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ABSTRACT The electroencephalogram (EEG) is a non-invasive technique with high temporal resolution
that has become the research frontier of brain-computer interface (BCI) systems. It is widely used in medical
rehabilitation, gaming, and other industries. However, decoding EEG signals remains a challenging task.
A network called MSCARNet, which combines multi-scale convolution and Riemannian geometry, was
proposed for classifying motor imagery based on EEG. The network is supplemented by an attention
mechanism and sliding window technique. The MSCARNet utilizes sliding windows to expand data
dimensions and multiple convolution kernels to obtain spatial and temporal features. These features are then
mapped to Riemannian space and undergo bilinear mapping and logarithmic operations for dimensionality
reduction. This approach is beneficial in reducing the impact of noise and outliers and provides convenience
for classification. Subject-dependent and subject-independent experiments were conducted using the BCI-
IV-2a dataset to validate the effectiveness of theMSCARNet. The results show that the accuracy improved by
approximately 4% compared to existing state-of-the-art methods. The hybrid network based on Riemannian
space can effectively improve the accuracy of EEG motor imagery classification tasks without excessive
preprocessing.

INDEX TERMS Electroencephalogram, deep learning, convolution neural network, motor imagery,
Riemannian geometry.

I. INTRODUCTION
Brain-computer interface (BCI) has become a frontier tech-
nology and is widely used in industry, often directed at
researching, mapping, assisting, augmenting, or repairing
human cognitive or sensory-motor functions [1]. Motor
imagery (MI) represents a key area of focus in the field of
BCI, which is defined as a mental simulation of movement
without any actual physical execution. A person performing
motor imagery generates an electroencephalogram (EEG)
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signal of event-related potentials, which can be decoded
to capture the person’s intention. This technology has sig-
nificant potential for applications in both medical and
non-medical fields, including neurorehabilitation, neuropros-
thetics and gaming [2].

EEG is used to record cognitive-behavioural changes in
the brain and can be classified as invasive or non-invasive
according to the recording method. Invasive methods can
accurately capture the potential signals of the correspond-
ing brain regions but require the implantation of a chip in
conjunction with craniotomy, which is costly and risky. Non-
invasive, portable, low-cost, low-risk, but more susceptible
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to noise and low signal-to-noise ratio, resulting in delayed
non-invasive research results and current limitations to clas-
sification of a few. The decoding of EEG signals enables
the classification of simple intentions, such as with the left
and right hands and feet. This technology offers considerable
assistance to individuals with limbmovement limitations, and
its applications in various fields are promising. However, the
algorithms used for decoding MI-EEG signals still need to
be improved in terms of performance, generalization, and
lightweight to be suitable for various industrial scenarios. The
main challenge faced by decoding algorithms is to accurately
identify human intentions from unstable EEG signals with
low signal-to-noise ratio and various artifacts, including bio-
logical artifacts such as muscle movement, eye movement,
and heart rate, as well as non biological artifacts such as elec-
tronic devices and environmental noise. This makes decoding
EEG signals a challenging task.

