus

we can add the second constraint to the optimization problem
without changing the solution nor the optimal cost, that is

min
a,C̄,C,8+,8−

5PV a+ 5BC̄ +

K∑
k=1

(
5Rφ

+

k + 5Gφ−

k

)
(22a)

s.t. Ck =
[
Ck + φ+

k − φ−

k

]αC̄
αC̄ (22b)

Ck + φ+

k − φ−

k = γ Ck−1 + aYk−1 − Xk−1
(22c)

αC̄ ≤ Ck ≤ αC̄ (22d)

φ+

k ≥ 0, φ−

k ≥ 0 (22e)

equations (6d∼6h). (22f)

At this point, it is clear that the proposed optimization
problem in (15) corresponds to a less constrained version
of the original optimization problem in (6) because the
only difference is the absence of the constraint Ck =[
Ck + φ+

k − φ−

k

]αC̄
αC̄ in the proposed LP problem. Thus, the

optimal cost of the proposed optimization problem will
be less or equal to the cost of the original optimization
problem. □
In the following, it is shown that the additional degrees of

freedom obtained because of the removal of the saturation
constraints do not provide a better cost when 5R > 0 and
5G > 0 and thus the equality holds. In the next Lemma,
we show that the optimal solution is not unique under certain
conditions.
Lemma 1 (Non-Uniqueness of theOptimal Solution):Assume

that 1φ+ or 1φ− exists so that φ+

j = φ+
∗

j + 1φ+, φ+

j−1 =

φ+
∗

j−1 −1φ+ and φ−

j = φ−
∗

j +1φ−, φ−

j−1 = φ−
∗

j−1 −1φ− for
a certain j while fulfilling the constraints αC̄ ≤ Ck ≤ αC̄
and φ+

k ≥ 0 or φ−

k ≥ 0 for every k. Then, there exists
an infinite number of optimal solutions for the optimization
problem (15).

Proof: For simplicity, we tackle in what follows the
case of 1φ+ as a similar reasoning can be done for 1φ−.
Denote a∗, C̄∗, C∗, 8+

∗

and 8−
∗

an optimal solution of the
optimization problem (15). Assume the existence of a certain
1φ+ and j so that

8+

1 = [φ+
∗

1 , . . . , φ+
∗

j−1 − 1φ+, φ+
∗

j + 1φ+, . . . , φ+
∗

K ]⊤,

C1 = [C∗

0 , . . . ,C∗

j−1 + 1φ+,C∗
j , . . . ,C

∗
K ]

⊤, (23)

and the constraints αC̄ ≤ Ck ≤ αC̄ and φ+

k ≥ 0 are still
satisfied for every k . Note that the SoC of the battery only
changes at j− 1 since

Cj−1 + φ+
∗

j−1 − 1φ+
− φ−

∗

j−1 = C∗

j−2 + a∗Yj−2 − Xj−2.

(24)

Note that

C∗

j−1 = C∗

j−2 + a∗Yj−2 − Xj−2 − φ+
∗

j−1 + φ−
∗

j−1

(25)

and thus

Cj−1 = C∗

j−1 + 1φ+. (26)

Once the value of Cj−1 is known, we can compute the value
of Cj

Cj + φ+

j − φ−
∗

j = Cj−1 + a∗Yj−1 − Xj−1

Cj + φ+
∗

j + 1φ+
− φ−

∗

j = C∗

j−1 + 1φ+
+ a∗Yj−1 − Xj−1

Cj + φ+
∗

j − φ−
∗

j = C∗

j−1 + a∗Yj−1 − Xj−1. (27)
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Hence, Cj = C∗
j . Denoting sum(·) as the sum of the elements

of a vector, then the new cost can be compared with respect
to the optimal cost:

1V = 5PV a∗
+ 5BC̄∗

+ 5Rsum
(
8+

1

)
+

K∑
k=1

5Gφ−
∗

k

− 5PV a∗
− 5BC̄∗

−

K∑
k=1

5Rφ
+

∗

k − 5Gφ−
∗

k

= 5R(1φ+
− 1φ+) +

K∑
k=1

5Rφ
+

∗

k

−

K∑
k=1

5Rφ
+

∗

k = 0. (28)

Thus, the variables in (23) for any feasible1φ+ together with
a∗, C̄∗, 8− make up the set of optimal solutions of (15) □
The following Theorem follows from the previous results.
Theorem 2 (Infinite Solutions): Consider the optimization

problem in (15). If one of the below proposition holds:
• There is at least one time slot where the battery is not
empty, the fuel cell is off, the battery reaches full capacity
in the subsequent time slot and the charging inequality
constraint is not active (existence of feasible 1φ+).

