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ABSTRACT While backpropagation (BP) algorithm has been pivotal in enabling the success of modern
deep learning technologies, it encounters challenges related to computational inefficiency and biological
implausibility. Especially, the sequential propagation of error signals using forward weights in BP is not
biologically plausible and prevents efficient parallel updates of learning parameters. To solve these problems,
the direct feedback alignment (DFA) method is proposed to directly propagate the error signal from output
layer to each hidden layer through random feedback weight, but the performance of DFA is still not
competent to BP, especially in complicate tasks with large number of outputs and the convolutional neural
network models. In this paper, we propose a method to adjust the feedback weights in DFA using additional
local modules that are connected to the hidden layers. The local module attached to each hidden layer has
a single-layer structure and learns to mimic the final output of the network. Then, the weights of a local
module behave like a direct path connecting each hidden layer to the network output, which has an inverse
relationship to the direct feedback weights of DFA. We use this relationship to update the feedback weight of
DFA. From the experimental investigation, we confirm that the proposed adaptive feedback weights improve
the alignment of the error signal of DFA with that of BP. Furthermore, comparative experiments show that
the proposed method significantly outperforms the original DFA on well-known benchmark datasets. The
code used for the experiments is available at https://github.com/leibniz21c/direct-feedback-learning-with-
local-alignment-support.

INDEX TERMS Backpropagation, biologically plausible learning, random feedback weight, direct feedback
alignment, local alignment support module.

I. INTRODUCTION [6]. Currently, it plays a crucial role in the learning of

Deep neural networks have recently achieved great success
in various application fields including computer vision and
natural language processing. The key to their success is a
learning method called backpropagation (BP) [1], which was
originally developed for training multilayer perceptrons [2],
and has evolved along with various learning techniques
such as dropout and stochastic optimization [3], [4], [5],
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highly advanced deep networks. However, several problems
have been identified with BP, such as computational ineffi-
ciency due to sequential feedback calculation and biological
implausibility, and studies to address these issues are still
ongoing [7].

A well-known issue regarding the biological implausibility
of BP is that forward weight values are required during the
backward propagation of error signals, commonly referred
to as the weight transport problem [8]. In the BP algorithm,
the weight update term of each layer is determined by the
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gradient vector of the output loss function. Since this gradient
is calculated sequentially from the output layer to the input
layer, the computational flow uses the same forward weights
in the backward transmission. This perfectly symmetric
structure of the forward and backward weight matrices cannot
be found in biological neural networks, and this problem is
also called the weight symmetry problem [9].

To address this problem, Lillicrap et al. [10] proposed
a learning method called feedback alignment (FA), which
uses fixed random weights for the feedback transmission
of error signal. They experimentally showed that learning
can be successful even if the forward weight matrix in the
feedback propagation is replaced by a fixed random matrix,
breaking the weight symmetry. They also provided some
theoretical explanations for the success, insisting that the
forward weights are aligned with the fixed feedback weights
as they are updated, leading to the alignment of the error
signal. This primary study led to the development of several
variants of learning methods with random feedback weights
and theoretical analyses of their properties [10], [11], [12],
[13], [14].

In particular, the direct feedback alignment (DFA)
method [12] is noteworthy in that it changes the error
feedback path itself and also solves the backward locking
problem [15]. In the sequential feedback learning such as
BP and FA, the output error is backpropagated layer by
layer, causing delays in updating the weights of each layer
until the error signal is transmitted from the upper layer.
This backward locking issue prevents parallel learning across
layers, which is biologically implausible and computationally
inefficient. In contrast, DFA can solve this problem, as well as
the weight transport problem, by using direct feedback paths
from the output to each hidden layer with randomly fixed
weights.

The biological plausibility and practical advantages of
DFA have led to a variety of subsequent studies, including
performance improvements [16], [17], theoretical analy-
ses [18], [19], and hardware implementations [16], [20], [21].
However, most of these studies have not been able to reach
the performance of BP, and further improvement is needed
for the widespread use of DFA in practice. To this end, this
paper considers a method of updating the feedback weight of
DFA.