Researchers generally solve the above problems through
traditional machine learning (ML) or deep learning (DL)
techniques. Among traditional machine learning algorithms
that rely on manual feature extraction, the filter library com-
mon space pattern (FBCSP) [3] and its variants have the
best performance in MI-EEG classification. Compared to
traditional machine learning algorithms, deep learning algo-
rithms can automatically extract potential features of signals,
thereby compensating for the time-consuming and labor-
intensive shortcomings of manual feature exploration. The
DL algorithm has therefore been widely applied in various
scenarios, including image [4], natural language process-
ing [5], audio and video processing [6]. The number of
papers in which researchers have used DL to classify MI
tasks has increased rapidly over the past few years due to
the excellent performance of DL algorithms in a variety of
applications [7]. Different DL-based frameworks are used for
MI classification, such as Recurrent Neural Network (RNN)
[8], [9], Deep Belief Network (DBN) [10], Auto-encoder
(AE) [11], Convolutional Neural Network (CNN) [12], [13],
[14], [15] and hybrid DL model [12], [16], of which CNN
and its mixture model are the most efficient. With the model
based on Riemannian geometry gaining popularity in the
field of image processing, Kim et al. [17] constructed a
Riemannian classifier based on Fisher geometric minimum
distance to the mean (FgMDM) for EEG signal classification
in the post traumatic stress disorder (PTSD) resting state
fMRI and achieved a classification accuracy of about 75%.
Bakhshali et al. [18] classified the image speech by calculat-
ing the Riemannian distance of the correlation density (CSD)
matrix of different channels of EEG signal and obtained an
accuracy of about 90%. Chu et al. [19] used a Riemannian
geometric framework containing Riemannian distances and
Riemannian means to extract tangent space features from the
spatial covariancematrix of a 6-categoricalMI-EEG trial, and
then used least squares to downscale the features, and finally
inputting a linear discriminant analysis and a support vector
machine classifier yielded a classification accuracy of about
80%, which validates the potential of Riemannian geometry

for brain-computer interface classification tasks. However,
these methods require a more professional background and
a large number of experiments to find features manually, and
the features obtained may not truly reflect the characteristics
of the data, which significantly affects the actual effect ofMI-
based Brain-computer interface.

Huang and Gool [20] designed a learnable Riemann net-
work (SPDNet) based on the symmetric positive-definite
matrix for visual classification tasks, which solved the prob-
lem of complex manual feature extraction. Gao et al. [21]
classified EEG-basedmotor imagery tasks through the hybrid
of CNN and SPDNet. The results show that CNN has over-
whelming advantages over pure CNN and pure Riemannian
classifiers compared with the mixture model of Rieman-
nian geometry. However, the design of its convolution layer
has not fully captured enough features, resulting in a slight
lack of accuracy. Inspired by it, this paper combined with
sliding windows, multi-scale convolution, attention mecha-
nism and Riemannian geometry proposes the MSCARNet
for EEG-based motor imagery classification, to improve the
classification performance.

The availability of publicly accessible EEGmotor imagery
datasets from a multitude of organisations has significantly
contributed to the advancement of related research. The
datasets provided by various BCI competitions have gained
considerable popularity for research purposes, with the BCI
Competition IV series released in 2008 representing a sig-
nificant milestone. Furthermore, datasets such as BCI-IV-2a
and BCI-IV-2b have emerged as highly cited datasets in cur-
rent research. These datasets collect EEG data from multiple
subjects engaged in various motor imagery tasks and pro-
vide a benchmark for the evaluation of classification models,
with BCI-IV-2a representing a significant opportunity for
improvement in classification accuracy.

The main contributions of this paper are as follows:
(1) A novel hybrid deep learning method based on Rieman-
nian geometry for motor imagery decoding was proposed.
(2) The proposed method along with the state-of-the-art
method achieved the best results in the classification of the
BCI-IV-2a dataset. (3) The key features acquired at each layer
of the model were visualized to enhance the interpretability
of the model.

The structure of this article is as follows. Section II
provides an overview of the proposed method details.
Section II-A introduces the experimental dataset, specific
process, and experimental results, and compares the proposed
method with the benchmark model. Section III discusses the
meaning of the research results and summarizes the contribu-
tions and shortcomings of this study.

II. METHODOLOGY
The proposed MSCARNet model consists of three main
blocks: sliding window block, multi-scale convolutional
attention block and Riemannian geometry embedding block
as shown in Figure 1.
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FIGURE 1. Components of the proposed MSCARNet model. Firstly, the
EEG signal is segmented into n sliding windows and then the
spatio-temporal features are extracted by inputting multi-scale
convolutional block and Riemannian geometry embedding block
successively, and then the features of these n windows are spliced and
inputted into the Full Connection (FC) layer for classification.

