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ABSTRACT In scenes characterized by weak textures and high motion speeds, traditional visual inertial
odometer (VIO) systems face challenges, including reduced accuracy and inadequate real-time performance.
These deficiencies may cause the robot to lose some frames in actual operation and the actual error
is too large. To address these degradation issues, we propose a VIO system based on point and line
fusion features. The system incorporates novel methods for extracting both point and line features. Firstly,
subpixel corner extraction is employed to enhance the accuracy of the point feature extraction algorithm.
Secondly, for the line feature extraction algorithm, we utilize the FLD line feature extraction method which
significantly improves its speed in most environments and enhances its real-time performance. Additionally,
to ensure accurate and stable tracking of line features, we introduce a novel idea-combining approach after
optimizing these features that reduces pose estimation errors and enhances overall algorithm precision. In the
experiment, we found that in the process of online feature extraction, the same line was repeatedly detected
in the previous frame and the next frame, and the detected line would become a new line, which would
increase the pose estimation error. Therefore, we proposed an optimization method to delete redundant lines
for the triangulated line features. Experimental results demonstrate that our proposed method outperforms
PL-VINS in terms of both accuracy and speed of line feature extraction on commonly used EuRoC datasets.

INDEX TERMS PL-VINS, subpixel corner points, line feature extraction, redundant line removal.

I. INTRODUCTION with point features, line features contain more information
With the rapid development of unmanned vehicles and aerial and provide additional constraints. Recently, the use of line
vehicles, mobile robot technology continues to advance, and features for the fusion of point-based VIO algorithms has
localization and mapping (SLAM) algorithm is also con- received increasing attention, such as [9], [10], [11], and
stantly studied. In the past few years, many monocular VIO [12]. Pumarola et al. [13] proposed point-and-line real-time
algorithms for positioning and mapping through feature point monocular visual SLAM(PL-SLAM) in order to solve the
extraction have been proposed, such as [1], [2], [3], [4], [5], problem of precision degradation. The combination of cam-
[6], [7], and [8]. The SLAM algorithm that uses the point era sensor and PL-SLAM algorithm has some limitations

feature extraction algorithm alone for feature extraction has In practical application. The addition of inertial measure-
a good effect in common scenes, but in the environment ment unit (IMU) can solve the pose estimation problem well,
with weak texture, fast motion speed and not obvious feature overcome the shortcomings of pure visual SLAM and have
information, the VIO algorithm based on point feature extrac- great advantages in weight and composition. In the visual

tion has some problems such as accuracy decline. Compared inertia odometer (VIO), the VINS-Mono algorithm performs
better in real scenes [1], [14], [15], [16]. Although VIO

The associate editor coordinating the review of this manuscript and algorithm based on point and line feature fusion is better
approving it for publication was Li He . than VIO algorithm based on point feature in challenging
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environment, it still has some problems such as insufficient
accuracy and real-time performance.

For PL-VIO algorithm, the accuracy and real-time per-
formance of feature extraction and tracking algorithm is
very important. Fu et al. [17] proposed real-time monocular
Visual Inertial SLAM (PL-VINS) with point and line fea-
tures. Although PL-VINS is one of the best performing visual
inertial SLAM algorithms for point and line features, it still
has some shortcomings in the environment of weak texture or
fast motion speed.

For PL-VINS algorithm, the accuracy of point feature
extraction algorithm and the speed of line feature extrac-
tion algorithm are not stable, especially in the scene with
weak texture and fast motion speed. First of all, the point
feature extraction algorithm has a large feature extraction
error, resulting in the accuracy of PL-VINS algorithm is
greatly reduced. To solve this problem, we propose to use
subpixel corner extraction algorithm to replace the Harris
and Stephens corner extraction algorithm in the original
algorithm [18]. Using subpixel corner extraction algorithm
to optimize point feature extraction can improve the accuracy
of PL-VINS. Secondly, to improve the speed of line feature
extraction, we propose to use the FLD line feature extraction
algorithm [19] to replace the LSD line feature extraction
algorithm [20] in the original algorithm. Using FLD line fea-
ture extraction algorithm to optimize the original algorithm,
speeding up line feature extraction speed can improve the
real-time performance of PL-VINS algorithm.

On the other hand, experiments show that in the process of
line feature extraction by PL-VINS, the same line is repeat-
edly detected in the previous frame and the next frame, and
the line repeatedly detected will become a new line, which
will increase the pose estimation error when the algorithm
performs line feature matching. The accuracy of PL-VINS
algorithm is greatly reduced. To solve this problem, we pro-
pose a new matching method for line feature tracking. For
the repeated lines in extraction, we will adopt the method of
optimizing the line features first and merging the repeated
lines to reduce the pose estimation error and improve the
accuracy of PL-VINS algorithm.