In the case of FA, a method was proposed to update the
backward weight of each layer to mimic the corresponding
transposed forward weight matrix, enhancing their alignment
and approaching the performance of BP [11]. In the case
of DFA, however, it is difficult to obtain a similar updating
rule for the backward weights because the layer-wise weight
correspondence does not exist due to the structural difference
between forward and feedback path.

To address this problem, we propose a new learning
method with additional local modules that support the
adjustment of backward weights in DFA. The additional
single-layer local module is connected to each hidden layer
and trained to produce outputs close to the network output.

VOLUME 12, 2024

Thus, the weight of the local module behaves like a direct
forward channel connecting each hidden layer to the final
output, which provides an inverse correspondence to the
direct feedback path of DFA. Based on this correspondence,
we use the transposed local weights to update the direct
feedback weights. The proposed update of the feedback
weights allows the propagated error signal for forward weight
learning to be well aligned with that of BP, as will be
shown experimentally in Section III. We also experimentally
confirm that the proposed method improves the learning
performance compared to DFA in several benchmark tasks,
especially for the convolutional neural network (CNN)
models. The main contributions of this work are as follows:

e We propose a new learning method that updates direct
feedback weights through the support of additional
local modules.

e The proposed method is implemented in two different
algorithms: the local alignment support (LAS) learning
and the local target alignment support (LTAS) learning,
which will be described in Section III.

e We verify the performance of the proposed method
through experimental comparison with BP and DFA
on several benchmark datasets and network models
including CNN.

Il. LEARNING WITH FEEDBACK ERROR SIGNAL

A. NETWORK FORMULATION

Learning methods using feedback error signal can be
classified into two types, sequential feedback learning and
direct feedback learning, depending on the feedback path.
Figure 1 shows these two types of feedback learning. Before
describing each of them in detail, let us first formulate the
computation performed by the neural network. We consider
a fully connected network with L layers with a weight matrix
W; and bias b; in the i-th hidden layer. The output of the i-
th layer h; is computed using the output of the previous layer
h;_1, the connection weights W; and bias b;, and an activation
function f;, which can be written as

h; = fi (a;), (D
a;=Wh;_| +b;, 2)
where i = 1,--- ,L. For a given input sample x = hy, the

network output y = h; = f;, (ar) is obtained by sequential
forward calculation in a layer-by-layer manner.

To train the network, we have a loss function L(y, y*),
where y* is the target output, and the weights and biases
of each layer are repeatedly updated to decrease the loss as
follows:

Wi Wi+ AW;, (3)

b; < b; + Ab;. “4)

The update terms AW; and Ab; for each layer are determined
by rules that assign the responsibility for the current loss value

to each layer. In error feedback learning, we first obtain the
error vector e by taking the gradient of the loss function with
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FIGURE 1. Two different feedback paths for learning with backward error signals. (a) In the sequential feedback learning, the error signal from the last
layer is propagated sequentially, layer by layer, by the sequential feedback path (orange line). (b) In the direct feedback learning, he error signal from the
last layer is transmitted directly to each layer via the direct feedback path (green line).

respect to ay, such as,

oL
= 5
dag )
and use this to calculate the error signal §; ( = 1,--- ,L) to

assign the responsibility to each layer.

In the case of the output layer, the error vector e itself can
be the error signal §; to determine the update terms AW,
and Aby. Note that the specific form of e is determined by
the loss function £ and the activation function fi . If we use
the squared error loss and linear (identity) activation, the error
vector is given as e = y — y*. We also have the same form of
error in the case of the cross-entropy loss and the softmax
activation function. On the other hand, for the i-th hidden
layer, the error signal §; needs to be computed by propagating
the output error vectors e through a feedback path. There are
many variants on how to define the specific formula of §;, and
we try to categorize them according to the type of feedback
path, sequential vs. direct.

