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ABSTRACT In this study, a novel Machine learning-based method for the joint State of Charge and State of
Health estimation of LithiumBatteries that tackle real-world applications andwith BayesianHyperparameter
optimization is proposed. The estimated State of Health is used as an input for State of Charge estimation,
considering battery degradation. The accuracy and computational cost of the proposed method are compared
with the other state-of-the-art Machine Learning models. For the most promising solutions, an in-depth
analysis on factors affecting the estimation accuracy is performed. To facilitate further research, a new battery
dataset was created using extended dynamic driving cycles, encompassing a wide range of temperature
conditions and aging stages. This dataset is publicly available online to support model development and
comparative testing by the scientific community. The proposed solution achieves low estimation errors for
the whole first life of Lithium Batteries for dynamic applications while providing valuable insights into its
applicability and effectiveness in battery energy storage systems.
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NOMENCLATURE
BHO Bayesian Hyperparameter Optimization.
BiGRU Bidirectional Gated Recurrent Unit.
BiLSTM Bidirectional Long-Short Term Memory.
BMS Battery Management System.
DRNN Dynamic Recurrent Neural Network.
DVA Differential Voltage Analysis.
EV Electric Vehicle.
FC Fully Connected.
FLOPs FLoating-point OPerations.
GRU Gated Recurrent Unit.
HPPC Hybrid Pulse Power Characterization.
ICA Increamental Capacity Analysis.
LIBs Lithium-Ion Batteries.
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LS − SVM Least Square Support Vector Machine.
LSTM Long-Short Term Memory.
MAE Mean Absolute Error.
NN Neural Network.
NMC Nickel Manganese Cobalt.
NSSR Nonlinear State Space Reconstruction.
OCV Open Circuit Voltage.
RMSE Root Mean Squared Error.
SOC State of Charge.
SOH State of Health.
SOX State of Eveything.
SWPSO Self-adaptive Weight Particle Swarm

Optimization.
UDDS Urban Dynamometer Driving Schedule.
UPF Unscented Particle-Filter.
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I. INTRODUCTION
According to the updated 2030 framework of the European
Union for climate and energy [1], a significant reduction in
greenhouse gas emissions is targeted. The implementation of
renewable energy sources and the transition towards electric
mobility will contribute to achieving those environmental
and energy goals [2]. Electrochemical batteries serve as an
effective energy storage option for this transition [3], and the
integration of a precise and efficient Battery Management
System (BMS) can ensure their optimal functionality [4].
Typically, a state-of-the-art BMS should be capable of
cell monitoring the voltage, current, and temperature while
ensuring the safety andmanagement of the cell [5].Moreover,
it should be capable of accurately estimating the State
of Charge (SOC) [6] and the State of Health (SOH) [7]
in Electric Vehicles (EV) [8], as these parameters are
crucial for optimal operation, especially for Lithium-Ion-
Batteries (LIBs) [9]. Inaccurate SOC estimation can result
in overcharging of the battery [10], leading to a shortened
battery lifespan, reduced energy efficiency, and potential
safety concerns such as overheating, cell damage, or even
hazardous situations [11]. Furthermore, battery degradation
increases the internal resistance, and reduces its capacity and
the overall performance of EVs over time [12]. Erroneous
SOH estimations affect the battery lifespan, safety, and
reliability [13].

State of Everything (SOX) estimation depended on intri-
cate mathematical models rooted in electrochemical theories,
necessitating in-depth knowledge, elaborate computations,
and thorough calibration [14], [15]. Yet, these approaches
often falter when facing real-world complexities, leading
to imprecise results. Recently, Machine Learning (ML)
emerged as a promising approach for SOX estimation [16],
[17], employing data-driven algorithms to discern complex
correlations between battery parameters and SOC accurately.