Finally, by summarizing the above problems and solutions,
the optimization strategy of PL-VINS algorithm is proposed.
Its characteristics include:

1. Subpixel corner extraction algorithm is used to replace
the corner extraction algorithm to iterate and improve the
accuracy of the initial value, and subpixel image marginal-
ization constraints are applied to the detection results. Firstly,
a function is used to obtain the number of corner points that
need to be optimized and the initialization result. Then, the
algorithm of detecting subpixel corner points is used to iterate
and improve the accuracy of the initial value, and image
marginalization is constrained according to the detection
result.

2. The LSD line feature extraction used in the original
algorithm is replaced by FLD line feature extraction, which
improves the speed of line feature extraction.
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3. Delete redundant lines that appear in the process of
line feature extraction to reduce the pose estimation error.
In the process of online feature extraction, the same line is
repeatedly detected in the previous frame and the next frame,
and the detected line will become a new line, which will
increase the pose estimation error. Our optimization method
is to delete redundant lines for the triangulated line features.
At the beginning, we considered two schemes to delete the
redundant lines. The first one was to merge the redundant
lines when the FLD line feature algorithm extracted the line
features. This scheme would terminate the program directly,
and it was inferred that the tracking was not satisfied due
to insufficient line features at the beginning of the program.
Therefore, we adopt the second scheme to triangulate the line
features and then merge them, which can effectively reduce
the pose estimation error. For some data sets, there are fewer
initial line features, so parameter adjustment is carried out,
and the adjusted parameter is the elimination of points outside
the line. The elimination distance of points outside the line in
the original method is 10, but it is modified to 20, considering
that more line features are needed for merging. The main
solution is that for data sets with fewer line features, such
as easy class, the effect may be poor due to the small number
of line features extracted. In the experiment, it is found that
for different data sets, the corresponding parameters have
different effects, and more lines should be used to merge data
sets with fewer line features.

In the line feature merging idea, the line feature is first
structured, that is, transferred to the Manhattan coordinate
system, the three-dimensional position of the line feature
is judged, and then the line feature is traversed. There are
three conditions for the merging: 2d plane, three-dimensional
distance judgment and the id of the line feature. First of
all, the distance between two lines in the three-dimensional
Manhattan coordinate system can be parameterized, which
is set as 0.1 in this paper. Then the observation line id is
detected, only the original id may be a duplicate line of the
new id; finally, the distance of 2d plane lines is judged. After
the detection is complete, the merged features are deleted to
complete the deletion of redundant lines.

To sum up, for the first point, Harris corner extraction
algorithm extracts corner points at the pixel level. Subpixel
corner extraction is adopted to improve the accuracy of corner
extraction and achieve better performance in the algorithm.
For the second point, the FLD algorithm is mainly based
on the gradient information of the image to quickly detect
the line. It uses the edge information in the image to iden-
tify possible lines by calculating the gradient amplitude and
direction. In contrast, the LSD algorithm requires a more
complex computation process. It not only performs gradient
calculations on images, but also performs operations such
as segmented search and parameter space clustering, which
are relatively more time-consuming processes. In the process
of the third point line feature extraction, the same line is
repeatedly detected in the previous frame and the next frame,
and the detected line will become a new line, which will
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FIGURE 1. A block diagram illustrates the pipeline of the proposed VIO system. The blue dotted box and blue font are the improvements

of PL-VINS algorithm.

increase the pose estimation error. Our optimization method
is to delete redundant lines for the triangulated line features,
so as to improve the accuracy. In addition, parameters need
to be adjusted for some data sets to meet the number of line
merges. For data sets with fewer line features, such as the easy
class, the effect may be poor due to the small number of lines.
Adjust parameters as needed.

The second part of this paper introduces the related work,
and proposes the algorithm optimization for PL-VINS and
the framework structure will be described in the third section.
The fourth part is the comparison test and results between the
original algorithm and the optimized algorithm. The fifth part
is discussion and analysis. The sixth part is the conclusion.