The EEG signal is segmented into nparts using a sliding
window to address the issue of limited data size. These
ntime windows are then fed into a multi-scale convolutional
attention block, which extracts spatio-temporal features of the
EEG signal and incorporates an attention mechanism. The
obtained features are then mapped into Riemannian geometry
to minimize the impact of noise and extreme values on the
signal. This embedding reduces the number of parameters
and computational costs through bilinear mapping operation.
The decoding of MI-EEG is accomplished by concatenating
the outputs of Riemannian geometry embedding blocks with
different time windows and inputting them into the fully
connected layer for classification. The MSCARNet model
will be described in detail in the following sections.

A. SLIDING WINDOW
The Sliding window method can effectively expand the
amount of EEG signal data, making it suitable for more com-
plex networks [22], [23]. By setting the window length land
step size s, the start and end positions of the time window in
the original signal Tcan be obtained, and its starting position
index is s × (n-1), the ending position index is s × (n-1)+l,
where n = 1,2,3. . . , is the index of the window, which divides
the original EEG signal Tinto T1, T2,. . . , Tn. Here, we set
the step size s to half the window length, that is, s = l÷2,
to expand the data while reducing the overall computational
workload. Figure 2 describes the principle of sliding win-
dows, and the effects of different window numbers will be
shown in the third chapter.

Sliding windowwas used for all extracted EEG signals and
it was verified through extensive experiments that the model
works best with a window number of 2. The number and size
of sliding windows remain constant regardless of the number
of training sessions.

B. MULTI-SCALE CONVOLUTIONAL ATTENTION BLOCK
The temporal windows (T1, T2, etc.) of section II A are input
into a convolutional module with an attention mechanism

FIGURE 2. Sliding window.The raw EEG signal (T) is segmented into n
windows (T1,T2 . . . Tn), each of length l, with a sliding step of s = l÷2.

FIGURE 3. Multi-scale convolutional attention block. This block
successively passes the signal from each window through channel
convolution (filters = F 1 = 44, kernel size = [1,1]) and temporal
convolution, where the temporal convolution has m = 3 convolution
kernels of different sizes Q = (15,35,55) and filters = F 2 = 88, finally
these features are spliced into SimAM which can acquire 3D attention.

in order to extract the spatial and temporal features of the
samples. This module includes a channel convolutional layer,
mtemporal convolutional layers with different convolutional
kernel sizes, and a 3D attention layer. The approximate frame-
work is shown in Figure 3.

Firstly, through the Reshape layer, the time window Tnis
dimensionally rearranged to change the original data dimen-
sion from (1,C , S) to (C , 1, S), whereC = 22 is the number of
channels and S = 750 is the number of sampling points for the
time window to match the input size of channel convolution.
After converting dimensions, using F1 = 44 convolution
kernels with the size of 1 × 1 improves the data dimension
and obtains the spatial characteristics of EEG signals through
the Channel Conversion layer, it is worth noting that toomany
filters will result in more noise, while too few will result in
insufficient feature extraction and 44 is a compromise number
used in this study, which is experimentally proven to be more
effective than 64 or 24. Combined with the training of the
following modules, it can minimize the influence of outliers
on decoding. Through our experiments, this is smaller than
using the convolution kernel with the size of (C , 1) directly
on the original data, and the model effect is better. As far as
we know, no researcher has done such work. After obtaining
spatial features, use the Batch Normalization (BN) layer to
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FIGURE 4. Multi-scale temporal convolution module. This module passes
the spatial features obtained earlier through m = 3 convolutional layers
of different sizes, each with 88 filters, extracts the temporal features and
inputs them into the Batch Normalization (BN) layer, and finally stitches
them together into a feature matrix of (88 × m, 1, 750).

further stabilize the data distribution and accelerate model
training. Next, input the feature map into the Multi-scale
temporal convolution layer. Multi-scale convolution has been
proven to effectively extract sample information and improve
model accuracy in different fields [23], [24]. This layer is
detailed in Figure 4.