For this purpose, many methodologies have been devel-
oped for the joint SOC-SOH estimation [18]. Generally,
many model-based methodologies have been developed
for LIB [19], while lately, data-driven techniques have
started emerging in this field, without a major breakthrough.
Besides, a significant drawback of using these techniques
is the uncertainty surrounding the model’s hyperparameters,
which can affect the precision of the predictions [16].
Consequently, in [20], the authors present a novel method
for identifying the SOC and SOH of LIBs based on an
improved Dynamic Recurrent Neural Network (DRNN) and
Self-adaptiveWeight Particle SwarmOptimization (SWPSO)
algorithm. The DRNN is designed to capture the dynamic
behaviour of the battery, while the SWPSO algorithm
optimizes the network parameters to improve the accuracy
of the estimation. Results indicate that this method surpasses
other techniques like gradient descent-DRNN and back
propagation-NN under various conditions.

In [21] the authors use the Nonlinear State Space
Reconstruction (NSSR) approach to reconstruct the state
space of the EV battery pack and Long-Short Term Memory

(LSTM) to estimate its SOC and SOH. The proposed model
excelled by achieving an RMSE of less than 2.5% for
SOC estimation and 1.3% for SOH estimation at 25°C.
Furthermore, in [22], the authors developed a hybrid Least
Square Support Vector Machine (LS-SVM) and Unscented
Particle-Filter (UPF) method for estimating the SOC and
SOH of the LIBs in different time scales. The LS-SVM
estimates the battery states, which are subsequently optimised
by UPF. The experimental results show that the proposed
method achieves high accuracy in estimating the SOC and
SOH at 25°C with an RMSE of 2.1% at the 240 Cycle.
In addition, in [23], the authors developed a novel method
for estimating the SOC and SOH of LIBs using a nonlinear
autoregressive with exogenous inputs Neural Network (NN).
This method outperformed the simple multilayer perceptron
in terms of accuracy and robustness.

The body of literature investigated so far, offers valuable
insights, but there are still significant gaps: many of the
developed models for the joint SOC-SOH estimations have
not been evaluated with dynamic and complex datasets that
simulate real-life applications. Furthermore, in most cases,
authors do not evaluate the impact of varying temperatures
on SOC estimation and battery degradation. Finally, many
methods do not employ any algorithm for hyperparameter
tuning, leading to an inefficient model.

This study proposes a new method that jointly estimates
both the SOC and SOH of LIBs, tackling all the aforemen-
tioned gaps in literature. The proposed method incorporates
the aging effects of the batteries by using the estimated SOH
as an input to the model for SOC estimation.

The accuracy of the proposed method and its computa-
tional cost are evaluated and compared to other state-of-
the-art models, such as: LSTM, GRU, and BiGRU. For the
most promising solutions, an in-depth analysis is conducted
on the window span of the created time series for the SOC
estimation, and the voltage ranges, the input feature and
the timestep analysis for the SOH estimation. A bayesian
optimisation with a gaussian process algorithm is employed
to set the model hyperparameters. Furthermore, a novel
set of hyperparameters is proposed to maintain minimal
network volume, expanding the hyperspace to include aspects
such as the learning rate of the optimizer and the number
of: RNN layers, units in each RNN layer, FC layers and
neurons in each FC layer as well as the relevant activation
functions. This expansion allows the proposed method to
identify near-optimal hyperparameters without extensive
manual network engineering. For a conclusive evaluation
of the proposed framework’s industrial applicability, the
FLOPs are calculated, offering significant insights into the
computational resources required for each predictive step of
the algorithm. For the proposed framework, a new battery
dataset was obtained, which contains measurements acquired
over a wide range of temperature conditions and aging stages
using extended dynamic driving cycles. This dataset is made
available online and can be used by the scientific community
to develop models and perform comparative testing.

VOLUME 12, 2024 80245



P. Eleftheriadis et al.: Joint State of Charge and State of Health Estimation

The paper is structured as follows. Section II introduces
the datasets used to train and test the model, and Section III
evaluates and compares state-of-the-art models for SOC and
SOH estimations. Section IV presents the development of
the proposed joint SOC-SOH method and a discussion about
the results of the model, and lastly, in Section V, there
are the conclusions of the overall paper.

