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ABSTRACT Wireless communications are increasingly used today. Despite such use, there is a significant
perception of risk which makes exposure monitoring a significant concern today. The work described in this
article was carried out within the framework of the European SEAWave project and the French Beyond5G
project. The exposure assessment was evaluated using a personal exposimeter (MVG EMF Spy) whose
compactness and ease of use make it more suitable and portable than a system combining measuring probes
and spectrum analyzers. Measurements were carried out on the cellular frequency bands used by 2G, 3G,
4G, and 5G, as well as that of Wi-Fi, in different modes of public transportation (RER, metro, tramway,
bus, and train) circulating in the Paris region. The measurements have been analyzed by frequency band,
type of public transportation, and type of environment encountered. For each set of measurements (e.g.,
metro lines, tramways), the mean, standard deviation, skewness, and kurtosis were evaluated and analyzed.
For all exposure measurements taken in the 700, 800, 900, 1800, 2100, 2600, and 3500MHz frequency
bands, the overall average values are 0.39, 0.43, 0.30, 0.21, 0.18, 0.24 and 0.18Vm−1, respectively. These
measurements have, in all cases, a significant dispersion as shown by the ratios of standard deviations tomean
values. The well-known K-means clustering technique was applied to these four parameters for different
subsets of data. The number of clusters k = 3 has been chosen based on the analysis of the optimal value
of k for the current dataset. Our analysis indicates that the first group’s members display the highest mean
values with moderate variance and the lowest values for the third and fourth moments. The second cluster
is distinguished by points with large mean and variance, accompanied by moderate skewness and kurtosis.
Conversely, the third group comprises points with the smallest mean and variance values, yet the largest
measurements for the third and fourth moments.

INDEX TERMS Electromagnetic fields (EMF) exposure assessment, K-means, personal exposimeter
(PEM), public transportation.
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I. INTRODUCTION
Today, wireless communication utilizing radiofrequency
electromagnetic fields (RF-EMF) has become increasingly
prevalent. According to [1], there were in 2023 over
11.856 billion mobile connections worldwide, which were
3.799 billion more mobile connections than people world-
wide. There is a widespread use of cellular wireless com-
munication. For instance, approximately 87% of the French
population owned smartphones in 2022, including over 95%
of individuals within the age group of 12 − 59 years [2]).
Protection guidelines exist, such as those by the International
Commission on Non-Ionizing Radiation Protection [3] and
standardized methods have been designed and adopted for
testing the compliance with these guidelines [4], [5], [6].
Despite this, there remains a significant perception of risk
associated with exposure to RF-EMF [7] and the recent
deployment of the 5G wireless communications network
has further increased this perception of risk [8] and is
causing wide debates. In response to growing concerns
about 5G deployment, recent research has intensified efforts
to analyze and understand the specific characteristics and
potential impacts of 5G networks. Studies such as those
documented in [9] and [10] have explored the propagation,
signal behavior, and frequency-specific attenuation of 5G
technologies, as well as the coverage and performance of 5G
deployments across various environments, further enriching
our understanding of how these new technologies perform in
diverse settings.

The last decades have seen large efforts dedicated to EMF
exposure assessment, standardization, and EMF monitoring
[11]. EMF probes have been installed in many countries [12],
[13], [14]. These devices provide the temporal variation
of electric field (E-field) strength [15]. However, their
measurements are constrained to the specific locations where
the sensors are positioned, limiting the comprehensiveness of
data collection to those fixed points. EMF spot measurements
have also been carried out in response to the demands of the
public and local authorities [13], [16], [17], [18]. While these
measurements offer valuable insights, the majority have been
conducted outdoors, despite the fact that people spend the vast
majority of their time (approximately 90%) indoors, as indi-
cated by [19]. This is particularly relevant in large urban areas
like the Paris region, where time spent in public transportation
is significant (e.g., over 100 minutes in 2022), according
to [20]. Additionally, much of the existing literature focuses
on 2G, 3G, or 4G technologies. Only a few of them address
5G, but in those cases, most focus on compliance, and few
address exposure during commuting [21], [22], [23], [24],
[25], [26], [27], [28]. This context emphasizes the importance
of RF-EMF exposure monitoring that has been assigned
to the objectives of the EU call ‘‘HORIZON-HLTH-2021-
ENVHLTH-02-01’’ [29]. Following this EU call, several
projects have been funded (SEAWave, GOLIAT, ETAIN, and
nextGEMS). The SEAWave project, as cited in [30] and under
which the research for this paper was conducted, has been