Using m convolutional kernels of different sizes to further
extract the spatial and temporal features of EEG signals
at different frequencies and input them into BN layers for
concatenation. Although too many convolutional kernels or
too large a convolutional kernel size may capture more fea-
tures, it is also difficult to train the model due to the surge
in parameters and computational complexity. The optimal
m = 3 obtained in this model experiment by comparing
the effect of single and multiple convolutional kernels on
classification results which shown in section III G, and the
convolutional kernel sizes are respectively 1 × 15, 1 × 35,
1 × 55. After obtaining the spatio-temporal features of EEG
signals, we used the SimAM [25] module. This module
is proposed for visual classification tasks, which is lighter
and can calculate 3D weights compared to attention mecha-
nismmodules such as Convolutional Block AttentionModule
(CBAM) [26]. This is suitable for multi-channel EEG signals.
Based on the spatial suppression mechanism proposed by
Webb et al. [27], an algorithm is designed to extract key
neurons as follows:

et (wt , bt , y, xi) = (yt , −t̂)2 +
1

M − 1

M−1∑
i=1

(y0 − x̂i)2 (1)

x̂ i = wt x i + bt and t̂ = wt t + bt are transformed from xi
and t , where t and xi are the target neurons and other neurons
in a single channel of the input feature X ∈ RC×H×W (C , H ,
W are channel, height and width of feature). iis an index of
the channel, and Mis the number of neurons on that channel.
wt and bt are weight and bias. y is the natural number bias
of the whole formula including y0 and yt . The calculation
of (1) effectively distinguishes the target neurons from the
other neurons in the same channel. Furthermore, a regularizer
is added into (1) and binary labels (1 and -1) are applied to

yt and yo. Finally, the energy function changes to:

et(wt , bt , y, xi) =
1

M − 1

×

M−1∑
i=1

(−1 − (wtxi + bt ))2 + (1 − (wt t + bt ))2+λw2
t

(2)

wt and bt can be easily get by (3) and (4):

wt = −
2(t − µt )

(t − µt )2 + 2σ 2
t + 2λ

(3)

bt = −
1
2
(t + µt )wt (4)

µt =
1

M − 1

∑M−1

i=1
xi (5)

σ 2
t =

1
M − 1

M−1∑
i

(xi − µt )2 (6)

Eqn. (5) calculates the mean of all neurons except tin one
channel, while (6) is variance. All neurons in a single channel
are assumed to follow the same distribution and are reused for
all neurons on that channel [28] to reduce the computational
cost and avoid repeated calculation of µ and σ at each posi-
tion. Therefore, the minimum energy can be calculated using
the following:

e∗t =
4(σ̂ 2

+ λ)
(t − µ̂)2 + 2σ̂ 2 + 2λ

(7)

µ̂ =
1
M

M∑
i=1

xi,

σ̂ 2
=

1
M

M∑
i=1

(xi − µ̂)2 (8)

Eqn (7) determines the importance of each neuron by 1/e∗t ,
and the lower the energy e∗t , the more distinct it is from other
neurons and more important for signal processing.

At this point, we obtained a multidimensional EEG feature
map with attention weights.

C. RIEMANNIAN GEOMETRY EMBEDDING BLOCK
The mapping of data to a Riemann space can be effectively
employed for a number of purposes, including classification,
smoothing, extrapolation, and averaging [21], [29]. These
operations can be locally approximated by Euclidean spaces
via their tangent spaces. The SPDNet [20] can effectively
embed Riemannian geometry into a deep learning model,
we implement the BiMap layer and LogEig layer from
SPDNet on our model. As shown in Figure 5.