II. DATASETS
A. EXPERIMENTAL SETUP
In this work, the results of a measurement campaign
performed in the battery laboratory of TU Berlin with the
collaboration of the Politecnico di Milano University are
presented. The schematic representation of the experimental
setup is depicted in Figure 1.

FIGURE 1. The schematic experimental setup.

Recorded data are related to a lithiumNMC oxide LIB cell,
and they can be split into two distinct phases: the SOC cycling
and the degradation phase.

In the initial stage, a total of 8 LG18650HE4 battery
cells with a capacity of 2.5 Ah were placed in a thermal
chamber, specifically the Binder MK53. Due to a hardware
malfunction, 2 cells were damaged during the cycling process
and therefore the relevant data are not included in this
analysis. For the charging and discharging of the battery
cells, a Neware battery tester model BTS-4008 was used.
Figure 2a shows the complete experimental setup, providing a
comprehensive view of the overall arrangement. Meanwhile,
Figure 2b illustrates the specific placement of the battery cells
within the thermal chamber.

In the first phase, which involved the characterisation of
SOC, the cells were subjected to static and dynamic cycling
at six different ambient temperatures: −20°C, −10°C, 0°C,
10°C, 25°C, and 35°C, covering a wide range of temperatures
scenarios. The dataset encompasses both static and dynamic
stressing tests. The initial test involves the construction of the
SOC-OCV curve by applying 1% SOC pulses, which helps
establish the true relationship between SOC and the OCV.
After, HPPC was performed at every 10% SOC interval to
determine the charging and discharging internal resistance of
the battery at each SOC level. Finally, for dynamic stress,
there are four distinct driving cycles: the UDDS, the Highway
Driving Schedule (US06), and the California Unified Cycle
(LA92). Additionally, mixed cycles were created on purpose,

FIGURE 2. Two aspects of the experimental setup.

by combining randomized segments from UDDS, US06,
and LA92, named with increasing numbers from ‘‘Mixed1’’
to ‘‘Mixed6’’. Each driving cycle was performed at the
six aforementioned ambient temperatures, and data were
recorded at a sampling interval of 0.1 seconds. Figure 3
displays the complete cycling schedule, with the SOC
Cycling cycle depicted in green blocks, the SOC Cycling test
schedule in blue blocks, the SOH ageing cycling in orange
blocks, the ageing schedule in grey, and the stress cycles in
yellow. The stress cycles consist of Driving Cycles, HPPC
tests, and SOC-OCV stress tests.

In the second phase, the battery cells were subject to
the same driving cycles at a constant temperature of 35°C,
aiming to simulate both driving and calendar ageing effects.
To monitor the ageing process, a capacity test was conducted
approximately every 20 to 30 cycles, while the impact of the
ageing procedure can be observed in Figure 4. In this phase,
data were recorded at a sampling interval of 1 second.

The final and complete open dataset, which was thus
created covering various temperature ranges and ageing
phases with dynamic driving cycles, is made available
online [24]. It can be used by the scientific community
and stakeholders for several purposes as any other model
development and leading comparison tests.

B. DATA PREPROCESS
Following data acquisition, a series of procedures were
meticulously executed to clean the dataset and convert it
into a form that can be easily implemented into the model.
These preprocessing steps encompassed essential operations,
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FIGURE 3. Experimental procedure for the creation of the dataset.

FIGURE 4. SOH trend of the analyzed NMC cells.

including the elimination of redundant data points, feeling
missing data, and calculating SOC, by dividing the actual
capacity with the actual capacity extracted in each cycle and
SOH, by dividing the actual maximum capacity obtained
by the capacity test with the initial maximum capacity.
Furthermore, the data files underwent compression and
meticulous organisation for enhanced manageability, where
data from charging, discharging and driving cycles were
separated. Subsequently, the dataset was expanded with ICA
information derived from discharge and charge capacity
differentiations with respect to the terminal voltage and DVA
data obtained through terminal voltage differentiation with
respect to the discharge and charge capacities. To prepare the
ICA and DVA data for feature extraction, the Savitzky-Golay
filter was thoughtfully applied to mitigate spikes and enhance
their suitability for subsequent modelling processes.