B. SEQUENTIAL FEEDBACK LEARNING ALGORITHMS

The computational flow of the sequential feedback learning
is shown in Figure 1 (a). The representative method of the
sequential feedback learning is BP [1], in which the error
signal S?P of the i-th layer is defined as the gradient of the
loss function £ with respect to a;, such as

oL
P = — —e, 6
I da; (6)
oL
=t =(Whet )o@, @
1
where i = 1,---,L — 1 and © denotes the element-wise

multiplication. Using the error signal, the update terms of
AW?P and Ab?P are obtained as

AWBP = _sBPh! || ®)
ABBP = _;;§BP ©)
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Note that we need to use the forward weights WI.TJrl to
compute the update terms AW?P of the i-th hidden layers.
Since the synaptic weights used in backward propagation
are exactly the same as those used in forward calculation,
BP has the weight transport problem. There is also the
backward locking problem, which prevents efficient parallel
updates, because we have to compute 6?5 | first to get 85
Despite these biological implausibility and computational
inefficiency, BP is the most widely used learning algorithm
due to its high performance.

On the other hand, the feedback alignment (FA) [10]
learning method replaces WiTJrl in the calculation of S?P with
a fixed random matrix B;;, and obtains the error signal for
each layer such as

oL
5t =0 = 9a, © (10)
§FA = (Bi+16ffl) of (@) . (11)

The update terms AWFA and Ab}.:A can then be given as

AW = —psFAR! |, (12)
‘A
AbFA = —p8FA, (13)

As shown in the equations, the backward locking problem
still exists because the computation of SZ»FA is not possible until
the computation of 65}1 is complete. However, the weight
transport problem can be solved by using B,y instead of the
forward weights Wl-TH in the computation of SI»FA. Through
computational experiments using FA on benchmark datasets,
it was confirmed that the exact forward weights are not
required to train a multilayer neural network, and that it can
be trained even with fixed random weights [10]. In addition,
it was observed that each forward weight align with its
corresponding feedback weight as learning progress [10],
which is an important condition for successful training with
fixed random backward weights.
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Furthermore, Liao et al. [9] investigated which factors are
important in the symmetry of forward and backward weights,
and experimentally showed that the magnitude of the weight
does not matter for the performance and the sign concordance
between forward and backward weights is important. They
also proposed a variant of FA called fixed random magnitude
sign concordance (frSF) that uses sign concordant feedback
weights with random magnitude. This method can be written
as

5157 = (M1 @ sign (W) ) 6557) of @), (14)

where M;;; is a random fixed matrix with positive ele-
ments. Although these variants show some improvement
over FA, the performance gap with BP has not yet been
overcome.

In order to alleviate the performance gap, Akroutetal. [11]
proposed two methods using adjustable feedback weights:
the weight mirror algorithm and a modified version of Kolen
and Pollak’s backward weight updates [14]. The two methods
begin with random feedback weights B; and update the values
to align well with the transpose of forward weight matrix
WiT. By updating the feedback weights, the modified Kolen-
Pollak (KP) algorithm and the weight mirror (WM) algorithm
outperformed FA and came close to BP, especially for the
complicated tasks. They are free from the weight transport
problem and their possible implementation in real neural
networks have also been suggested in [14]. However, the
sequential feedback learning methods still suffer from the
backward locking problem, which is crucial for efficient
learning of deep network models with a large number of
layers.

C. DIRECT FEEDBACK LEARNING ALGORITHMS

Unlike the sequential feedback learning, the direct feedback
learning methods propagate the error signals through direct
paths from output to every layer in parallel, as shown
in Figure 1 (b). In the direct feedback alignment (DFA)
method [12], the error vector of the output layer is propagated
directly to all hidden layers through random feedback
weights. The error signal 8?FA for ith hidden layer and
the update terms of weight W; and bias b; are given
by

SPFA — §BP — % =e, (15)
8™ = (Bir1e) Of (@), (16)
AWPHA = —pgPFARL || (17)
AbPFA = —psPHA, (18)

Note that the error signal SPFA for i-th hidden layer is
computed by the direct transition of the error vector e of
output layer, which does not require the error signal SBFIA
of the upper layer. Therefore, it is free from the backward
locking problem and can be efficiently trained in parallel.

In addition, it can solve the weight transport problem as
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well, because the forward weight is not necessary in the error
feedback path.

Focusing on the advantages of parallel updates in DFA
learning, several attempts have been made to increase the
practical usability of DFA by improving its performance
and implementation efficiency [16], [17], [19], [20]. The
sparse direct feedback alignment (SDFA) [16] and the binary
direct feedback alignment (BDFA) [20] reduce the mem-
ory of feedback weights used in conventional DFA, and
Launay et al. [17] proposed a method to share a feedback
weight matrix for multiple layers for memory efficiency
in the implementation of DFA. Furthermore, the direct
random target projection (DRTP) [19] showed that a random
projection of target vector (one-hot encoded label) can be
used a proxy of the error signal of DFA.