First, reduce the dimension of the three-dimensional spa-
tial and temporal feature map Xa (F3, 1, 750) obtained in
Section II B to a two-dimensional matrix (F3, 750), and
obtain the spatial Covariance matrix Xb of the feature through
the following function:

xb = (xa · xTa ) ÷ (S − 1) (9)
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FIGURE 5. Riemannian geometry embedding block. This block first
transforms the acquired spatio-temporal feature matrix into a symmetric
positive definite (SPD) matrix Xb and inputs it into the BiMap layer, which
not only reduces the feature dimensions but also extracts the key
information of the Riemannian space, and finally flattens the features Xc
by LogEig and activates them through logarithmic operations. p = 32 is
height of Wb which is the weight matrix that need to be trained.

where XTa is the transposition of Xa, Sis the time points of the
sample, ‘‘X’’ in Figure 5 is the matrix matmul product.
Xb (F3, F3) is then input to the BiMap layer, which utilizes

a bilinear mapping operation to reduce the dimensionality of
the features and reduce the computational complexity of the
network training process. Implement through the following
function: Xc = Wb·Xb·WT

b , where Wb is the weight matrix
that need to be trained of size (p, F3), by comparing 8, 16,
and 64 experiments, p = 32 is the optimal setting, too large a
value leads to long computation time while too small a value
leads to lack of performance, W T

b is the transposition of Wb,
Xc (32, 32) is EEG features embedded in Riemannian mani-
fold. Finally, the LogEig layer performs a matrix logarithmic
operation on the SPD matrix features and flattens the matrix
to a vector of size (1024, ) for classification. More bilinear
mapping and LogEig layers related backpropagation details
can be found in Huang and Gool [20].

D. CLASSIFICATION
In sections 2.2 and 2.3, spatial and temporal features with
a size of (1024, ) were extracted from each window. In this
section, we concatenated the features of each window (in this
paper, 2 windows and 1024 features each window, totally
2048 features) and feed them into the Full Connection layer
to calculate the probability of the four categories for MI-EEG
classification.

III. EXPERIMENT AND RESULT
In order to test the effectiveness of the proposed method,
we used Intel @ Xeon (R) Silver 4210R CPU @ 2.40GHz
x40 and Nvidia GeForce RTX 3090 GPU on the Ubuntu
20.04 system to train and verify the proposed model based
on pytorch 1.8 framework.

A. DATASET DESCRIPTION AND PREPROCESSING
BCI Competition IV-2a (BCI-IV-2a) dataset [30] is used to
evaluate the proposed model. It is also a popular dataset for
many researchers due to its challenges. This dataset collected

MI EEG data from nine subjects in two sessions, both of
which contained the same experimental content but were
captured on separate dates. Each session contained four MI
tasks: left hand, right hand, feet, and tongue, and each task
was performed 72 times for a total of 288 trials. A total of
576 trials were performed in two sessions per subject, for a
total of 5184 trials for nine subjects. The EEG signals in the
dataset consist of 22 channels, for which the publisher has
applied band-pass filtering from 0.5-100 Hz as well as a trap
filter at 50 Hz.

In this paper, we scrutinized the data to make sure there
were no bad channels before the experiment, then raw EEG
signals was feed into the model without more preprocessing
to maximize the retention of real data. Data from 1.5-6s after
the start of whole 576 trial were used to train and test the
model, which included 1125 time points for one sample.

B. PERFORMANCE METRICS
Accuracy and Kappa score are considered important indi-
cators in MI-EEG signal classification, which is defined as
follows:

ACC =

n∑
i=1

TPi ÷ li

n
(10)

where ACC is accuracy, nindicates the number of classes,
TPi is the abbreviation for true positive which means the
number of correctly predicted samples in class i, and li is the
number of samples in class i.

k_score =
1
n

n∑
a=1

Pa − Pe
1 − Pe

(11)

where k_score is Kappa score, Pe is the expected percentage
chance of agreement, Pa is the actual percentage of agree-
ment, and nis the number of classes.
Standard deviation measures the degree of dispersion of

a set of data, this study shows the stability of the model by
calculating the standard deviation of the average classifica-
tion accuracy of all subjects. Wilcoxon test was performed
to investigate the effect of the proposed method on decod-
ing accuracy while significant differences (p < 0.05) were
observed.