Il. RELATED WORK

Qin et al. [1] proposed to use a tightly-coupled, nonlinear
optimization based method to obtain high precision visual
inertia odometer called VINS-Mono, which is a robust and
universal monocular visual inertia state estimator. In 2015,
Mur-Artal et al. [21] proposed a system that is robust to severe
motion clutter and includes fully automatic initialization,
which is called ORB-SLAM. In 2017, Albert Pumarola et al.
pointed out that only relying on point features in weak texture
scenes is very deadly and proposed a visual SLAM with point
and line features (PL-SLAM) based on ORB-SLAM, which
has greatly improved accuracy and efficiency compared with
ORB-SLAM. Later, Fu et al. [17] proposed a visual inertial
SLAM based on the VINS-Mono algorithm using point and
line features, it is proposed that LSD algorithm is designed
for scene shape representation rather than attitude estimation,
which is the bottleneck of real-time performance due to its
high computational cost and proposed a length suppression
strategy to improve the LSD algorithm to solve the prob-
lem of large computation. Gomez-Ojeda et al. [22] proposed
PL-SLAM, a stereo vision SLAM system that combines dots
and line segments to work robustly in a wider range of scenes,
especially in scenes where mid-point features in images are
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scarce or unevenly distributed. Zheng et al. [9] pointed out
that line features help improve the robustness of the system in
challenging scenarios when point features cannot be reliably
detected or tracked, such as low-texture environments or
lighting changes. Therefore, a three-dimensional VIO system
based on tightly coupled filtration using points and lines
(Trifo-VIO) is proposed. Zou et al. [23] proposed a method
(StructVIO) for applying structural regularities in artificial
environments, d and described the regularities by using the
Atlanta world model instead of the Manhattan world hypoth-
esis. In 2018, He et al. [10] in order to solve the problem
of estimating camera trajectories and constructing structural
three-dimensional (3D) maps based on inertial measurement
and visual observation, proposed a monocular visual iner-
tial odometer (PL-VIO) with tightly coupled point and line
features. Line features provide more structural information,
making the PL-VIO method superior to the VIO algorithm
with only a few features. In 2020, Wen et al. [12] in order
to solve the problem of traditional point feature-based visual
SLAM, it is difficult to find reliable point features to esti-
mate the camera attitude in a weak texture long corridor
environment. Visual SLAM alone can easily lose point fea-
tures in the case of weak textures or fast motion, causing
the system to crash. Monocular VIO has unobservable IMU
scales at uniform motion, proposed an optimized point and
line feature fusion stereo vision inertial odometer (PLS-VIO),
which significantly improved its accuracy in environments
such as weak textures. Lee and Park et al. [24] proposed a
real-time monomial vision inertial synchronous positioning
and mapping (PLF-VINS) with point-line fusion and parallel
line fusion. The real-time positioning accuracy was improved
when the two proposed residual errors were combined with
sliding window optimization. Zhu et al. [25] pointed out
that it is a great challenge for autonomous robots to effi-
ciently estimate states and generate high-precision 3D maps
in low-texture indoor scenes and proposed a visual iner-
tial synchronous localization and mapping (SLAM) system
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using point features, line features and depth information pro-
vided by RGBD cameras. The main advantage is that it can
improve the accuracy of RGBD camera state estimation and
intensive 3D mapping. Kuang et al. [26] in order to solve
the problem of inaccurate positioning and frequent tracking
loss of mobile robots in challenging scenes, the capability
of point-based visual synchronous positioning and mapping
(vSLAM) is beyond, proposed a real-time and robust point-
line based monocular visual-inertial SLAM (VINS) system
for smart city mobile robots oriented to 6G. The method
could enable mobile robots to accurately position themselves
in smart cities with complex environments. Luo et al. [27]
pointed out the problems of image enhancement oversatura-
tion and unreasonable weights in back-end optimization in
VIO methods, and proposed that monocular VIO can improve
the positioning accuracy and robustness of UAV navigation
system through point and line fusion and back-end adap-
tive optimization. And compared with the pl-vins algorithm,
the accuracy of the proposed method on the public EuRoc
dataset is improved by 32.3% on average. This method is
applied to UAV navigation in GNSS interference environ-
ment. Yang et al. [28] pointed out that when the texture
information in the scene is missing or the image is blurred
due to the fast movement of the camera, the number of
point features is often small, thus affecting the accuracy
of pose estimation. A visual inertial state estimator system
(PLS-VINS) based on point-line features and structural con-
straints is proposed, which combines points and line segments
to enhance the performance of feature extraction in a wider
range of scenes and optimize the system state by jointly
minimizing the pre-integral constraints of the inertial mea-
surement unit (IMU). Zhao et al. [29] pointed out that in an
indoor environment with low texture, the point feature-based
visual SLAM system has poor robustness and low trajectory
accuracy. Therefore, a visual inertial SLAM algorithm based
on point-and-line feature fusion is proposed. This method can
be used to improve the accuracy of indoor scenes.

lll. METHOD

In this paper, a real-time optimized monocular visual Iner-
tial SLAM method (PL-VINS) for optimizing point and
line features is proposed, which improves the point fea-
tures, line features and pose estimation errors respectively.
The algorithms based on point feature include Harris corner
extraction algorithm, Shi-Tomasi corner extraction algorithm
and subpixel corner extraction algorithm. The algorithms
based on line features introduced include FLD line fea-
ture extraction algorithm and LSD line feature extraction
algorithm, as shown in Figure 1. Specifically, we first use
subpixel corner extraction algorithm instead of corner extrac-
tion algorithm, then use FLD line feature extraction algorithm
instead of LSD line feature extraction algorithm, and finally
delete the repeated detection lines in the process of online
feature extraction. From these three aspects to improve.
As shown in Figl.
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(b)

FIGURE 2. Harris corner point sliding window.