In spite of the active works on the modification of
DFA, their performances still lag behind BP, especially
in the advanced deep learning models such as CNN.
To overcome the performance degradation, we need to
understand the nature of DFA training. As an attempt to do
so, Refinetti et al. [18] showed that the forward weights align
with the fixed feedback weights in the early phase of DFA
learning, and then the alignment is sacrificed in the later
phase to minimize the loss. Consequently, the fixed feedback
weights of DFA limit the search space for optimal forward
weights, leading to the performance gap with BP. In addition,
they also showed that the alignment cannot be achieved in
CNN training due to the structural difference between the
fixed random feedback weights.

Based on the observations, it would be possible to consider
updating the backward weight like KP and WM in the FA
learning. However, it is difficult to find where B; should be
aligned due to the structural difference between forward and
backward paths. As an alternative, Baldi et al. [22] updated
the feedback weight of the i-th layer using the product of
the forward weights after the i-th layer to achieve good
alignment, but its performance was lower than DFA. In this
paper, we try to find an appropriate update direction of
feedback weight by adopting additional local modules.

lll. PROPOSED METHODS

A. LEARNING WITH LOCAL ALIGNMENT SUPPORT

In order to get appropriate alignment directions for updating
feedback weights in DFA, we proposed to use additional local
modules, which are called local alignment support (LAS)
modules. The LAS module is a single layer network with
linear output, which is attached to each hidden layer to make
an output directly from the hidden layer, as shown in Figure 2
(a). The local output from the LAS module attached to i-th
hidden layer is then written by

yi = B!, h;. (19)

The LAS module is trained to mimic the output of the
network, ay,, using the loss function defined as

L=y —arl*. (20)
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(a) Direct feedback learning with LAS module (b) Direct feedback learning with LTAS module
FIGURE 2. Direct feedback learning with local modules. (a) Each local alignment support (LAS) module is trained to approximate the linear network
output a;, and the trained weight B;, is used for updating weights in the direct feedback paths. (b) Each local target alignment support (LTAS) module is
trained to predict y*, and the trained weight B;, is used for updating the direct feedback weights.

Then the update term of the weight is given by
ABiy1 = —nh; (ag —y)" . @D

Through the updates, the weight of the LAS module acts as
the direct forward connection from each hidden layer to the
output layer, which corresponds the direct forward weights
of LAS module and the direct feedback connection of DFA.
Based on the correspondence, we assign the transpose of B;
in LAS module to the fixed random weight of DFA. Thus,
the global error vector e is propagated directly through B; |
to each layer as in conventional DFA, and the error signal is
given as

oL
(SLAS — o a—y*_ , 22
L dag e=y —y (22)
S =8P = (Wle)of ). (23)
84S — (B 1) Of (ay) . (24)

Figure 2 (a) shows the architecture of a fully connected
network with the direct feedback connection and the proposed
LAS modules. Note that the LAS module is not attached to
the last hidden layer because the output layer can play the
same role. The proposed approach is inspired from the WM
method [11] and KP method [14], which update the backward
weights in sequential feedback learning to align them with
the transpose of forward weight matrix. The LAS module
is additionally introduced to make the similar alignment
possible in DFA.

Algorithm 1 shows how to update the whole network
with the LAS modules. Though it is important that y; and
ay, are close enough for training with LAS, we have found
empirically that the iterative training of LAS modules and
main networks works well enough. It is noteworthy that the
proposed method can solve the backward locking problem
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because the weights B;1 of each layer can be updated in
parallel.