For the 4-class MI-EEG classification problem, the proba-
bilistic chance level is given by 100/4 = 25%, which is only
valid for an enormous number of trials. However, for finite
MI experiments, the level of theoretical chance in terms of
statistics is crucial for assessing decoding performance and
can be obtained using binomial cumulative distributions (ana-
lytical method). The significant chance level of the analytical
method was calculated by:

chance_level = binom(1 − α, n, c) × 100 ÷ n (12)

where binomis the function in SciPy, a = 0.05 is the confi-
dence level, n = 5184 or 2592 is the total number of samples
for subject-dependent or subject-independent experiment and
c = 4 is the number of category. Eventually, the significant
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TABLE 1. The architecture of the proposed MSCARNet, where n is the
number of windows, l is the length of each window, s is the stride of
sliding, F is the filters of convolution layer, m is the number of different
temporal convolution which has various kernel sizes,and p is the height
of the weight matrix.

chance level of subject-dependent experiment for decoding
accuracy was 25.98% while 26.39% of subject-independent
experiment.

C. EXPERIMENT SETUP
Table 1 shows the proposed MSCARNet used in the experi-
ment. In the training process, the early stopmethod is adopted
with 100 epochs.

Two different cross-validation forms are utilized for the
performance evaluation: subject-dependent classification and
subject-independent classification. As illustrate in Table 2,
subject-dependent classification, for each subject, we mixed
and shuffled the data from two sessions and implemented a
5-fold cross-validation experiment using Scikit-Learn pack-
age, these samples are split into 5 folds, then pick one as the
test set and the rest as the training set each time, with about
460 trials for training and 116 for testing and iterate 5 times.
In subject-independent classification, Leave One Subject Out
(LOSO) experiment was utilized, for each subject, we used
this subject’s first session for testing and other 8 subjects’ first
session for training, with 2304 trails for training and 288 for
testing.

D. PERFORMANCE EVALUATION
Experiments are conducted for each subject to test the
classification performance of the proposed MSCARNet,
Figure 6 and Figure 7 illustrate separately the accuracy and
Kappa score in subject-dependent classification and subject-
independent classification in test set.

In subject-dependent classification, most subjects get an
acceptable result except subjects 2, 5 and 6, which is a com-
mon problem for most research, the proposed MSCARNet
reached 82.66% and 0.7483 on average accuracy and Kappa
scores of nine subjects, and the standard deviation of accuracy
and Kappa scores is 10.02 and 10.36. In subject-independent
classification, most models cannot achieve a good perfor-
mance, the proposed model obtains 61.24% and 0.5552 on

TABLE 2. Configuration of subject-dependent and subject-independent
classification. Detailed description of the training set and test set
segmentation for different classification experiments. LOSO means leave
one subject out.

FIGURE 6. Each subject’s average accuracy and kappa score in
subject-dependent classification of test set. Using 5-fold cross-validation
experiments. Avg means grand-average accuracy of all subjects.

FIGURE 7. Each subject’s accuracy and kappa score in
subject-independent classification of test set. Using LOSO experiments.
Avg means average accuracy of all subjects.

average accuracy and Kappa scores of nine subjects, and
the standard deviation of accuracy and Kappa scores is 10.0
and 9.47.

To demonstrate that the proposed model is not biased
toward categorization, Figure 8 shows the confusion matrix
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FIGURE 8. Confusion matrix for the results of the test set for all subjects
of 5-fold cross-validation experiment.

TABLE 3. Average accuracy, Kappa score and standard deviation (Std.)
comparison of subject-dependent classification for the proposed model
with other models of all subjects. P-value is calculated to compared with
MSCARNet (p < 0.05). Best results are bolded.

for the results of the test set for all subjects of 5-fold cross-
validation (subject-dependent) experiment.