selected in response to this call and aims to address EMF
monitoring and related concerns. In this paper, we detail
measurements conducted to evaluate RF-EMF exposure
within Parisian public transportation systems, alongside an
analysis and discussion of the findings. In the first section,
we introduce the measurement equipment and protocol
employed. Following this, we apply unsupervised clustering
through the K-means method, as documented in [31] and
[32]. The conclusion section reflects on the results and offers
a comprehensive summary and conclusion of the study.

II. MEASUREMENT CAMPAIGN
A. MEASUREMENT EQUIPMENT: PERSONAL
EXPOSIMETER (PEM)
The objective is to evaluate exposure levels in public trans-
portation, especially during peak hours when the environment
tends to be crowded. Under such conditions, using a complex
system involving an isotropic probe, a tripod, and a spectrum
analyzer was deemed impractical. Therefore, for this study,
we opted for a much less bulky exposimeter, the EME Spy
Evolution [33]. This system is a frequency-selective portable
electromagnetic field meter equipped with dedicated hard
filters. Themeasurement campaign was carried out with three
EME Spy, each of them equipped with a tri-axial electric field
probe, allowing the measurement of the 3 spatial components
of the electromagnetic field. The device has the capability
to capture and analyze up to 20 user-defined frequency
bands (out of a total of over 70), covering a frequency
range from 80MHz to 6GHz. In our study, we specifically
chose 13 cellular frequency bands and 2 Wi-Fi bands utilized
in France. This allowed to create a measurement scenario
tailored to the French context. Considering the environment
of moving transportations, where access to public Wi-Fi
hotspots is typically unavailable, our analysis primarily
focuses on cellular frequency bands. For indoor public
transportation settings, such as train stations, we will also
provide a brief overview of the E-field levels observed in
the two Wi-Fi frequency bands. The exposimeter’s minimum
recording period (or maximum sampling rate) is contingent
on the number of selected frequency bands, varying from
2 seconds to 255 seconds. In our scenario, we chose a
minimum recording period of 4 seconds when considering
7 cellular bands. In locations where the two Wi-Fi bands are
present, the recording period is extended to 6 seconds.

Table 1 presents the list of the 7 frequency bands measured
using the PEM. Most of these frequency bands are allocated
for use in 4G or 5G networks. The 900MHz band is utilized
by 2G (GSM) and 3G (UMTS), the 1800MHz band is
employed by LTE and partially by 3G (UMTS), and the
2100MHz band is utilized by 5G and partially by 3G. Note
that the 5G data mentioned in this article is focused on the
Sub-6GHz spectrum and does not involve the millimeter
wave bands. The sensitivity, indicating the lower detection
limit of the PEM, varies across different frequency bands. The
upper detection limit is set at 6Vm−1. Consequently, if the
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TABLE 1. Frequency bands configuration for measurement campaigns.

E-field in one or more bands exceeds this upper limit, the
result will be truncated and a smaller E-field value will be
recorded.

Exposure assessment using PEM is straightforward, yet,
as highlighted in [34], several challenges arise, such as
the body of the person holding the PEM potentially
masking the incident field, and the coupling between the
dosimeter’s antenna and the experimenter’s body influencing
the assessment. These factors can affect the accuracy of the
measurements.

To tackle this issue, we carried out a comparative analysis
ofmeasurements takenwith a reference system equippedwith
an isotropic probe and a spectrum analyzer (e.g., Narda SRM
and Tektronix RSA306B [35]) versus those obtained with
the PEM close to the human body. This analysis aimed to
account for the interactions between the experimenter’s body
and the PEM, adjusting the measurements to more accurately
estimate the actual EMF exposure.

During the measurement process, the angles of arrival of
waves from base stations, as well as the experimenter’s rela-
tive positions to these antennas, remained unknown. Without
specific angular information, correcting the measurement
becomes a random variable, unsuitable for deterministic
correction approaches. Moreover, being in motion, the cor-
rection factor for measurements evolves as a random variable,
independent of the electromagnetic waves’ directions of
arrival. Therefore, along a given path, the actual exposure,
being the product of two independent variables, averages to
the product of their averages. This means that the average
real exposure equates to the product of the average of the
correction factor and the average of the E-field measured by
the PEM.