Algorithm 1 Learning with LAS module
Input: Weight parameter (W, b;, B;) of L-layer network F
Input data x, target data y*, and learning rate n
Output: Updated weight parameter W;, b;, and B;
0: For input x = hy,
# Forward calculation

: L =Loss (y,y*) # Loss value
0y =e=y*"—y # error signal

# Parallel update of weight parameters B;, W;, b;.
9: do in parallel fori = 1to L — 1

l:ifori=1toL — 1

2 a;=W:hi_1 +b;

3: h; =fi(a)) # hidden layer output
4: Yi = BiT-i-l h; # local module output
S:ap =Wrh;_1+bp

6:y =/ (ar) # network output

7

8

10: ifi =L — 1 then

11: 8= (Wl e of )

12: else

13: Biy1 < Biy1 —nhi(ap —yp)T
14: 8 = (Bi+1e) @fi, (a;)

15: Wi« W;—n8hl

16: b; < b; — nd;

B. LEARNING WITH LOCAL TARGET ALIGNMENT
SUPPORT

As a variant of the proposed learning with LAS module,
we introduce the local target alignment support (LTAS)
module, which is trained by using the target output values
y* instead of the network output ar. The proposed LTAS
module has the same single-layer structure as LAS, except
for the activation function of the output nodes. In the case
of regression problem where the target has continuous real
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values, the activation function is identity, which is the same
as the LAS module. However, in the case of classification
problem, the target output vector y* is given as a one-hot
vector and the output of LTAS module y; needs to be obtained
by applying the softmax activation function to the linear
output BZ.TJrl h;.

Since the proposed LTAS module is trained to fit the target
output, instead to mimic the network output, the loss function
should also be defined for the objectives. For the regression
problem, the loss function is defined by using the squared
error, such as

Li=|yi -y (25)

For the classification problem, the cross-entropy loss function
is used, which can be written as

L= £cross—entr0py (Yiy y*) . (26)

For both of the two different loss functions, the update term
for LTAS module is commonly given as

ABiy = —nh; (y* — Yi)T : (27)

The proposed LAS and LTAS modules commonly make the
direct forward connection from each hidden layer to final
output. The difference is in the learning objective. By training
the LAS module to mimic the network output, we eventually
expect them to act as direct connections between the network
output and the i-th hidden layer. On the other hand, by training
the LTAS module to get closer to the desired target output,
we want to get information about the error credit of each
hidden layer through the weight of the LTAS module.

Figure 2 (b) shows the structure and information flow of the
learning with LTAS module, and Algorithm 2 shows how to
train the whole network with the LTAS modules. Compared
to Algorithm 1, one can see that the LTAS modules can be
trained in the middle of the forward path. This is possible
due to that LTAS learning does not need the network output
and only uses target values that can be directly obtained from
training data. Once the LTAS module is updated, the update
of the whole network can be done in parallel, in the same way
of DFA and LAS.

C. EXTENSION TO CONVOLUTIONAL NEURAL NETWORKS
The proposed method can be extended to train CNN models.
It is known that DFA does not work well in CNN training
due to the local connection and weight sharing structure of
convolutional layers. To overcome these limitations, we try
to find an appropriate direct feedback signal by utilizing
the LAS module. However, we should note that the simple
fully connected layer attached to each convolutional layer is
practically intractable, because we need much more number
of parameters proportional to the number of neurons in all
planes of the convolutional blocks.

To address this inefficiency, we design a new local module
with a convolutional layer and global pooling. For the
i-th convolutional block with d; planes of kernel size (k, k),
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Algorithm 2 Learning with LTAS module

Input: Weight parameter (W, b;, B;) of L-layer network F
Input data x, target data y*, and learning rate n
Output: Updated weight parameter W;, b;, and B;
0: For input x = hy,
# Forward calculation and update of B;
l:fori=1toL —1do
2: a;=Wh;_; +b;
3: h; =f; (a;) # hidden layer output
4: yi = BiT_Hh,' # local module output
# Update LTAS module
5: Biy1 < Bip1 —nh; (y* — yz’)T
6:ap =Wrh;_1+bp
7y =/ (ar)
8
9

# network output
: L =Loss (y,y*) # Loss value
18 =e=y"—y
# Parallel update weight of parameters W and b;
10: do in parallel for i = 1 to L

11: ifi = L — 1 then

12: §i= (Wl e of @)
13: else

14: 8i = (Bir1e) Of (aj)

15:  W; < W;—nshl,
16: b; < b; — né;

B ay,a;kk) By
e=§;
5 S 0
i+1 €
w o
. i (dig1,dikk) KR
" o
Bi(a il :
o
. y=f.(@.)
Global pooling

FIGURE 3. Convolution block with LAS module. The LAS module attached
to a convolution block has single layer convolution with d; planes and
global pooling to make d; dimensional local output.

the attached LAS module has a convolutional layer with the
same kernel size and dy. planes. Then, by applying the global
pooling to each plane, the module computes a d;, dimensional
output vector y;. Figure 3 shows a convolutional block with
the LAS module. Obviously, the LTAS module has the same
structure.