E. COMPARING TO OTHER RESEARCH
The results of classification are compared with some
representative models in MI-EEG classification with-
out data preprocessing and the methods is reproduced
manually, including SPDNet [20], EEGNet [14], FBC-
Net [31], MI-EEGNet [32], EEG-TCNet [33], EEGNeX [34],
KMDA [35], CRGNet [21]. Table 3 shows the comparison of
subject-dependent classification and based on the Wilcoxon
test, the increase in average accuracy is statistically signifi-
cant (p< 0.05) compared to all methods except CRGNet.

The experimental results of subject-dependent show that
MSCARNet reaches the best average accuracy and Kappa
score, the accuracy is approximately 4% higher and the
Kappa score is about 0.04 higher than the state-of-the-art

TABLE 4. Average accuracy, kappa score and standard deviation (Std.)
comparison of subject-independent classification for the proposed model
with other models of all subjects. P-value is calculated to compared with
MSCARNet ( p < 0.05). The best results are bolded.

method, otherwise the lowest standard deviation among sub-
jects indicating the proposed model is more robust.

Table 4 presents the comparison of subject-independent
classification.

As shown in Table 4, most models do not get a good result
in subject-independent classification, the proposed MSCAR-
Net reaches the best metrics except for standard deviation of
accuracy, and the accuracy and Kappa score is approximately
0.03 higher than state-of-the-art method.

Overall, the proposed model demonstrated an improve-
ment in MI-EEG decoding compared to other model, though
still stuck in inefficient of subject-independent classification.

F. ABLATION ANALYSIS
In this subsection, we evaluate the effectiveness of each block
in the MSCARNet model. The blocks were removed prior
to the training and validation operations. Table 5 shows the
effect of removing a block in the MSCARNet model on
the average accuracy and Kappa score of subject-dependent
classification using the BCI-IV-2a dataset.

The results showed sliding window block increased the
grand-average average accuracy by 8.82%, Multi-scale con-
volution by 17.39%, SimAM by 2.93% and Riemannian
embedding by 12.74%.When removing themultiscale convo-
lution and the Riemannian embedding layer leaving only the
channel convolution and single scale temporal convolution
the grand-average accuracy drops by 34.75%. Each block
has a contribution to classification, especially the multi-scale
convolution block and Riemannian embedding block, those
two blocks play a crucial role in the MSCARNet.

G. COMPARISON OF DIFFERENT PARAMETERS
1) NUMBER OF TIME-WINDOWS
As we set the sliding stride s half of the window length l,
it’s simple to obtain the s and l by setting the number of
windows. In this part we compared 5 different numbers of

VOLUME 12, 2024 79737



B. Zhou et al.: Multi-Scale Convolutional Attention and Riemannian Geometry Network

TABLE 5. Contribution of each block in the MSCARNet to the
performance of subject-dependent classification using the BCI-IV-2a
dataset. ‘‘-’’ represents the MSCARNet without any blocks removed.

FIGURE 9. Grand-average accuracy and kappa score of different number
of windows on subject-dependent classification.

windows, which are 1, 2, 3, 4, 5, to avoid the parameters of
the model quantity skyrocketing, we adjusted the parameters
of the Riemannian embedding block accordingly which may
influence the results but controlled the parameters similarly.
Figure 9 shows the performance of the MSCARNet with
different number of windows.

The results show 2 time-windows reach the best per-
formance with 750 time points per window, the accuracy
decreased by increasing of number from 2, thus we don’t
attempt more windows. The number of windows employed
corresponded to the length of the windows, which varied in
size. This enabled the extraction of signal features over differ-
ent time periods. The optimal results were obtained with two
windows, which overlapped the data from the intermediate
time periods. This suggests that the motor imagery features
was implied approximately one second after the onset of the
cue.

2) SCALE OF TEMPORAL CONVOLUTION
For the convolution layer, the number and size of the kernel
determine the effectiveness of the network. In this section,

FIGURE 10. Grand-average accuracy of different kernel sizes in
subject-dependent classification on the MSCARNet. A comparison of
single and multi scale convolution kernels has been performed.