To determine the average correction factor, we start with
a reference measurement at a central location and compare
it to measurements taken with the PEM carried in one
position, as shown in Fig. 1. For each frequency band,
we recorded measurements using both the PEM and the
Tektronix system. Figure 2 depicts the Probability Density
Function (PDF) of the correction factor for eachmeasurement
point (i.e., the ratio of the value recorded by the Tektronix
system to that obtained from the PEM at the current point)
at 1800MHz, providing insight into the distribution of
coefficients throughout the measurement process.

The average correction factor was then determined by
calculating the ratio of the Root Mean Square (RMS)
values from the Tektronix measurements during the whole

FIGURE 1. Measurement set-up to assess the impact of the body on PEM
reading.

FIGURE 2. PDF of coefficients at each measurement point for 1800 MHz
band.

measurements to those obtained with the PEM. For
the frequencies 700MHz, 800MHz, 900MHz, 1800MHz,
2100MHz, 2600MHz, and 3500MHz, the correction factors,
are respectively 3.18, 3.71, 1.80, 1.17, 0.98, 1.32, and
3.54. It is important to note that while applying these
correction coefficients adjusts the average values of the PEM
measurements, individual values at specific local points may
be amplified with some level of uncertainty.

B. SELECTED AREA OF INVESTIGATION
The Paris region, known as Île-de-France, was selected for its
diverse landscape, ranging from semi-rural areas to densely
populated urban zones. Home to over 12 million people,
constituting around 18% of the French population, Île-de-
France residents often face the challenge of commuting
due to the spatial distribution of their residences and
workplaces. Commuting is a routine aspect of daily life
for many residents, and a significant portion relies heavily
on public transportation for their daily journeys to and
from work. While commuting, residents in Île-de-France
engage in various wireless communication activities such as
making calls, watching videos, and accessing social media.
Monitoring the EMF exposure during these commuting
periods is thus crucial.

To assess EMF exposure, we have selected various modes
of public transportation. The Regional Express Network
(a.k.a RER) and the Regional Express Train (a.k.a TER)
have been specifically chosen due to their widespread use
by citizens residing in both close and distant suburbs. The
RER network, serving as the primary suburban transportation
network, experiences substantial ridership. Comprising five
RER lines labeled from A to E, the network caters to
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FIGURE 3. (a) EME spy evolution. (b) How to wear the PEM.

TABLE 2. Description of public transportation assessed in paris area.

a combined daily ridership exceeding 3 million users,
as reported by [36].

As an illustration, the RER A, spanning 110 km (including
26 km underground), stands out as Europe’s most crucial
rail line, catering to over 1.2 million passengers daily. The
extensive reach and daily ridership highlight its significance
in the region’s transportation network. Additionally, other
widely used modes of transportation, including the metro,
bus, and tram, were subject to exposure assessments. The
interconnected metro lines alone witness the daily transit of
more than 4 million passengers, emphasizing the need to
comprehensively study and monitor RF-EMF exposure in
these densely utilized public transportation systems.

Table 2 summarizes the various modes of public trans-
portation, including RER, Metro, Bus, Train, Tram, etc., that
have been selected for the assessment of RF-EMF exposure
in the Paris region.

C. MEASUREMENT PROTOCOL
The experimenters, carrying a PEM (refer to Fig. 3) in a small
bag worn close to their bodies, alternated between walking,
sitting, or standing, depending on the circumstances, during
their journeys on designated public transportation routes.

In moving transportations, the PEM was configured to
conduct frequency-selective measurements every 4 sec-
onds across all relevant cellular frequency bands (refer to
Section II-B), spanning from 700MHz to 3.5GHz. For all
selected environments, the minimum duration of exposure
was set at 15 minutes, corresponding to 225 measurements
with the chosen sampling rate of 15 measurements per
minute. In indoor scenarios such as train stations and airports,
the measurement interval is set to 6 seconds as we include
both 2.4GHz and 5GHz Wi-Fi bands.

Using the measurement system and the protocol
described previously, we conducted measurements across
various modes of public transportation. In total, around

17000 frequency-selective measurements were carried out,
offering a comprehensive overview of exposure levels in these
environments.