The training of parameter B; in i-th LAS and LTAS
modules can be done in the same manner described in
Section III.A and 3.B, respectively. Once the local modules
are trained, the weights are used for adapting the direct
feedback weights: The error signal S%AS for i-th convolutional
block is obtained by using the global error vector e and B;,
where B; is the weight tensor obtained by applying flipped
kernel operation to B;.
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D. ALIGNMENT PROPERTIES

In this section, we discuss the alignment property, which
is the motivation of the proposed method and the core
characteristic of FA and DFA learning. When the FA method
was proposed by Lillicrap [13], it was suggested that FA
works because the forward weight W tends to align with
the fixed feedback weight B during learning. This weight
alignment leads to the gradient alignment, which means that
the error signal SFA aligns with that of the BP, S?P. Based
on these alignment properties, Akrout et al. [11] proposed
to update the backward weights B; to be aligned with the
corresponding forward weight WI-T in their proposed WM
method and the modified KP method, and improved the
learning performance.

In the case of DFA, the exact alignment between forward
weight WiT and the corresponding direct feedback weight B;
is impossible due to their structural discrepancy. However,
Refinetti et al. [18] experimentally showed that the weight
and gradient alignment still occur in DFA learning. Also,
in the experiment of [16], it is shown that there is a strong
correlation between the prediction accuracy and the amount
of alignment between B; and W/ --- W’ . Based on these
observations, we try to find an appropriate backward matrix
B; through learning of the proposed local module.

Using the LAS module with a single layer, we try to
approximate of the output of the whole network ay . This can
be exactly realized when the activation functions of hidden
layers are linear. For example, for a fully connected L-layer
network with linear activations, the final output a; can be
written by a linear transformation, such as

ap =W W;_1---Wih; (28)

Therefore, the LAS module of i-th hidden layer can exactly
predict a; when we have B; = WiT e W{, which implies
the exact alignment discussed in [16] and [22]. In addition,
the error signal of BP in the linear network is given as

PP =wL Wi, Wle, (29)
and the error signal of DFA also becomes equal to S?P when

B; = Wl-T- . -W{. In a linear network, this exact alignment can
be achieved by learning of LAS module because the weight
update is given as

ABi = _nhi—lhiT_l (WZT e W{ - Bz) ) (30)

which has an equilibrium at B; = Wl.T~ . ~W{.

However, this exact alignment condition is only applicable
to the linear networks. In the case of nonlinear networks,
the adaptive feedback weight method [22], which uses this
alignment condition, does not work well and even shows
lower performance than the original DFA with fixed random
weights. We speculate that the performance gap between DFA
and BP comes from the lack of alignment by the use of the
condition that does not account for the nonlinearity of the
network. Therefore, instead of using the specific alignment
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FIGURE 4. Change of alignment during training MNIST dataset. The
alignment is measure by cosine similarity between S?P and 3'{“5 (-).
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condition, we try to find appropriate weights that give a good
alignment of the error signal by training the local module.

To empirically verify the effect of the local module,
we conducted some experiments using MNIST [25] dataset.
We trained a fully connected network with two hidden layers.
Each hidden layer has 1024 neurons with ReLU nonlinearity.
The network is trained using four learning methods - BP,
DFA, LAS, LTAS - to measure the alignment of the error
signal between BP and the others (DFA, LAS, LTAS). For
DFA learning, we set the feedback weightas B; = W ---W;
using the initial values of the forward weights, and the same
values are used to initialize the feedback weight of the LAS
and LTAS modules.