Currently, data are divided into two main categories: the
first relates to dynamic driving cycles for the SOC estimation,

while the second category contains the data of the charging
and discharging cycles for the SOH estimation. Additionally,
to the latter category, supplementary details of the ICA and
DVA curves were included to be used as input features for
the SOH estimation.

III. SoC AND SoH ESTIMATION
A. METHODS
The main objective of this paper is to explore and compare
different methods and models for improving the SOC and
SOH estimation. In this section, there will be an analysis of
two methods for the SOC estimation and one method for the
SOH estimation which are depicted in Figure 5. Regarding
SOC estimation, ‘Method A’ employs the terminal voltage,
current, and surface temperature data of the driving cycles to
predict SOC while in ‘Method B’, the real SOH data, which
was calculated by the capacity tests as mentioned above,
is added as an additional input whilst retaining the other
parameters. Both methods were trained using driving cycles
UDDS, US06, and Mixed 1 to 4. For the evaluation of the
model, the LA92 and Mixed 5 and 6 cycles were utilized.

FIGURE 5. SOC and SOH estimation methods.
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For both methods, the input consists of time-series data of
the aforementioned features and is organized in matrices with
length that is determined according to the time window value
as it is presented in Figure 6. The model will make a single
estimation for every time window, taking into consideration
the past feature information.

FIGURE 6. Time window of the time series created for the prediction of
SOC in the ‘Method B’.

Regarding the SOH, as depicted in Figure 5, ‘Method C’
utilises the terminal voltage, the capacity, the ICA, and the
DVA as input features of the charging cycles to estimate the
SOH. In this method, the data that will be used corresponds to
partial charging, utilising part of the charging cycle to emulate
the real-data availability. Additionally, the model was trained
using the partial charging data from cells No. 1, 2, 3, 5, and 6.
Cell No. 7, on the other hand, was utilized for the model’s
evaluation purposes.

For all the above methods, the authors consider four RNN
models: LSTM, biLSTM, GRU, and biGRU, to compare
their performance in estimating the SOC/SOH. For the RNN
optimisation, the Bayesian Hyperparameter Optimization
(BHO) is applied to search the optimal hyperparameters
within specific parameter spaces. In this research, the
parameters of the hyperspace can be found in Table 1 for
the SOC and SOH models. This hyperspace is based on
the previous work of the authors [25], exploring a broader
range of parameters to enhance its overall accuracy. The
proposed changes increase the number of additional RNN
and FC layers from 2 to 4, increase the searching step of
both layers from 4 to 8, incorporate the learning rate between
the values [10−3, 10−4 and 10−5] while searching for the
activation function of the FC layers between the values of

TABLE 1. Hyperspace for the SOC and SOH models.

Leaky Rectified Linear Unit (leaky/ReLU), Gaussian Error
Linear Unit (GELU), Swish, Scaled Exponential Linear Unit
(SELU) and Linear.

B. RECURRENT NEURAL NETWORKS
RNNs are artificial neural networks designed for processing
sequential data, incorporating structures like LSTM, GRU,
BiLSTM, and BiGRU. Their architectures create a form of
memory that can capture past information, making them
capable of predicting based on both the current input and
the sequence of past inputs. This is achieved through loops
within the network that pass information from one step of
the sequence to the next. Compared to other networks, RNNs
excel in tasks that require understanding temporal dynamics
or sequential patterns, such as language translation, speech
recognition, and time series prediction, due to their ability to
handle variable-length sequences and their inherent capacity
for capturing temporal dependencies.