III. RESULTS ANALYSIS
In this section, we will commence our analysis of the
measured data by examining key statistical metrics such
as mean value, standard deviation, and 95th percentile
across various scenarios and frequencies. Illustrative figures
will be given to depict the time-space variation and PDF
of the data. Following this, an in-depth analysis will be
conducted utilizing statistical parameters to characterize
the distribution patterns of different datasets. The K-means
technique will then be employed to cluster data exhibiting
similar distributions, facilitating a more refined exploration
based on categorization. It is important to highlight that
measurements falling below the sensitivity level for each
frequency band were assigned a value of zero.

A. TIME-SPACE VARIATIONS AND GLOBAL ANALYSIS
To access the total exposure level, we adopt the total E-field
Equivalent 900 band (ETotal Eq900) as the metric. It is given by

ETotal Eq900 =

√√√√ Nf∑
i

L2900
L2fi

E2
fi (1)

where Efi is the E-field strength at frequency fi, Nf is the
number of frequency bands, and Lfi is the reference level
linked to frequency fi [3]. Here, L900 is 41Vm−1.

Measurements have been conducted in various modes
of moving transportation, including underground locations
whereGPS does not work,making it challenging to determine
the exact measurement location. As depicted in Fig. 4,
the E-field strength exhibits variations along the journey
on the metro line 4. These fluctuations are caused by the
fast-changing tunnel environment and the distances to the
surrounding active base stations. Therefore, in such cases,
a statistical analysis, such as Cumulative Distribution Func-
tion (CDF), can be employed. As illustrated in Fig. 5a, on the
metro line 6, the frequency bands 700MHz, 800MHz have a
greater median than other bands. Additionally, exposure from
3500MHz band is observed throughout journeys on metro
line 6, which is uncommon for measurements taken in other
metro lines. This is attributed to portions of metro line 6 being
above ground, in contrast to the predominantly underground
routes of most other metro lines. Another example, illustrated
in Fig. 5b, demonstrates that a significant proportion of
measurements recorded on RER lines are close to 0. Notably,
the highest 99th percentile value is observed on RER D.

Here, the RMS of E-field strength is used as the primary
statistical characteristic. This choice is motivated by the
emphasis on exposure linked to the power density, which is
proportional to the square of the E-field strength. Similarly,
the standard deviation is derived from the square root of
the standard deviation of the squared E-field strength values.
In Table 4 and Table 5 presented in the appendix, we evaluate
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FIGURE 4. E-field variations along metro line 4 (Averaging for 1 minute).

FIGURE 5. CDF in terms of (a) different frequencies on metro line 6, and
(b) ETotal Eq900 in different RER lines. The x-axis is represented on a
logarithmic scale, and the CDF is plotted up to the 99th percentile, rather
than the maximum value.

FIGURE 6. Barplot of average E-field level in different scenarios.

the RMS value, standard deviation which measures the
dispersion or spread of data, and the 95th percentile, which
is more robust given the short sampling time and the fact
that the experimenter takes the measurements while moving
on the vehicle. It should be noted that the results displayed in
the tables are not raw data; the correction coefficients have
been applied. Fig. 6 shows the RMS value of the E-field in
different scenarios across frequencies.

The exposure measurements conducted over frequency
bands of 700, 800, 900, 1800, 2100, 2600, and 3500MHz
exhibit overall mean values of 0.39, 0.43, 0.30, 0.21, 0.18,
0.24, and 0.18Vm−1, respectively. A significant dispersion
is evident, as indicated by the coefficient of variation
(Std./Mean) for all frequency bands: 2.93, 3.38, 3.01, 2.19,
2.17, 2.50, and 3.46, respectively. This dispersion can be
attributed to the substantial heterogeneity of the coverage.
Tables 4 and 5 also demonstrate that exposure levels, even
for the rare event such as the 95th percentile, are relatively
low and well below the ICNIRP guidelines [3]. Additionally,

the tables reveal that the 95th percentile of E-field levels
is often less than 2 times the mean value, which implies
that the measurements do not contain many extreme outliers,
and outliers are not large enough to significantly impact
the average value. The maximum mean exposure values
are observed in train stations and airports, and regardless
of the frequency, they remain below 1Vm−1. Specifically,
the maximum mean exposure values for the investigated
frequency bands are as follows: 0.92, 0.97, 0.98, 0.42, 0.35,
0.60, and 0.42Vm−1.