We perform learning for 100 epochs using stochastic
gradient descent (SGD) with a learning rate of 0.0001 and a
batch size of 64. At each iteration, we measure the alignment
using the cosine similarity of 3]13P and the error signal of
the other methods (§PA, 8LAS and §1TAS). Note that an
alignment value of 1 means that the learning direction is equal
to BP.

Figure 4 shows the change in the average alignment for the
minibatches in each epoch. The results show that the error
signals of LAS and LTAS become closer to that of BP as
learning progresses, while there is no significant increase in
the alignment for DFA. From the result, we argue that the
proposed local module can provide meaningful information
to approximate the error signal of BP.

IV. EXPERIMENTAL RESULTS

A. RESULTS ON FULLY CONNECTED NETWORKS

We experimentally demonstrate the performances of LAS and
LTAS by using the benchmark datasets MNIST, CIFAR-10,
and CIFAR-100 [27]. We first use a fully connected network
with two 1024-dimensional ReLLU nonlinearity hidden layers
for the MNIST dataset, and three 4096-dimensional ReLLU
nonlinearity hidden layers for CIFAR-10 and CIFAR-100.
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TABLE 1. Test accuracy on convolutional network models. For each data setting, the best result is written in bold, and the second runner is denoted with

under bar.
Dataset Augmentation Model BP Shallow DFA LAS LTAS
Conv3 0.8451 0.6668 0.7831 0.7960 0.8191
flip Conv3+BN 0.8476 - 0.7838 0.8189 0.8167
CIFAR-10 ResNet18 0.8262 - 0.7697 0.7765 0.7772
Conv3 0.9100 - 0.7925 0.8499 0.8682
random-+cutout-+flip Conv3+BN 0.9147 - 0.8467 0.8578 0.8575
ResNet18 0.9339 - 0.8790 0.8685 0.8726
Conv3 0.5407 0.3886 0.4628 0.5400 0.5581
flip Conv3+BN 0.6425 - 0.5042 0.5797 0.5816
CIFAR-100 ResNet18 0.5325 - 0.4538 0.5026 0.4882
Conv3 0.6433 - 0.3979 0.6139 0.5631
random-+cutout-+flip Conv3+BN 0.7143 - 0.5616 0.6367 0.6407
ResNet18 0.6960 - 0.5427 0.6038 0.6030
TinyImageNet random-+cutout-+flip ResNet18 0.5997 - 0.3884 0.4678 0.4566

To train the networks, we set 64 batch sizes and perform a
grid search on the learning rates for the Adam [5] optimizer.
We use 100, 300, and 500 epochs for MNIST, CIFAR-10,
and CIFAR-100, respectively, and random horizontal flip
augmentation with 0.5 probability. Since the updates of the
last two layers in the proposed methods are the same as in
BP, we also compared the performance of a shallow network
where only the last two layers are trained and others are
fixed.

Table 1 shows test accuracies of the different learning
methods for each dataset. For the MNIST dataset, all methods
do not show much difference, but LAS performs best. For the
CIFAR-10 data, all methods except shallow learning achieve
a test accuracy of 0.6 or higher. In the case of CIFAR-100
data, however, we can see the performance degradation of
DFA, which is similar to that of shallow learning. This is
consistent with a previous study [18], which found that DFA
performs poorly as the dimensionality of the target value
increases due to poor alignment. It is noteworthy that the
proposed methods overcome the limitation of DFA and show
similar performance to BP.

Furthermore, for all tasks, LAS and LTAS show large
performance differences with the shallow, which only learns
the last two layers. This shows that the high performance of
LAS and LTAS is not due to learning the last two layers in
the same way as BP, but rather due to sending the appropriate
learning signals to the earlier layers. Although there is still
a small performance gap between BP and the proposed
methods, it is consistently confirmed that the use of the
local module can improve the performance of direct feedback
learning while maintaining layer-wise parallel processing.

B. RESULT ON CONVOLUTIONAL NEURAL NETWORKS
In the previous works, it is known that DFA does not
work well in CNN models due to the unique architecture
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of local connection and weight sharing [18]. To see the
effect of the proposed local module on CNN learning,
we trained three different CNN models (Conv3, Conv3+BN,
and ResNet18) using CIFAR-10, CIFAR-100, and TinyIma-
geNet [31] datasets.