1) LSTMs AND GRUs
LSTM networks are a special kind of RNNs designed to
overcome the limitations of traditional RNNs, particularly
issues related to long-term dependencies. The architecture of
an LSTM unit includes three gates: the input gate, the forget
gate, and the output gate. These gates collectively decidewhat
information should be passed on to the output, what should
be retained in memory, and what should be forgotten. This
mechanism allows LSTMs to preserve information over long
periods, making them highly effective for tasks involving
complex, sequential data like language modelling and time
series analysis. The strength of LSTMs lies in their ability to
capture long-term dependencies and process data sequences
of variable lengths, which is a significant advantage over
simpler neural network architectures.

GRUs are another type of RNNs similar to LSTMs but
with a simplified structure. GRUs combine the forget and
input gates into a single update gate and merge the cell state
and hidden state, resulting in a more streamlined model that
can be easier to train than LSTMs while achieving similar
performance on certain tasks. The main differences between
LSTMs and GRUs lie in their architecture and efficiency:
GRUs are generally faster to train due to their simpler
structure, but LSTMs may perform better on tasks that
require modelling more complex dependencies. Both LSTMs
and GRUs are preferred over simple RNNs because they
significantly reduce the vanishing gradient problem, allowing
for better learning of long-range dependencies within the
data.

2) BiLSTMs AND BiGRUs
BiLSTMs extend the concept of LSTMs by processing the
data in both forward and backward directions. This dual
processing enables the network to have both past and future
context at any point in the sequence, providing a richer
understanding of the sequence’s context. The architecture of
a BiLSTM consists of two LSTMs layers that are applied
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in parallel: one processes the sequence from start to end,
while the other processes it from end to start. The outputs of
both layers are then combined. This bidirectional approach is
particularly beneficial for tasks where the context from both
directions is crucial, such as in natural language processing
and speech recognition.

BiGRUs apply the same bidirectional concept to the GRU
architecture. Similar to BiLSTMs, BiGRUs process data both
forward and backward, combining the strengths of GRUs
with the ability to capture information from both past and
future contexts. The main difference between BiLSTMs and
BiGRUs, like with their unidirectional counterparts, lies
in their internal structure and efficiency. BiGRUs offer a
simpler, more efficient alternative to BiLSTMs, potentially
reducing training time without significantly sacrificing
performance. The choice between BiLSTM and BiGRU
typically depends on the specific requirements of the task,
such as the complexity of the temporal dependencies and the
computational resources available. Both bidirectional models
represent a significant advancement over their simple LSTM
and GRU counterparts by providing a more comprehensive
understanding of sequential data.

C. BAYESIAN HYPERPARAMETER OPTIMIZATION
One of the biggest challenges in data-driven methods is
the optimisation of the model’s hyperparameters. For the
identification of the optimal ones, exhaustive methods such
as the Grid Search (GS), the Manual Search (MS) and the
Random Search can be applied. The GS and the MS are
computationally expensive methods, especially when there is
a large number of hyperparameters and a wide range of values
to search through. Additionally, the RS method is a purely
stochastic procedure, which can lead to an inefficient search
for optimal values. On the other hand, probabilistic methods,
such as the Bayesian optimisation algorithm, combine the
advantages of the methods mentioned above while providing
near-optimal values with fewer trials as it considers the
previous evaluations [26].

The BHO is an iterative optimisation method designed
to find the global optimum of a complicated function
efficiently. It constructs a probabilistic surrogate model,
usually a Gaussian process, to approximate the function’s
behaviour and uncertainty. This surrogate model guides
the optimisation process by balancing exploration (seeking
unexplored regions of the parameter space) and exploitation
(focusing on areas likely to yield better results). At each
iteration, BHO selects the next set of parameters to evaluate
based on an acquisition function that quantifies this trade-off.
After evaluating the chosen parameters, the surrogate model
is updated, and the process continues until convergence to
the optimal solution or a predefined stopping criterion is
met [27]. In this paper, the authors will examine two hyper-
parameter spaces, one for the SOC model and one for the
SOH model, utilising identical parameters for optimisation
but with different ranges, as illustrated in Table 1.