A. SUBPIXEL CORNER AND HARRIS CORNER

The image of the feature point detection is an important
step, where the corner is the most common type of point
features, Harris corner detection, extraction is pixel level.
In the actual scene of the corner position is continuous, and
the camera pixel is discrete, the two will have deviation,
and compared with the conventional corner detection, sub-
pixel corner detection with real numbers instead of integers
to represent the corner coordinates, so the use of sub-pixel
corner extraction will be more accurate, the matching results
are also significant. Harris corner is a point feature extraction
algorithm based on gray image; algorithm principle for the
image of the corner point near the pixel points in the gradient
direction or gradient amplitude are greater changes, edge
points have a large horizontal or vertical gradient, while
other points have smaller horizontal and vertical gradient.
Therefore, only need to calculate the pixel gradient, can be
determined according to the constraints of the corner. The
basic idea of corner detection is to use a fixed window on
the image along all directions of sliding, compare the sliding
window before and after the gray point of the changes, if there
is a large gray change in any direction of the sliding window,
itis believed that there is a corner in the window; if no change
in any direction, it is a uniform area; if the gray only changes
in one direction, it may be the edge of the image. As shown in
Fig 2.

Harris corner detection method is to set a window near the
corner and observe the change of gray value in a certain direc-
tion by slowly moving the window. Assuming the window
displacement (u, v), the covariance is used to represent the
change in intensity of the gray value:

R:Z(I(x+u,y+V)—I(X, y)? (1)

The steps of Harris corner detection principle are as
follows: First measure the horizontal direction gray value
change in the window, and then measure the vertical direction
gray value change. If the gray value of the horizontal and
vertical directions changes greatly, it is a corner point.

The above process can be verified by expanding Taylor’s
formula:

F) S 2
R~ D ((x y)+—ut—v—Ixy)
’ ax  dy ’

ol \* a1l 2 914l
= Z —u) +—v +2——uv 2)
X ay ax dy
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The matrix form is:

R =~ [u, v]

2
81 181
2 (R) 2 (5 _y) u
| s1 3)
(%) (%)
By calculating the eigenvalues of the verifiable matrix:
2
Dst (x, y) = Det (C(X’Y)) k- (trc(x,y)) )

where Det (C*Y)) is the determinant of the matrix,

k- (trC("'Y))2 is the direct trace of the matrix, and k is an
empirical coefficient, usually in the range of 0.04-0.06, that
exists to regulate the shape of the function.

In summary, Harris corner extraction algorithm extracts
corner points at the pixel level. Subpixel corner extraction
is adopted to improve the accuracy of corner extraction and
achieve better performance in the algorithm. The main imple-
mentation methods are as follows: Firstly, the function is
used to obtain the number of corners to be optimized and
the initialization result; then, the subpixel corner algorithm is
used to iterate and improve the accuracy of the initial value,
and the boundary detection problem of the subpixel corner
edge of the image is carried out according to the detection
result.

B. LSD LINE DETECTION ALGORITHM AND FLD LINE
DETECTION ALGORITHM

In this paper [20], in order to solve the problem that the
LSD straight-line detection algorithm has a large amount
of computation and is not real-time, a length suppression
strategy is proposed to improve the LSD algorithm. LSD
algorithm obtains the pixel set of the line through the local
analysis of the image, and then verifies the solution through
the hypothesis parameters, combines the pixel set and the
error control set, and then adaptively controls the number of
false detections. Under normal circumstances, the most basic
idea of detecting the straight line in the image is to detect the
pixel set with large gradient changes in the image, and LSD
algorithm is to use the gradient information and the row line
to detect the straight line. Gaussian blur is used first and then
downsampling, in order to reduce the sawtooth effect. The
gradient is calculated and the gradient size is defined as:

G (x.y) = /g (x.y) +&x.y) 5)
The horizontal Angle is calculated as:
ang (x,y) = tan~! (M) 6)
_gy ()C s )’)

Construct the rectangle and determine the center point of
the rectangle:

ZjERegion G() - x())
2 jcRegion OU)

oy = ZjeRegion G() - y()
2 jeRegion GU)

Cy =

(N
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where G(j) is the gradient value of pixel j, and j is every pixel

in the region.
m* m*
M = (mJCy myy) (8)

The Angle of the rectangle is set to be the Angle of the
eigenvector, which is related to the minimum eigenvalue of
the M matrix.