Dealing with 5G, Table 5 indicates that 3500MHz is
not deployed or has just begun in the metro, where most
measurements are equal to 0. Meanwhile, the underground
setting of the metro effectively shields against the influence
of nearby base stations, resulting in comparatively low values
at this band. In most public transportation settings, the overall
mean value is small at 3500MHz because 5G NR is not
widely accessible, leading to a standard deviation-to-mean
ratio close to 3.5. Measurements conducted mainly outside
(bus, tram, train, RER) show higher exposure than those
performed mainly underground, such as in the metro.

Regarding theWi-Fi 2.4 and 5GHz bands, the overall mean
values are 0.05 and 0.02Vm−1. As illustrated in Fig. 6,
these bands consistently show the lowest E-field levels across
various scenarios. Therefore, our subsequent analyses will
predominantly concentrate on the cellular frequency bands.

B. ADVANCED CHARACTERIZATION OF DISTRIBUTION
USING FOUR MOMENTS IN STATISTICS
As mentioned in the previous section, the mean values of
data are relatively small, accompanied by large coefficients
of variation, and the median is usually close to zero.
Therefore, a majority of measurements exhibit low values.
Given the challenges of accurately determining the location
of each measurement and establishing connections to nearby
base stations, we focus on describing the overall statistical
distribution of each dataset. In this section, the data will be
analyzed based on four statistical moments: Mean, Variance,
Skewness, and Kurtosis. The K-means clustering technique
will be applied to these four parameters for different subsets
of the data.

It is important to note that in this section, the statistical
parameters are computed from data that has been processed
with a 1-minute moving average. Additionally, the analysis
utilizes power density as the random variable, rather than
the E-field strength, to better capture the variability and
characteristics of the exposure.

1) SKEWNESS AND KURTOSIS PARAMETERS
In statistical analysis, the primary objective is usually to
characterize the mean and variance of a dataset, representing
the first and second moments. A further characterization of
the dataset involves Skewness and Kurtosis, which are based
on the third and fourth moments, respectively.

Skewness which defines the normalized central moment
of third-order data (2), characterizes the shape of a data
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FIGURE 7. PDF of power density in (a) RER A and (b) Massy train station.

distribution. It quantifies [37] the degree of symmetry within
a given distribution of global values.

S =

∑N
i=1(Xi − X )3/N

σ 3 (2)

where the standard deviation, σ , is the square root of the
variance. This quantity can take on negative, zero, or positive
values. It is unitless and often compared to the normal
distribution to analyse symmetry.

The kurtosis [38] quantifies the degree of steepness or
flatness in the distribution of all values within the population.
Intuitively, the kurtosis provides insight into the sharpness of
peaks within the distribution. It is defined in Eq. (3) as the
standard fourth-order central moment of the sample.

K =

∑N
i=1(Xi − X )4/N

σ 4 − 3 (3)

2) SKEWNESS AND KURTOSIS OF MEASUREMENTS IN
PUBLIC TRANSPORTATION FACILITIES
As depicted in Table 6, all measurements across different
frequency bands exhibit positive skewness. The majority of
the datasets demonstrate positive kurtosis, with only a few
showing negative kurtosis. It is important to note that certain
scenarios lack valid measurements across some frequency
bands. For instance, measurements in most metro lines at the
3500MHz band register as 0, implying that their associated
variance, skewness, and kurtosis would also default to 0.
However, these zero values should not be misconstrued as
indicative of a distribution approximating normality. They
are, instead, indicative of invalid or absent data. To address
this, a preliminary filtering step will be incorporated to
ascertain the validity of the dataset prior to computing
skewness and kurtosis. Specifically, a dataset will only be
considered valid for further statistical analysis if its 95th
percentile value is non-zero. If this criterion is not met,
the resulting zero values for skewness and kurtosis will be
deemed invalid and disregarded.

A positive skewness indicates that the tail of the distribu-
tion of the data extends towards higher values, suggesting
an excess of low values. For example, in the aforementioned
table, we can find that data measured in RER A gives the
almost highest skewness value for all frequencies. Fig. 7a
illustrates that the shape of data distributions in RER A is
extremely asymmetric with themajority of values concentrate

FIGURE 8. PDF of power density in (a) metro line 9 and (b) Austerlitz
train station.

around zero. In contrast, as shown in Fig. 7b, relatively
smaller skewness values of data distributions in Massy train
station lead to more symmetric distribution shape, indicating
a relatively symmetric distribution with minor differences in
the shapes of the left and right tails. This suggests a small
disparity between the mean and median values, resulting in
an overall flatter, smoother shape of the distribution.