D. METRICS
In this subsection, there will be an analytical presentation of
the results obtained by implementing the methods presented
above, utilising the battery dataset of section II. Initially, there
will be an analysis of the two different ‘Methods A’ and
‘B’ for the SOC prediction and a comparison between them.
Afterwards, the performance of ‘Method C’ for predicting the
SOH will be presented.

For evaluating the model’s performance, three metrics
were applied: The RMSE, theMAE, and the FLOPs. The first
two metrics are given by:

RMSE =

√√√√1
n

n∑
i=1

(y− ŷ)2 (1)

MAE =
1
n

n∑
j=1

|y− ŷ| (2)

where y is the real value of the SOC or SOH while the ŷ is the
predicted value generated by the model.

The last metric refers to the number of floating-point arith-
metic operations (additions and multiplications) performed
during a model’s forward and backward passes, and it is used
to measure the computational complexity of the model using
the Keras library [28].

E. SOC PREDICTION MODEL
For the SOC prediction, as mentioned before, two different
methods (A and B) were developed, as Figure 5 depicts.
As a training dataset, data from cell No. 1 have been used
encompassing both the ‘SOC Cycling’ and the ‘SOH Aging
Cycling’ up to a SOH value of 70%, were utilized. This was
chosen to compare across the entire first life of the battery.
‘Method A’ uses voltage, current and surface temperature
as input data, while ‘Method B’ employs one extra feature,
which is the SOH of the battery. For this analysis, the SOH
information that was used is the true value determined by
dividing the maximum capacity available in the current cycle
by the initial maximum capacity available.

To conduct a thorough comparison of the two meth-
ods, both layer and time window analyses were utilized
to determine the model configuration that produced the
minimum error. In both scenarios, the time series generated
was set to 40s for the layer analysis according to the finding
in [25] for similar datasets. Subsequently, time window
analyses for 20, 30, 40, and 80 seconds were implemented
for the layer that exhibited superior performance. For all
aforementioned analyses, the BHO was employed according
to the hyperspace in Table 1.

1) METHOD A
Starting with ‘Method A’, for the layer analysis setting a 40s
time window as previously stated, the LSTMmodel provides
the lowest error compared with the rest of the models, with an
MAE of 1.69% and an RMSE of 2.59%. The outcomes of this
first analysis are reported in Table 2. After the time window
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analysis, the 60s were shown the best predictive capability
compared to the other time window values with an MAE of
1.66% and an RMSE of 2.51%. The results of the second
analysis are presented in Table 3.

2) METHOD B
For the layer analysis, the same time window of the 40s
was used, revealing the predictive capability of the BiLSTM
model achieving the most accurate results, with an MAE of
1.32% and an RMSE of 2.51%. For the timewindow analysis,
the 80s yielded the best results, considering the RMSE value,
with an MAE of 1.42% and an RMSE of 2.31%. Table 2
and Table 3 present the overall results of the layer and time
window analysis for ‘Method B’.

TABLE 2. RMSE, MAE of the predicted SOC, and FLOPs for the four layers
performance for ‘Method A’ and ‘Method B’ with 40s time-window span.

TABLE 3. RMSE, MAE of the predicted SOC, and FLOPs for the time
window analysis using the best results of the layer analysis, for the
‘Method A’ the LSTM layer and for the ‘Method B’ the BiLSTM layer.

3) METHOD A AND B COMPARISON
It’s evident that for the case of ‘Method A’ the LSTM model
yields better results while for ‘Method B’ the BiLSTMmodel
achieves the smallest error margins across all scenarios.
While Method A performs best with a 60-second window and
Method B with an 80-second window, there’s an interesting
observation. A 40-second interval leads to lower MAE for
‘Method B’, suggesting higher overall accuracy in capturing
trends. However, for accurate SOC estimation, minimizing
large errors is critical, since RMSE penalizes larger errors
more heavily, and smaller RMSE values in ‘Method B’ at
the 80-second window indicate its superiority in this specific
task. Overall, ‘Method B’ demonstrates a 16% decrease in
MAE and an 11% reduction in RMSE when contrasted with
‘Method A’.