ZjeRegion G() - (x () — Cx)z

" ZJERegion G())
m = szRegion G(]) : (y (]) - Cy)2
ZjERegian G())
o _ Zieregon GO 6 G = 0D —e)
- Z:J'ERegian G(j)

FLD line detection algorithm is cited in this paper [19], and
attempts to use straight line features to replace the original
SUREF point features for building identification. It is con-
cluded that compared with point features, line features are
easier to find and more robust, and line features are basically
not affected by illumination, occlusion and Angle change.

The performance of the FLD line detection algorithm is
similar to that of LSD, and the experimental results show that
the speed of FLD line feature extraction can be significantly
improved in most environments. Therefore, the FLD line
detection algorithm is adopted to replace the original LSD
line detection algorithm in PL-VINS to improve the real-time
performance of the PL-VINS algorithm.

C. REDUNDANT LINES ARE DELETED

In the process of online feature extraction, the same line is
repeatedly detected in the previous frame and the next frame,
and the detected line will become a new line, which will
increase the pose estimation error. Our optimization method
is to delete redundant lines for the triangulated line features.
At the beginning, we considered two schemes to delete the
redundant lines. The first one was to merge the redundant
lines when the FLD line feature algorithm extracted the line
features. This scheme would terminate the program directly,
and it was inferred that the tracking was not satisfied due
to insufficient line features at the beginning of the program.
Therefore, we adopt the second scheme to triangulate the line
features and then merge them, which can effectively reduce
the pose estimation error. For some data sets, there are fewer
initial line features, so parameter adjustment is carried out,
and the adjusted parameter is the elimination of points outside
the line. The elimination distance of points outside the line in
the original method is 10, but it is modified to 20, considering
that more line features are needed for merging. The main
solution is that for data sets with fewer line features, such
as easy class, the effect may be poor due to the small number
of line features extracted. In the experiment, it is found that
for different data sets, the corresponding parameters have
different effects, and more lines should be used to merge data
sets with fewer line features.
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FIGURE 3. (a) shows the trajectory error of the original PL-VINS algorithm
on the MH_01_easy dataset. (b) The trajectory error of the optimized
PL-VINS on the data set (Scale unit is m).

In the line feature merging idea, the line feature is first
structured, that is, transferred to the Manhattan coordinate
system, the three-dimensional position of the line feature
is judged, and then the line feature is traversed. There are
three conditions for the merging: 2d plane, three-dimensional
distance judgment and the id of the line feature. First of
all, the distance between two lines in the three-dimensional
Manhattan coordinate system can be parameterized, which
is set as 0.1 in this paper. Then the observation line id is
detected, only the original id may be a duplicate line of the
new id; finally, the distance of 2d plane lines is judged. After
the detection is complete, the merged features are deleted to
complete the deletion of redundant lines.
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TABLE 1. The absolute pose error (APE) of the original algorithm and the
improved algorithm is compared (Unit: meter).

Original Improved
MH_01_easy 0.18 0.14
MH_02_easy 0.18 0.13
MH_03_medium 0.27 0.22
MH_04_difficult 0.36 0.30
MH_05_difficult 0.38 0.31
V1_01_easy 0.14 0.12
V1 _02_medium 0.31 0.30
V1_03_difficult 0.31 0.25
V2_01_easy 0.12 0.12
V2_02_medium 0.25 0.20
V2_03_difficult 0.28 0.24

IV. EXPERIMENT
In this paper, the PL-VINS algorithm is compared with
the improved PL-VINS algorithm in the common data set
EuRoC. By printing line features feature extraction speed,
and using the EVO trajectory measurement tool, it is more
intuitive to see where the algorithm has improved. EVO is
a trajectory evaluation tool for visual odometer and SLAM
problems. The core function is the ability to plot the camera’s
trajectory or evaluate the error of the estimated trajectory
from the true value. The absolute pose error (APE) is com-
monly used as the absolute trajectory error, which compares
the estimated trajectory to the reference trajectory and cal-
culates statistics for the entire trajectory, applicable to testing
the global consistency of the trajectory. Relative attitude error
(RPE) is not a comparison of absolute attitude, but a compar-
ison of motion (attitude increment). Relative pose error can
give local accuracy. Relative pose error (RPE) is divided into
translation error and rotation error.

Take MH_01_easy in the EuRoC data set as an example to
compare the trace error (Fig3.):

A. PRECISION COMPARISON OF ALGORITHMS

In the case of poor robustness and accuracy, subpixel corner
algorithm and redundant line deletion can effectively solve
the problem in the environment with weak texture and few
key points. Therefore, subpixel corner algorithm is used to
replace the Harris feature extraction algorithm, and redundant
lines are deleted to improve the accuracy of the algorithm.
The original PL-VINS algorithm and the optimized algorithm
were verified on EuRoC data set, and the accuracy of the
algorithm was compared. As shown in Table 1.

The original algorithm and the optimized algorithm are
used to compare RMSE, translation error and trajectory on
the EuRoC data set MH_01_easy. As shown in Fig 4, 5 and 6.