Fig. 8 provides two examples with relatively higher
(Fig. 8a) and lower (Fig. 8b) kurtosis values. What we can
observe is that the distribution of data in line 9 possesses
a sharper distribution with more extreme values, especially
in 3500MHz band. Conversely, the data in Austerlitz train
station has a flatter distribution with a relative lack of extreme
values, which also reflects a more dispersed nature of the data
relative to the mean.

From the aforementioned figures, it is observed that
distributions exhibiting relatively higher skewness values,
as depicted in Figures 7a and 8a, also tend to possess
relatively higher kurtosis values.While skewness and kurtosis
may exhibit correlation in certain instances, their association
is not consistently strong. Specifically, high skewness can
be correlated with kurtosis, particularly in positively skewed
distributions. For instance, when a distribution displays a
prolonged right tail, the skewness value may rise, accompa-
nied by an increase in kurtosis. In contrast, for a symmetric
normal distribution, both skewness and kurtosis values are
typically zero, indicating a lack of significant correlation.
In summary, the relationship between skewness and kurtosis
is not universally applicable and is influenced by the specific
characteristics of the data distribution. When interpreting
data distributions, skewness and kurtosis should usually
be considered at the same time to fully understand the
characteristics of the distribution.

By combining the four statistical moments for each
dataset at specific frequencies, we can construct a Mean-
Variance-Skewness-Kurtosis (MVSK) model to characterize
the distribution.

C. ANALYSIS OF CLUSTERING RESULTS BASED ON MVSK
MODEL AND K-MEANS METHODS
1) K-MEANS METHOD
The K-means clustering method [39] is an unsupervised
algorithm specifically formulated to identify optimal cluster
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FIGURE 9. Results of the CH Index, DBV Index, silhouette score, and
elbow method over 20 repetitions.

assignments by minimizing the sum of squared distances
between data points and their respective cluster centroids.

Our objective is to categorize datasets with similar data
distributions into the same group. To achieve this, we utilize
the four moments mentioned earlier to characterize the
distribution of a given dataset at specific frequencies, serving
as input for the K-means method. The input comprises M
vectors of statistical parameters, each vector of size 4 ∗ N
expressed as:

{µf1 , σ
2
f1 , Sf1 ,Kf1 , . . . ,

µfi , σ
2
fi , Sfi ,Kfi , . . . ,

µfNf
, σ 2

fNf
, SfNf ,KfNf } for i = 1 . . .Nf (4)

whereM is the number of selected scenarios. Therefore, each
dataset has 28 parameters to characterize its distribution.

To determine the optimal number of clusters k , we employ
four criteria: the Calinski-Harabasz Index (CH Index),
Davies-Bouldin Variation Index (DBV Index), Silhouette
Score, and the Elbow Method [40], [41], [42]. The following
briefly outlines what each of these criteria measures:

1) The CH Index quantifies the ratio of between-cluster
variance to within-cluster variance. Therefore, higher
values indicate better-defined and more separated
clusters.

2) The DBV Index assesses the compactness and separa-
tion of clusters based on the average similarity between
each cluster and its most similar cluster. Lower values
indicate better-defined clusters with greater separation.

3) The Silhouette Score measures how well-defined a
cluster is, considering both the average distance within
a cluster and the average distance between clusters.
It ranges from −1 to 1, with higher values indicating
better cluster definition.

4) The Elbow Method aids in determining the optimal
K by identifying the ‘‘elbow’’ point in a plot of
within-cluster sums of squares versus the number of
clusters.

TABLE 3. Clustering results (MVSK values) for k = 3 over all frequency
bands.

FIGURE 10. Radar charts of clustering results, for 4 moments: MVSK
across all frequencies.

Figure 9 depicts the outcomes derived from applying
the four specified criteria to the input dataset using the
K-means approach. We conduct a comprehensive analysis
of the results for each criterion, aiming to determine the
optimal value of k for the current dataset. To enhance
result robustness, we perform the clustering for each k for
20 times, with the outcomes of each repetition represented in
different colors. After analyzing all repetitions, the optimal
k values derived from these four methods are 3, 2, 2, and
3, respectively. Hereafter, we adopt k = 3 for further
analysis.