Considering the dynamic degradation of the battery
throughout the first life of the battery cell, the BiLSTM
models with an 80-second time window from both methods
were evaluated at every 40 to 50 cycles, and during each
cycle of the mixed 6 and 7 and LA92 cycles, until the SOH

reached 70%. The results of the average MAE of the methods
are presented in Figure 7. As was expected, the information
on SOH plays a vital role in accurately predicting SOC,
specifically when the battery degradation moves further with
a substantial reduction in the estimation error.

FIGURE 7. Average MAE of SOC estimation for the dynamic ageing phase
between the two methods.

F. SOH PREDICTION MODEL
After analyzing the SOC estimation, subsequently, the results
for ‘Method C’ in the SOH estimation are presented.
Data from the ‘SOH Ageing Cycling’ phase, based on
charging cycles, are utilised for the BHO procedure of
the models. Furthermore, various factors such as voltage
range, sampling time, and input features were meticulously
examined to identify the model yielding the most precise
results. Concerning the voltage range, partial charging data
were utilised to simulate a real-world scenario where an EV
is connected to the charger with more than 0% SOC level and
departs the station with less than a 100% SOC level. In terms
of sampling time, a comparative analysis was conducted
between 1 second and 10 seconds. Lastly, a combination of
the four parameters, the voltage, the capacity, the ICA and
the DVAwere selected as input features for exhaustive testing
and evaluation. In Table 4 and Table 5 is presented the ranges
of the parameters and the overall comparative analysis for all
the models of Method C, respectively, while in Table 6 the
top three models that yielded the best results are depicted.

TABLE 4. Parameters of method C.

Based on the findings presented in Table 6, the top three
models exhibited comparable predictive accuracy, each with
an MAE of approximately 0.3%. Model No. 3 was identified
as the most suitable choice, owing to its requirement for a
narrower voltage range for estimation, the minimal number
of input features needed (solely the ICA), and the reduced
computational demand in terms of FLOPs. This efficiency
makes it particularly well-suited for electronic applications,
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TABLE 5. Comparative analysis for all models of method C in estimating SOH.

TABLE 6. Top three performances of Method C in estimating SOH.

FIGURE 8. Real SOH vs Estimated SOH of the BiLSTM model with ICA as
input feature and partial charging from 3.6 to 3.9 V and 1s sampling time.

including the BMS of EVs. In Figure 8, a comparison is
illustrated between the actual SOHvalues and the SOHvalues
estimated using model No. 3.

IV. PROPOSED METHOD FOR THE JOINT SOC-SOH
FRAMEWORK
A. METHOD
Finally, the proposed method, as described in Figure 9
combines ‘Method B’ and ‘C’ for the joint estimation of
the SOC and SOH. In this solution, firstly, the ’Method C’-
based model, with the BiLSTM as RNN layer, is utilised to

FIGURE 9. Proposed method for the joint SOC-SOH estimation consisting
of ’Method B’-based BiLSTM model for the SOC estimation and an
’Method C’-based BiLSTM model for the SOH estimation.

estimate SOH values based on the partial charge cycles of
the cell, imitating the charging procedure in an EV charging
station, and then this information, along with terminal
voltage, current, and surface temperature data of the driving
cycle is fed into the ‘Method B’-based model, again with
BiLSTM as RNN layer, to estimate the SOC. In summary,
the model comprises two distinct methods (B and C), each
separately trained and tuned using BHO with a similar
hyperspace creating a BiLSTM SOC model and a BiLSTM
SOH model. This approach allows us to achieve satisfactory
results without imposing excessive computational demands
or memory requirements.

The model’s hyperparameters were optimised using the
BHO and the overall characteristics of the two models that
compose the proposed method are presented in Table 7.
To make the proposed method more relevant to industrial
applications, the training dataset was constructed using data
from cells No. 1, 2, 3, 5, and 6 for both models. Conversely,
data from cell No. 7 was designated as the testing dataset.
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FIGURE 10. Real SOC vs Estimated SOC of the proposed method.