The original algorithm and the optimized algorithm are
used to compare RMSE, translation error and trajectory on the
EuRoC data set MH_03_medium. As shown in Fig7, 8 and 9.
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FIGURE 4. (a) is the absolute attitude error (APE) of the original
algorithm, and (b) is the absolute attitude error (APE) of the improved
algorithm. The black line is the absolute pose error (APE), the blue line is
the root mean square error (RMSE), the red line is the median error
(median), the green line is the mean error (mean), and the blue area is
the standard deviation (std).

In the case of poor robustness and accuracy, subpixel
corner algorithm and redundant line deletion can effectively
solve the problem in the environment of weak texture and
few key points. Therefore, subpixel corner algorithm is used
instead of Harris feature extraction algorithm, and redundant
lines are deleted to improve the accuracy of the algorithm.
The PLS-VINS algorithm and the optimization algorithm
are verified on the EuRoC data set, and the accuracy of the
algorithm is compared. As shown in Table 2.

B. COMPARISON OF LINE FEATURE EXTRACTION SPEED

In terms of feature extraction speed, this paper uses FLD
line feature extraction algorithm instead of LSD line feature
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FIGURE 5. Compare the trajectories between the original algorithm and
the optimized algorithm. The black line is the true trajectory, the blue line
is the trajectory of the original algorithm, and the green line is the
trajectory of the optimized algorithm.

5.0
—_ .25
£
: 0.0 -=-= groundtruth
! —— before
25 = later
g 5
>
0
1 d
d
E o
N

-1

575 600 625 650 675 700 725 750
t(s) +1.403636e9

FIGURE 6. To the original algorithm compared with translation error of
the optimized algorithm.

extraction algorithm to improve the feature extraction speed
and have better real-time performance in the actual scene.
The original PL-VINS algorithm and the optimized algorithm
were verified on the EuRoC data set, and the line feature
extraction time of the original algorithm and the improved
algorithm was printed out to reflect the speed of the compar-
ison line feature extraction. As shown in Table 3.

The FLD algorithm is mainly based on the gradient infor-
mation of the image to quickly detect the line. It uses the
edge information in the image to identify possible lines by
calculating the gradient amplitude and direction. In contrast,
the LSD algorithm requires a more complex computation
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FIGURE 7. (a) is the absolute attitude error (APE) of the original
algorithm, and (b) is the absolute attitude error (APE) of the improved
algorithm. The black line is the absolute pose error (APE), the blue line is
the root mean square error (RMSE), the red line is the median error
(median), the green line is the mean error (mean), and the blue area is
the standard deviation (std).

process. It not only performs gradient calculations on images,
but also performs operations such as segmented search and
parameter space clustering, which are relatively more time-
consuming processes.

V. DISCUSSION AND ANALYSIS

This paper proposes a real-time optimized monocular visual-
inertial SLAM method (PL-VINS) to optimize point and line
features, which improves point features, line features and
reduces pose estimation error. Specifically, we first use sub-
pixel corner extraction algorithm instead of corner extraction
algorithm, then use FLD line feature extraction algorithm

99964

—==groundtruth
8 —— before
—— later

y (m)

x (m)

FIGURE 8. Compare the trajectories between the original algorithm and
the optimized algorithm. The black line is the true trajectory, the blue line
is the trajectory of the original algorithm, and the green line is the
trajectory of the optimized algorithm.
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FIGURE 9. To the original algorithm compared with translation error of
the optimized algorithm.

instead of LSD line feature extraction algorithm, and finally
delete the repeated detection lines in the process of online
feature extraction.

The main realization method of using subpixel corner
extraction algorithm to replace Harris corner extraction
algorithm is as follows: Firstly, the function is used to obtain
the number of corner points to be optimized and the ini-
tialization result, and then the subpixel corner algorithm is
used to iterate and improve the accuracy of the initial value,
and the edge detection of subpixel corner points is carried
out according to the detection result. Since the Harris corner
extraction algorithm extracts corner points at the pixel level,
subpixel corner extraction is adopted to improve the accuracy
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TABLE 2. The absolute pose error (APE) of the PLS-VINS algorithm and
the improved algorithm is compared. (Unit: meter).

PLS-VINS Improved
MH_01_easy 0.16 0.14
MH_02_easy 0.14 0.13
MH_03_medium 0.24 0.22
MH_04_difficult 0.35 0.30
MH_05_difficult 0.35 0.31
V1 01 easy 0.12 0.12
V1_02_medium 0.31 0.30
V1_03_difficult 0.29 0.25
V2_01_easy 0.12 0.12
V2_02_medium 0.22 0.20
V2_03_difficult 0.25 0.24

TABLE 3. The speed of line feature extraction is compared between the
original algorithm and the improved algorithm.