2) CLUSTERING RESULTS
Table 3 displays the clustering results obtained using the
K-means method. The table displays an overview of the
assignment of each type of transportation to its respective
cluster.

To better show the distinguishing characteristics of the
three clusters, radar charts depicting different frequency
bands and moments for members in the three clusters are
provided in Fig. 10. From the figure, one can clearly
observe that members in cluster 1 have the highest RMS
values in most of the bands, moderate variance, lowest
skewness and kurtosis values. Members in cluster 2 have
high RMS and variance values, moderate skewness, and
kurtosis values. Members in cluster 3 have the lowest
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TABLE 4. RMS, variance, and 95th percentile.

RMS and variance values, but the highest skewness, and
kurtosis.

In conclusion, the members in cluster 1 (e.g., Fig. 7b)
exhibit a distribution that is relatively more flat and
symmetric. Conversely, the distribution of members in

cluster 3 (e.g., Fig. 7a) is asymmetric and not flat, indicating
that a majority of the measurement points concentrate
around 0. Notably, the distribution of members in cluster 2
(e.g., Fig. 8a) falls between the two other clusters, except the
3500 band.
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TABLE 5. RMS, variance, and percentile 95.

IV. CONCLUSION
Despite the increasing use of wireless communication, there
remains a significant perception of risk that requires exposure

monitoring. In this article, the exposure assessment has
been carried out using a personal exposimeter in different
forms of public transportation serving in the Paris area.
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TABLE 6. Skewness and kurtosis values.

The cellular frequency bands of interest were those used
by 2G, 3G, 4G, and 5G networks, as well as that of Wi-
Fi. In public transportation, which is often heavily used,
the means and measurement protocols recommended by
the [6] and [4] are not always suitable. They allow relatively
precise measurements to be made but in fact, are rarely

used in places where there are a lot of people such as
in public transportation or commercial areas. In this case,
personal exposimeters are well-suitable but have the main
disadvantage of having the measurement influenced by the
body of the person wearing this equipment. To evaluate
human exposure along a route we used the property of
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independence of incident exposures (i.e., induced by base
stations) and those of the correction coefficients of the values
estimated by the exposimeter. In this case, the actual exposure
(the average over the route of the power density) is given
by the product of the average (i.e., RMS) of the correction
coefficients by the average of exposures measured by the
PEM. Thousands of measurements have been carried out in
RER, Metro, Bus, Train, Tram, Train Stations as well as
Airports. The medians of measurement distributions show
that a large part of the exposures are below or close to
the detection limit of the dosimeters. All measurements,
across different frequency bands, exhibit positive skewness.
This indicates that the tail of the distribution of the data
extends towards higher values, suggesting an excess of low
values. While in certain instances, skewness and kurtosis
exhibit correlation their association is not consistently
strong.

AMean-Variance-Skewness-Kurtosis model has been built
to characterize the distribution and perform a cluster analysis
using the K-means clustering method. To enhance result
robustness, the optimal k values have been studied and k =

3 has been used. Members of Cluster 1 exhibit the highest
RMS values, moderate variance, and the lowest skewness and
kurtosis, indicative of distributions that are relatively flatter
and more symmetric. In contrast, Cluster 2 members have
high RMS values and variance, alongside moderate skewness
and kurtosis. Their distributions, unlike those in Cluster 1,
are asymmetric and not flat, suggesting that a majority of the
measurement points are near 0. Cluster 3 members display,
across most frequency bands, the highest levels of skewness
and kurtosis, pointing to a significant deviation from the
normal distribution.

Overall, the RF-EMF exposures measured in this study
indicate that across the 700, 800, 900, 1800, 2100, 2600,
and 3500 MHz frequency bands, the average exposure values
are 0.39, 0.43, 0.30, 0.21, 0.18 0.24, and 0.18Vm−1,
respectively. For these frequency bands, the 95th percentile
values are 0.64, 0.78, 0.52, 0.43, 0.38, 0.47 and 0.31Vm−1,
respectively. Thus, both the mean and 95th percentile
exposure levels are significantly below the limits set by the
ICNIRP guidelines.

APPENDIX
DATA TABLES
See Tables 4–6.
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