• There is at least one time slot where the battery is not
full, no reverse power is being returned to the grid, the
battery is completely empty at next time instant and the
charging inequality constraint is not active (existence of
feasible 1φ−).

Then, it is possible to find an infinite number of optimal
solutions.

Proof: The conditions appearing in the first proposition
corresponds to the following: C∗

j = αC̄ , αC̄ < C∗

j−1 ≤ αC̄ ,

φ−
∗

j−1 = 0, Ck − Ck−1 < R C̄ and Ck−1 − Ck < R C̄ . Then

φ−
∗

j = 0 and φ+
∗

j = C∗

j−1 + a∗Yj−1 − Xj−1 − C̄ ≥ 0. From
these conditions, it is easy to see that it is possible to find a
certain 1φ+ < 0 so that the constraints αC̄ ≤ Ck ≤ αC̄
and φ+

k ≥ 0 are still fulfilled for every k . Due to the results
of Lemma 1, this proves that an infinite number of optimal
solutions can be found. On the other hand, the conditions of
the second proposition are the following: C∗

j = αC̄ , αC̄ ≤

C∗

j−1 < αC̄ , φ+
∗

j−1 = 0, Ck − Ck−1 < R C̄ and Ck−1 − Ck <

R C̄ . Then φ+
∗

j = 0 and φ−
∗

j = Xj−1 − C∗

j−1 − a∗Yj−1 ≥ 0.
Similarly, from the above conditions, it can be seen that it is
possible to find a certain 1φ− < 0 so that the constraints
αC̄ ≤ Ck ≤ αC̄ and φ−

k ≥ 0 are still fulfilled for every k .
As in the previous case, for this situation, Lemma 1 states that
an infinite number of optimal solutions can be found. □
Corollary 1: By looking at the results of Theorem 2, it is

clear that all possible trajectories of the SoC of the battery
which can be obtained by altering C1, 8+

1 and 8−

1 attain
the same optimal cost when 5R > 0 and 5G > 0. In other
words, when 5R > 0 and 5G > 0, the optimal cost of (6)
and (15) are the same.

On the other hand, when considering FiT (i.e.5R < 0), the
value of the optimal cost can be smaller than the cost obtained
with the original optimization problem. This is due to the
fact that 8+ and 8− can be interpreted as control variables
allowing us to discharge the battery or generate energy in the
fuel cell at any time, not only when it is strictly needed.

IV. CASE STUDY IN KITAKYUSHU, JAPAN
In this section, we conduct simulation studies using real data
obtained from Jono, a neighborhood located in Kitakyushu,
Japan. The available data corresponds to the time period
from April 1, 2021 to February 28, 2022. This data includes
both the consumption and solar generation for a total of
134 households every 30 minutes during this period of time
(11 months). Different scenarios (each one with its own
set of parameters) are presented to show how the proposed
optimization problem performs and to discuss the obtained
results.

The problem to be solved for the individual case cor-
responds to the problem in (15) where the last constraint
can be considered or not depending if we want to enforce
ZEH. Similarly, the optimization problem to be solved for the
community-based approach corresponds to the optimization
problem in (17) where the last constraint is optional.

Regarding the value of the parameters, we consider a depth
of discharge of 0.9, that is α = 0.05 and α = 0.95. The
charging rate is limited to the 50% of the total capacity of
the battery (R = 0.5), i.e. the battery can be fully charged in
2 time steps (1 hour). On the other hand, γ is chosen to be
γ = 0.99998 and the initial condition is fixed to C0 = αC̄ .
Finally, 5PV = 1000 ¥/m2, 5B = 4500 ¥/kWh, 5G =

30 ¥/kWh. Note that5PV and5B are chosen so that the cost
of the battery and the solar panels is amortized over a span of
10 years, which is the estimated life of LiFePO4 batteries of
these characteristics according to most manufacturers. As5R
changes in every proposed scenario, we present its value at the
beginning of each subsection.

A. SCENARIO 1. PENALIZED REVERSE POWER
Here, we consider that the energy that cannot be stored in
the battery penalizes the cost function of the optimization
problem, that is 5R = 10 ¥/kWh.