Original Improved
MH 01 easy 6.29 6.02
MH_02_easy 7.50 4.97
MH_03_medium 8.76 5.54
MH_04_difficult 7.12 5.63
MH_05_difficult 8.10 5.47
V1 01 easy 4.33 5.82
V1_02_medium 7.21 4.58
V1_03_difficult 3.66 3.32
V2 01 _easy 4.24 5.11
V2_02_medium 5.62 4.86
V2_03_difficult 9.68 475

of corner extraction and achieve better performance in the
algorithm.

In the main process of redundant line deletion, firstly,
the line features are initially screened and their size is set.
Later, the number of line merges can be adjusted and the
line features are structured, that is, the three-dimensional
position of the line features is judged under the Manhattan
coordinate system, and then the line features are traversed.
There are three conditions for setting merges: 2d plane, three-
dimensional distance judgment and line feature id. First of
all, the distance between two lines in the three-dimensional
Manhattan coordinate system can be parameterized, which
is set as 0.1 in this paper. Then the observation line id is
detected, only the original id may be a duplicate line of the
new id. Finally, the distance of 2d plane lines is judged. After
the detection is complete, the merged features are deleted
to complete the deletion of redundant lines. In the process
of online feature extraction, the same line is repeatedly
detected in the previous frame and the next frame, and the
detected line will become a new line, which will increase the
pose estimation error. Therefore, our optimization method is
to delete redundant lines for the triangulated line features.
At the beginning, we considered two schemes to delete the
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TABLE 4. The absolute pose error (APE) of the original algorithm and the
improved algorithm is compared (Unit: meter).

Original Improved Difference value

MH_01_casy 0.13 0.14 0.04
MH_02_easy 0.18 0.13 0.05
MH_03_medium 0.27 0.22 0.05
MH_04_difficult 0.36 0.30 0.06
MH_05_difficult 0.38 0.31 0.07
V1_01_easy 0.14 0.12 0.02
V1_02_medium 0.31 0.30 0.01
V1_03_difficult 0.31 0.25 0.06
V2 01 _easy 0.12 0.12 0
V2_02_medium 0.25 0.20 0.05
V2_03_difficult 0.28 0.24 0.04

Average \ \ 0.04

redundant lines. The first one was to merge the redundant
lines when the FLD line feature algorithm extracted the line
features. This scheme would terminate the program directly,
and it was inferred that the tracking was not satisfied due
to insufficient line features at the beginning of the program.
Therefore, we adopt the second scheme to triangulate the line
features and then merge them, which can effectively reduce
the pose estimation error.

A comparison experiment between the PL-VINS algorithm
and the optimization algorithm is carried out on the open data
set EuRoC. Firstly, the accuracy of the original algorithm
and the optimized algorithm is compared. In most EuRoC
data sets, the accuracy of the optimized algorithm is higher
than that of the original algorithm, and the overall accuracy
is improved by 0.04. As shown in Table 4.

According to the data in the table, it can be seen that Harris
corner algorithm is replaced by subpixel corner algorithm and
redundant lines are deleted, which effectively improves the
accuracy of the algorithm. The data show that the accuracy
of the optimized algorithm has been significantly improved
in most scenarios. It can be seen that the accuracy of
MH_05_difficult data set is the highest, which is improved
by 0.07.

A comparison experiment between the PLS-VINS
algorithm and the optimization algorithm is carried out on
the open data set EuRoC. As shown in Table 5.

According to the data in the table, it can be seen that Harris
corner algorithm is replaced by subpixel corner algorithm and
redundant lines are deleted, which effectively improves the
accuracy of the algorithm. The data show that the accuracy
of the optimized algorithm has been significantly improved
in most scenarios. It can be seen that the accuracy of
MH_04_difficult data set is the highest, which is improved
by 0.05.

In summary, it can be found that the improved algorithm
has significantly improved in difficult data sets, which indi-
cates that the positioning accuracy of the improved algorithm
will be higher than that of the original algorithm in the case of
weak texture and fast motion speed. In practical applications,
robots often encounter harsh environments and scenes with
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TABLE 5. The absolute pose error (APE) of the PLS-VINS algorithm and
the improved algorithm is compared (Unit: meter).

PLS-VINS Improved Difference value

MH_01_easy 0.16 0.14 0.02
MH_02_easy 0.14 0.13 0.01
MH_03_medium 0.24 0.22 0.02
MH_04_difficult 0.35 0.30 0.05
MH_05_difficult 0.35 031 0.04
V1_01_easy 0.12 0.12 0
V1_02_medium 0.31 0.30 0.01
V1_03_difficult 0.29 0.25 0.04
V2_01_casy 0.12 0.12 0
V2_02_medium 0.22 0.20 0.02
V2_03_difficult 0.25 0.24 0.01

Average \ \ 0.02

TABLE 6. The speed of line feature extraction is compared between the
original algorithm and the improved algorithm.