FIGURE 11. Visualization of features output by each layer based on T-SNE
method to validate the influence of layers. The order of presentation is
consistent with the order in which the features are output in the model.

we set 5 single kernel sizes which are (1,15), (1,35), (1,55),
(1,75), (1,100), and their combination to evaluate the advan-
tage size over the MSCARNet. Shown in Figure 10.

We firstly test the accuracy of the single kernel with sizes
(1,15), (1,35), (1,55), (1,75) and (1,100) in subject-dependent
classification on the proposed model, the results indicate that
a bigger size of the kernel may not own better performance,
size of (1,15) win the top score. A substantial body of research
has demonstrated that characteristics of low-frequency sig-
nals are more pertinent to motion imagery. This finding aligns
with this study, which demonstrates that a small convolutional
kernel is capable of extracting features of lower-frequency
signals that are more conducive to classification. Then we
adopt multi-scale kernel in subject-dependent classification
which are

(1, 15) + (1, 35),

(1, 15) + (1, 35) + (1, 55),

(1, 15) + (1, 35) + (1, 55) + (1, 75),

(1, 15) + (1, 35) + (1, 55) + (1, 75) + (1, 100).

It seems that accuracy increased by number of kernel scale
indeed, but accuracy among 3, 4 and 5 kernel sizes barely
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noticeable difference. However bigger size means more
parameters and calculations, so the kernel size of (1,15) +

(1,35) + (1,55) were implemented in our proposed model.

H. FEATURE VISUALIZATION
The T-SNE method was used to show the output features of
each layer, Figure 11 visualized the output features of each
layer according to the input order of the features to show the
effect of each layer.

Figure 11 shows that the SimAM layer can expand the
variability of acquired spatio-temporal features, while the
BiMap and LogEig layers have initially categorized features,
confirming the effectiveness of these layers.

IV. DISCUSSION AND CONCLUSION
The proposed method improves the classification accuracy
of the BCI-IV-2a dataset by approximately 4%. This paper
extends the work of Gao et al. [21] by proposing a novel
attention and Riemannian geometry-based convolutional net-
work (MSCARNet) for MI-EEG classification. MSCARNet
is composed of three main blocks: the sliding window block,
which splits raw EEG signals into several samples of equal
length; the multi-scale temporal convolutional block, which
extracts high-level spatial and temporal features from time-
windows; and the Riemannian geometry embedding block,
which maps the features between Euclidean and Riemannian
manifolds. These blocks have been shown to significantly
improve the performance of MSCARNet in MI-EEG classi-
fication through ablation analysis.

The analysis indicates that a larger number of time win-
dows does not necessarily result in better classification.
Further investigation is needed to determine the optimal
size and number of time windows. Multi-scale convolutional
modules are more effective than single-scale ones, but an
excessive number of convolutional sizes does not improve
classification quality. The modules’ effectiveness and the
model’s overall efficiency are fully verified through feature
visualization and statistical analysis.

The proposed model, MSCARNet, achieves an accuracy
of 82.66% and 57.01% in subject-dependent and subject-
independent classification, respectively, using the BCI-IV-2a
dataset. This demonstrates the model’s potential to decode
MI-EEG signals with minimal preprocessing, particularly
when working with datasets of limited size and complex-
ity. However, the study still has some issues that require
further investigation. Firstly, the embedding of Riemannian
geometry leads to a significant improvement in model clas-
sification, but also results in a non-negligible increase in
training cost, including computation and parameter count.
Secondly, the LOSO experiments yielded unsatisfactory
results, indicating that the model fails to fully capture indi-
vidual differences. To address the aforementioned issues,
future work can focus on the following directions: utilizing a
pooling layer to decrease the feature dimensions of the input
Riemannian geometry, optimizing the computational process

of the BiMap layer, and implementing methods such as jump
linking to capture more information and solve the problem of
excessive individual differences.
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