The results are shown in Fig. 2, 3, 4 and Table 1. Fig. 2
shows the amount of PV panels in m2 and battery size in kWh

FIGURE 2. PV panels and batteries investments with and without ZEH
constraints for the penalized reverse power scenario.
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FIGURE 3. Histograms of investments on PV panels (on the top) and
batteries (on the bottom) for the penalized reverse power scenario.

for each user. Blue dots correspond to the problemwithout the
ZEH constraint whereas red dots correspond to the problem
including the ZEH constraint. It is clear that, due to the
term penalizing the reverse flow, the investment in PV panels
and batteries can be considered small in comparison to the
problem including the ZEH constraint. In particular, for the
individual case, the increase in investment for the PV panels is
34.02% on average and 24.15% on average for the investment
on the battery system. For the community-based approach,
we obtain that the investment in PV panels increases by
27.53% and the investment in batteries increases by 12.49%.
Similar results can be seen in Fig. 3, where histograms of
the investment of PV panels (on the top) and battery (on
the bottom) are shown. In addition, average investments
of the individual and community approaches are presented.
It can be observed that allowing energy sharing within
the community incentivizes investment in batteries, while
simultaneously decreasing the average need for individual PV
panels. This leads to a more energy-efficient management
by reducing waste from over-investment. Fig. 4 shows the
total savings after optimization with respect to the cost
before optimization, i.e. when no PV panels nor batteries
are installed. As it can be expected, for the problem without
the ZEH constraint, the optimized costs are smaller than the
previous costs for every user. However, some users face larger
costs than before optimization (those with negative savings)
when considering the ZEH constraint. This can be seen as a
consequence of a low capability of generating solar energy for
some households along with the reverse power penalty, which
makes very difficult to attain ZEH. Finally, Table 1 shows the
summarized results for the proposed set of parameters. Note
that ‘‘Ind.’’ refers to ‘‘Individual’’, ‘‘Ind. ZEH’’ corresponds
to the individual optimization problem including the ZEH
constraint, ‘‘Sharing’’ refers to the investment approach as
a group of users, ‘‘Sharing ZEH’’ corresponds to the same
investment approach including the ZEH constraint, ‘‘Av. PV’’
refers to the average amount of invested PV among users,
‘‘Av. battery’’ stands for the average battery size among users,

TABLE 1. Summarized results for the penalized reverse power scenario.

‘‘ZEH (%)’’ refers to the percentage of users achieving ZEH
in the original optimization problem and ‘‘savings’’ stands for
the improvement of the cost with respect to the case where no
batteries nor PV panels are installed.

It can be seen that neither the individual users nor the
community achieve ZEH in the original problem. This
happens due to the penalty in the reverse power flow which
encourages users not to invest a lot on PV panels. As attaining
ZEH is not optimal cost-wise, users do not invest beyond
needed in order to attain ZEH. Also, it seems that there are
some users who cannot achieve ZEH on their own. This might
be because certain buildings are oriented towards a direction
where solar radiation is very low and thus amax m2 worth
of solar panels are not enough in order to satisfy the ZEH
constraint, leading to infeasibility. Also, note that it is always
easier to achieve ZEH as a community instead of individually,
i.e. a smaller amount of PV panels is required.

B. SCENARIO 2. NON-PENALIZED REVERSE POWER
Here, it is considered that the amount of electricity injected
back to the grid does not affect the value of the cost function,
that is 5R = 0 ¥/kWh. It can be considered as the
intermediate case between the penalized reverse power case
and the FiT case. The results are shown in Fig. 5, 6, 7
and Table 2. In Fig. 5, the investment in PV panels and
batteries is shown for each user. It is easy to see that the
investment is larger in comparison to that of Scenario 1, i.e.
30.52% for the PV investment and 7.290% for the battery
investment on average in the individual case whereas, for the
community case, the PV investment increases by 29.46% and
the battery investment increases by 3.820%. This happens
because we are not penalizing the reverse power flow and
thus more PV panels can be installed without increasing the
costs due to an excessive generation. Also, it can be seen that,
in order to attain ZEH, many individual users must increase
the amount of PV panels, but it is not as pronounced as in
Scenario 1. Again, The ZEH constraint requires an expansion
of PV area by 7.487% and a purchase of 5.493% additional
battery storage capacity on average for the individual case.
As the community attains ZEH naturally, there is no change
in adding the ZEH constraint to the problem. Similarly, Fig. 6
shows the investment results in a histogram manner. It can
be seen that the distribution of the PV investment is slightly
pushed towards the right direction in comparison with Fig. 3,
which makes sense due to the lack of penalty in the reverse
flow. However, the distribution of the investment related to
the battery does not change substantially. Finally, Fig. 7
shows the individual costs for the proposed set of parameters.
In general, it can be seen that the savings are larger than the
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FIGURE 4. Improvement of the cost of each user with respect to the case where batteries and PV panels are not installed for the penalized
reverse power scenario.