Original Improved Difference value

MH_01_easy 6.29 6.02 0.27
MH_02_easy 7.50 497 2.53
MH_03_medium 8.76 5.54 322
MH_04_difficult 7.12 5.63 1.49
MH_05_difficult 8.10 5.47 2.63
V1_01_easy 433 5.82 -1.49
V1_02_medium 7.21 4.58 2.63
V1_03_difficult 3.66 3.32 0.34
V2_01_easy 4.24 5.11 -0.87
V2_02_medium 5.62 4.86 0.76
V2_03_difficult 9.68 4.75 4.93
Average value \ \ 1.5

fast motion speed. Therefore, the improved algorithm can
make the robot better used in the actual scene.

On the public data set EuRoC, compared with the original
algorithm and the optimized algorithm, the overall aver-
age speed of line feature extraction is shortened by 1.5ms.
As shown in Table 6.

According to the data in the table, it can be concluded that
using FLD line feature extraction algorithm instead of LSD
line feature extraction algorithm can improve the speed of line
feature extraction and shorten the extraction time. With better
real-time. Faster line feature extraction times mean that the
robot can process sensor data faster and extract line features
in the environment. And the improvement of real-time can
help robots make decisions and plans faster, thus improving
their ability to cope in dynamic environments. In scenes with
a large number of straight lines, such as urban environments
or indoor environments, faster line feature extraction can help
robots build environment maps and plan paths more quickly.
Faster line feature extraction allows the robot to respond more
quickly to changes in the environment, such as quickly detect-
ing emerging obstacles or the movement of obstacles. A faster
response to changes in the environment helps improve the
safety and adaptability of the robot, enabling it to better move
and interact in dynamic environments.
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FLD algorithm is mainly based on the gradient infor-
mation of the image to quickly detect the line. It uses the
edge information in the image to identify possible lines by
calculating the gradient amplitude and direction. And the
FLD algorithm usually outputs the parameterized equation
of the line (such as slope and intercept), which is simple
and clear. FLD algorithms generally have fewer parameters
to adjust and are therefore easier to use. It may only need
to set some simple thresholds to control the results of the
line detection. In contrast, the LSD algorithm requires a more
complex computation process. It not only performs gradient
calculations on images, but also performs operations such
as segmented search and parameter space clustering, which
are relatively more time-consuming processes. And the LSD
algorithm outputs the line segment directly, which means it
needs to maintain the end points of the line segment during
detection, not just the parameters of the line. This increases
the complexity and computational burden of the detection
process.

In the experiment, it is found that for the redundant line
removal operation, the direct merging after the online feature
extraction will lead to the direct termination of the program.
It is inferred that the program does not meet the tracking
requirements due to insufficient line features at the initial
stage. Some parameters need to be adjusted on some data
sets, here you can adjust the parameters according to your
own experience, mainly considering adding more line fea-
tures. In a smooth scene, you can merge by modifying the
parameters to add more line features.

VI. CONCLUSION

PL-VINS algorithm has good performance in the point-and-
line VIO algorithm, but in some special complex scenes,
there are some shortcomings in real-time and accuracy. The
purpose of this study is to solve the shortcomings of the
current PL-VINS algorithm, propose an optimization scheme
for the PL-VINS algorithm, and verify the feasibility of the
scheme through comparative experiments.

In this paper, the first measure to optimize PL-VINS is
to increase the speed of line feature extraction. Using FLD
line feature extraction algorithm instead of LSD line feature
extraction algorithm, it makes up for the shortcoming of slow
feature extraction speed, and improves the real-time perfor-
mance of PL-VINS algorithm significantly. Second, we use
subpixel corner extraction algorithm instead of Harris corner
extraction algorithm to improve the recognition accuracy of
the algorithm. The third step is that in the process of online
feature extraction, the same line is repeatedly detected in the
previous frame and the next frame, and the detected line will
become a new line, which will increase the pose estimation
error. Our optimization method is to delete redundant lines
for the triangulated line features to improve the accuracy of
the algorithm.

In this paper, the public data set EuRoC is used to carry
out comparative experiments, and the results show that the
optimized algorithm has a better speed of online feature
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extraction and recognition accuracy. In the future, we will
compare each point-and-line visual inertial SLAM algorithm
with PL-VINS algorithm in all aspects, find out the short-
comings of PL-VINS algorithm, and optimize it. At the same
time, we will carry out practical application research of the
optimized algorithm, find out the existing problems in the
algorithm, and optimize it. Further, in future experiments,
the optimized algorithm will be applied to more scenarios,
from which the shortcomings of the algorithm under more
constraints will be found. In view of these shortcomings,
a possible solution is proposed and the algorithm is further
studied.
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