TABLE 7. Selected parameters of proposed method.

By following this approach, the training phase involved data
from five cells, while the model evaluation utilized data from
an unseen cell. The dataset used encompassed both the ‘SOC
Cycling’ and the ‘SOH Aging Cycling’ up to an SOH value
of 70%. The specific training and testing cycles corresponded
to those outlined in subsection III-A.

After the initial model training and throughout the whole
first life of the battery, the ICA information of the partial
charging cycles is inserted into the BiLSTM model for the
SOH prediction, as demonstrated with Method C. After-
wards, the estimated SOH information is fedwith the terminal
voltage, current, and surface temperature measurements into
the next BiLSTM model for estimating the SOC, likewise
in Method B. According to the aforementioned analysis,
the BiLSTM models were selected due to the best accuracy
yielded for both methods. The general framework of this
method is presented in Figure 11.

B. RESULTS OF PROPOSED METHOD
For the proposed framework, the SOH data was estimated at
the start of each cycle before the driving cycle. This mirrors a

TABLE 8. SOC error compared to different SOH Data.

realistic situation where the EV is charged before embarking
on its journey. Here, the SOH model could be integrated into
either the EV’s BMS or within the charging station, where
it can send information to the EV’s BMS. The results of the
prediction of the SOC are presented in Figure 10, while the
errors, the proposed method achieves MAE and RMSE of
1.52% and 2.5%, respectively, presented in Table 8.

Additionally, in scenarios where the SOH model resides
in an EV charging station that is used only occasionally
for charging, two distinct cases were analyzed. In the first
case, the SOH data is updated during the use of this specific
charging station and will only be refreshed upon the next
usage of the same station, consequently called ‘Step Update’.
In the second case, following the update of the SOH data,
a linear extrapolation is employed on the data following a
switch to a different charging station, based on the variance
observed between the two successive SOH updates from the
EV charging station with the SOH model. The latter case is
called ‘Extrapolation Update’.

For the 1st case, the proposed model achieves MAE and
RMSE 1.71% and 3.07%, respectively. For the 2nd case,
the model achieves an MAE of 1.52% and an RMSE of
2.50%. Finally, for better comparison and evaluation of the
proposed method, the predictive capability of the ‘Method A’
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FIGURE 11. The total procedure for the joint SOC-SOH estimation model.

was tested. As was expected, the error, in this case,
is greater with an MAE and an RMSE of 1.98% and 3.21%,
respectively. In Table 8, there is a presentation of the above
errors.

V. CONCLUSION
The proposed framework introduces a new joint SOC-SOH
estimation model innovatively designed to account for the
ageing effects on lithium-ion batteries by integrating the SOH
into the model inputs, enhancing the SOC estimations. The
analysis demonstrated improved predictive accuracy when
the SOH value was incorporated.

This study also introduces near-optimal hyperparameters
for a more efficient streamlined network structure, expand-
ing the exploration of hyperparameter space, including:
optimizer rate, RNN layers, Fully Connected layers, and
activation functions. An evaluation of the model’s accuracy
and computational expenditure was undertaken, positioning
it against prevailing cutting-edge models. For the most
promising configurations, a detailed analysis was executed,
focusing on the time series’ window span. The aforemen-
tioned analysis revealed the BiLSTM as the most appropriate
predictive model for both SOC and SOH estimation. The
proposed framework achieved an average MAE of 0.3% and
an RMSE of 0.42% estimating the SOH and an average
MAE of 1.42% and an RMSE of 2.31% estimating the SOC
throughout the first life of the battery.

Future work should focus on integrating this framework
into a BMS microcontroller, examining neural network

compression for microcontroller suitability, and employing
transfer learning techniques to evaluate the model’s accuracy
in new datasets and battery types. Finally, upscaling the
model and testing it on battery modules/packs, rather than
single cells, is advised to further validate the method.
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