FIGURE 5. PV panels and batteries investments with and without ZEH
constraints for the non-penalized reverse power scenario.

FIGURE 6. Histograms of investments on PV panels (on the top) and
batteries (on the bottom) for the non-penalized reverse power scenario.

savings depicted by Fig. 4, which is obtained from the set
of parameters in Scenario 1. Also, it is easy to see that the
difference in the savings when including the ZEH constraint
is really small, leading to the conclusion that attaining ZEH
is not as hard as we might think. However, there are some
exceptions that should be studied on a case-by-case basis.

Again, Table 2 shows the summarized results for the
proposed set of parameters. It can be seen that a high
percentage of users are still not achieving ZEH naturally.
However, in the sharing approach, ZEH is attained in the
original investment problem. This means that even though
achieving ZEH individually can be tough, it becomes easier
when considering a sharing-based approach.

C. SCENARIO 3. FEED-IN TARIFFS
In this case, users can make a profit by returning the surplus
power generated by means of the PV panels to the grid, that
is 5R = −5 ¥/kWh.

TABLE 2. Summarized results for the non-penalized reverse power
scenario.

The results are shown in Fig. 8, 9, 10 and Table 3.
Fig. 8 shows the investment for the PV panels and batteries
for each individual user. It can be seen that the solution
to the original optimization problem is almost the same
as the solution to the problem including ZEH enforcing
constraint, which means that many users attain ZEH in the
original optimization problem. Particularly, it is only needed
to increase the PV investment by 1.719% and the battery
investment by 2.426% on average. Also, as can be expected,
the amount of investment in PV is significantly larger than
before due to the fact that now it is possible to make a profit
by returning this surplus energy to the grid. This can be
seen clearly in Fig. 9, where the average value of the PV
investment is over twice in comparison to Scenario 2, and
the distribution is more flattened and pushed to the right.
On the other hand, the distribution of the battery size is almost
identical to the previous two scenarios.

Finally, Table 3 shows the summarized results for the
proposed set of parameters. As it can be expected, the amount
of savings that can be attained are higher than in the two
previous settings since instead of penalizing the reverse
power flow, users can make a profit of their spare energy.
Also, it can be seen that almost all users attain ZEH naturally.
Only a small percentage of users do not achieve ZEH in the
original optimization problem. This might be related to the
fact that the solar radiation of these houses is scarce and thus
it is very expensive to generate energy by using these means.

TABLE 3. Summarized results for the FiT scenario.

D. DISCUSSION
As expected, various reverse power policies encourage
different investment behaviors depending on the chosen value
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FIGURE 7. Improvement of the cost of each user with respect to the case where batteries and PV panels are not installed for the
non-penalized reverse power scenario.

FIGURE 8. PV panels and batteries investments with and without ZEH
constraints for the FiT scenario.

FIGURE 9. Histograms of investments on PV panels (on the top) and
batteries (on the bottom) for the FiT scenario.

of 5R. When considered as a penalty, it is opposite to
our objective, which is attaining ZEH. In order to avoid
the reverse power penalty, users tend not to buy a large
quantity of PV panels. When considering the sharing-based
approach, the situation remains the same. Thus, a different
kind of mechanism should be considered to tackle the
problem of reverse power as this approach prevents users
from attaining ZEH.

On the opposite side, when considering FiT, the amount
of PV becomes too large. See Fig. 11, where the sum of
φ+

k and φ−

k for all users (individual approach) during April
when 5R = 10, 5R = 0 and 5R = −5 is shown. There,
it can be seen the magnitude of the reverse power flow and
the amount of needed gas for every considered value of 5R.
Also, Table 4 and 5 show the average amount of φ+

k and φ−

k .
Again, it can be seen that the amount of reverse power is much
greater when considering FiT. Then, we have the following
dilemma: if we penalize the reverse power flow, users will

TABLE 4. Average φ+

k per user every 30 minutes.