The Conv3 model, used in Crafton et al. [16], has three
convolution blocks and three fully connected layers. All
convolution layers in this model have (5, 5) kernel size, (2,
2) stride, and (2, 2) zero padding. The Conv3+BN model
has the same structure as the Conv3 model except for the
addition of the batch normalization (BN) [6] layers after the
convolution operation in each block. The ResNet18 [4] with
skip connection is a model that is a common basis for modern
CNN architectures. For this model, we use the block-wise
direct feedback used in Launay et al. [23]. This feedback
method propagates the error signal to convolutional blocks
in a block-wise fashion and computes the same as BP within
a block.

In training the CNN models, we performed a grid search to
empirically optimize the learning rate and the weight decay
term. We first trained CIFAR-10 and CIFAR-100 data with
the random horizontal flip augmentation, which is the same
as the fully connected network, and also tried an additional
random augmentation [29] and a cutout augmentation [30].

Table 2 shows the test accuracies on CIFAR-10, CIFAR-
100, and TinyImageNet. For learning with only random
horizontal flip augmentation, the overall experimental results
of DFA are similar to those reported by Crafton et al.
in [16]. Compared to DFA, the proposed methods (LAS
and LTAS) show slight improvements for CIFAR-10 dataset.
For CIFAR-100 data, however, they significantly outperform
DFA and even better than BP in the case of the Conv3
model. Notably, the ResNetl8 shows lower performances
than the simpler models, which is consistently observed
for all learning methods (BP, DFA, LAS, and LTAS). This
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TABLE 2. Test accuracy on fully connected networks. For each data set,
the best result is written in bold fonts, and the second runner is written
with under bar.

Method MNIST CIFAR-10  CIFAR-100
BP 0.9862 0.6144 0.3376
Shallow 0.9862 0.5831 0.2965
DFA 0.9850 0.6008 0.2997
LAS 0.9871 0.6057 0.3253
LTAS 0.9864 0.6054 0.3203

could be due to overfitting phenomena of the large model,
and we performed additional augmentation to obtain better
performance.

In the case of learning with three different types of
data augmentation, we can observe a clear difference
between DFA and the proposed methods. In particular, for
CIFAR-100, the proposed methods show greater effects of
data augmentation than DFA. It is noteworthy that the perfor-
mance improvement is consistently observed for all models
and tasks, including ResNetl8 model and TinyImageNet
data, which have not been investigated much in previous
works on DFA. These promising results make it clear that
the feedback weights learned by the proposed LAS and LTAS
are more meaningful learning signals than the fixed random
feedback weights.

Furthermore, it is shown that the performance gap between
LAS and DFA increases as the difficulty of the task increases,
which could be explained by the advantage of using adaptive
feedback weights. The adaptive feedback weights can expand
the search area in the parameter space to find a better
solution than the fixed random feedback weight. This is
related to the limitation of DFA addressed in the previous
work [18].

While studies have shown that batch normalization is
helpful in learning DFA [10], [20], others have shown
that it is not necessary [17]. However, from the results
in Table 2, it seems that batch normalization plays an
important role in learning of DFA, LAS, and LTAS. These
results suggest that other normalization techniques, such as
layer normalization [32], can also be applied for further
improvement.

V. CONCLUSION

In this paper, we proposed two direct feedback learning
methods to improve the performance of DFA learning
method, which can solve the weight transport problem
and the backward locking problem. The proposed local
modules, called LAS and LTAS, find a linear approximation
of the nonlinear mapping from each hidden layer to the
network output. The weight of the trained local module
can give appropriate direction to which the direct feedback
weight should be aligned. As a result, the proposed methods
outperform traditional DFA on several benchmark datasets.
In particular, for CNN models, the proposed method shows
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promising results, giving the possibility to apply direct
feedback learning to convolutional blocks, which is known to
be difficult. Nevertheless, the performance gap with BP still
exists, and this may be due to the difficulty of approximating
the complicated mapping of the convolutional layer by a
simple linear module. In order to handle this problem,
it would be possible to use more sophisticated local modules
and loss functions. In addition, to increase the practical
usability of the proposed method, further extension to more
advanced networks such as MLP-mixer [33] will be done as
a future work.
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