TABLE 5. Average φ−

k per user every 30 minutes.

not achieve ZEH, but if we encourage the acquisition of PV by
means of FiT, then the amount of reverse power is excessively
high and it might lead to malfunctions in the grid. As an
intermediate case, we have 5R = 0, where the amount of
PV is considerably higher than 5R = 10, but not as high as
when considering5R = −5. Some users can achieve ZEH on
their own, but it is only a small minority. However, when they
work together in the sharing approach, it is possible to attain
ZEH as a group (which was even impossible when5R = 10).
In summary, according to the data of the consumption and

solar generation, the right incentive for this case would be
to choose 5R = 0 and make users cooperate. This would
attain ZEH while at the same time preventing the power
grid from being subjected to an excessive amount of reverse
power. In order to alleviate the effect of the reverse power
flow, an appropriate online management of the battery can be
considered. That is, one could try to make the reverse power
flow as constant as possible by deciding when the battery
should charge or discharge.

E. COMPUTATION TIMES
In order to emphasize the contribution of the paper and the
importance of the proposed LP problem, we implement the
original problem (6) in Gurobi to show that even commercial
solvers have trouble solving the original problems.

We compare the computational time needed for solving
problem (6) in Gurobi and the reformulated LP problem (15)
using linprog on MATLAB with different values of K . Note
that the price of the PV and the battery are considered
to be amortized during these periods of time so that the
problem still makes sense. The comparison can be seen in
Fig. 12. It is shown that the LP problem is solved much faster
than the original problem. Specifically, when considering
58 days (about two months), the original problem becomes
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FIGURE 10. Improvement of the cost of each user with respect to the case where batteries and PV panels are not installed for the FiT
scenario.

FIGURE 11. Total amount of φ+

k (on the top) and total amount of φ−

k (at
the bottom) during April.

FIGURE 12. On the top: computation times up to approximately two
months. On the bottom: computation times of the first 10 days.

computationally challenging, taking up to 14 hours to be
solved. In contrast, the full LP problem can be solved in
less than ten seconds. Therefore, given the extensive scale of
the original problem with large K , it cannot be considered
tractable in practice.

V. CONCLUSION
In this paper, we proposed optimization problems to opti-
mally decide the amount of PV panels and the size of the
battery to be installed in a house in order to save money
in electricity bills and, more importantly, achieve ZEH.
Concretely, the main highlights of the paper were:

• We have shown the potential advantages of the sharing
economy in comparison to a strictly individual invest-
ment approach.

• It has been shown that the nonconvex optimization
problems associated with the optimal sizing in this paper
can be posed as LP problems and thus they can be
easily solved. Also, they are not computationally heavy,
compared to other existing methods in the literature.

• Through real data obtained from a neighborhood in
Japan, we have shown in the numerical examples
how the optimization problems perform for three
sets of parameters corresponding to different incentive
scenarios.

• Finally, it has been shown that a sharing-based approach
without penalty in the reverse power can achieve ZEH
while obtaining a low reverse power flow.

On the other hand, it should be noted that the optimization
problem only considers data for a specific year, which might
lead to misleading results if the year is not representative of
actual household consumption and generation. This could be
solved by integrating stochastic optimization approacheswith
the proposed LP problem. Therefore, we consider as future
work the improvement for the aforementioned investment
problem, the development of efficient management strategies
for the battery to minimize the effect of the reverse power in
the grid, and different sharing strategies.

APPENDIX A
In this appendix, we test the suitability of the model in
section II, that is

Ck =
[
C+

k

]C̄
0 :=


0 if C+

k ≤ 0
C̄ if C+

k ≥ C̄
C+

k else

(29)

where

C+

k = γ Ck−1 + aYk−1 − Xk−1, γ = 0.99998. (30)

For this purpose, the model is compared against a MATLAB
Simscape battery block. This battery corresponds to a
lithium-ion battery with a nominal voltage of 12.6V, rated
capacity of 675Ah and a battery response time of 90s. In this
experiment, we inject steps of different amplitude and length
to both the Simulink system and the proposed model for a
total of 400 hours (approximately 17 days).

The results are shown in Fig. 13. There, it can be seen
that the proposed model is obtaining a good approximation
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FIGURE 13. On the top: real SoC and prediction obtained by means of the
proposed model. On the bottom: applied random input.

of the real system, attaining a mean squared error of 1.2542,
which can be considered low taking into account the order
of magnitude of the SoC. Thus, the model is valid for the
investment problem.
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